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Abstract

GFP-like fluorescent proteins (FPs) are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia)
and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members
of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled
coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full
complement of typical coral fluorescent colors (cyan, green, and red) and underwent sorting between coral groups. Among
the newly cloned proteins are a ‘‘chromo-red’’ color type from Echinopora forskaliana (family Faviidae) and pink
chromoprotein from Stylophora pistillata (Pocilloporidae), both evolving independently from the rest of coral
chromoproteins. There are several cyan FPs that possess a novel kind of excitation spectrum indicating a neutral
chromophore ground state, for which the residue E167 is responsible (numeration according to GFP from A. victoria). The
chromoprotein from Acropora millepora is an unusual blue instead of purple, which is due to two mutations: S64C and
S183T. We applied a novel probabilistic sampling approach to recreate the common ancestor of all coral FPs as well as the
more derived common ancestor of three main fluorescent colors of the Faviina suborder. Both proteins were green such as
found elsewhere outside class Anthozoa. Interestingly, a substantial fraction of the all-coral ancestral protein had a
chromohore apparently locked in a non-fluorescent neutral state, which may reflect the transitional stage that enabled
rapid color diversification early in the history of coral FPs. Our results highlight the extent of convergent or parallel evolution
of the color diversity in corals, provide the foundation for experimental studies of evolutionary processes that led to color
diversification, and enable a comparative analysis of structural determinants of different colors.
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Introduction

Fluorescent proteins (FPs) homologous to the green fluorescent

protein (GFP) from the jellyfish Aequorea victoria are a fascinating

protein family in many respects. Being only about 230 amino acid

residues long, coral FPs, during their evolution, acquired an ability

to synthesize several distinct types of fluorescent or colored

moiety–the chromophore–from their own residues in two or three

consecutive autocatalytic reactions, resulting in sometimes dra-

matically different spectroscopic characteristics [1]. Since the first

description of Anthozoan members of the GFP family, these

proteins have given rise to a variety of in vivo imaging techniques

capitalizing on their unique spectral, physical or biochemical

properties [2,3,4]. The ease with which coral FPs can be expressed

and screened for phenotypic changes makes them ideal models for

experimental studies in evolution of protein families, addressing in

particular such important questions as convergent molecular

evolution and the origins of molecular complexity [5,6]. Last but

not least, coral FPs are major determinants of the coral reef color

diversity [7,8,9,10], accounting for practically every visible coral

color other than the brown of the photosynthetic pigments of algal

symbionts (possible exception is the non-fluorescent yellow in some

representatives of Poritidae and Dendrophylliidae that may be due

to melanin-related pigments; C. Palmer, pers. comm.). A suggestion

that the red appearance of some corals may be predominantly due to

the phycoerythrins of cyanobacterial symbionts rather than intrinsic

GFP-like proteins [11] was not supported in subsequent experiments

[10]. FPs are the only known natural pigments in which the color is

determined by the sequence of a single gene, which provides a

unique opportunity to directly study the evolution of coral reef

colorfulness at the molecular level [12].

Previous studies revealed four basic colors of coral FPs: three

fluorescent ones (cyan, green, and red) and a non-fluorescent one

(purple-blue) [9,13]. Of these, only green and cyan share the same

chromophore structure [14]. There are two types of red

chromophore representing alternative ways to extend the ‘‘green’’

structure by means of an additional autocatalytic reaction. These

chromophore types can be called DsRed-type [15] and Kaede-

type [16] after the first proteins in which they were found. DsRed-

like and Kaede-like chromphores are easily discernable by the

shape of the excitation and emission spectra: Kaede-type proteins

show much narrower major peaks with smaller Stokes shifts and a

characteristic shoulder at 630 nm in the emission spectrum that

makes them look remarkably like cyanobacterial phycoerythrins
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[11,17]. In addition, there is a clear difference in the absorption

spectrum of these types of red proteins under denaturing

conditions. In 1M NaOH a DsRed chromophore is hydrolyzed

resulting in a green-type chromophore structure with the

characteristic absorption maximum at 445 nm [15]. In contrast,

a Kaede-type chromophore in 1M NaOH absorbs with the

maximum at 499 nm [10]. Kaede-type red proteins show a

peculiar photo-induced color conversion: their final chromophore

maturation stage that transforms the green-emitting GFP-like

structure into the red chromophore requires violet light [16]. The

photoconversion feature of Kaede-like red FPs made it possible to

evaluate the half-life of these proteins in vivo, which turned out to

be extremely long-on the order of 20 days [18]. Non-fluorescent

purple-blue proteins (so-called chromoproteins or pocilloporins),

which are characterized by high molar extinction coefficient but

virtually no fluorescence [7,19], possess yet another chromophore

type, which is the isomerized version of the DsRed-like red

chromophore [20]. There are three more derivatives of the

DsRed-like structure, each observed once among FPs. The first

one is the fragmented DsRed chromophore of the kindling

fluorescent protein (KFP) from the sea anemone Anemonia sulcata

[21], which was originally described as a chromoprotein [19].

Another one is a three-ring structure [22] found in the natural

yellow fluorescent protein from Zoanthus sp. [23]. The third one is

found in a mutant variant of DsRed called mOrange [24]. It is still

largely unclear how changes in the FP’s amino acid sequence lead

to such dramatic variations.

We have earlier reported the detailed analysis of remote

homology relationships within the GFP superfamily [13,25]. The

aim of the present study was to systematically characterize

fluorescent and/or colored GFP-like proteins found in reef-

building corals (phylum Cnidaria, class Anthozoa, order Scler-

actinia), which represent the largest known repository of spectro-

scopic diversity of the GFP-like proteins. We describe 40 novel

proteins that, along with the previously known ones, represent

sampling from all six suborders of Scleractinia and cover 14 out of

21 families of corals. Our study provides an extensive knowledge

base for biotechnological, evolutionary, and ecological studies

utilizing GFP-like proteins as a subject or as a model.

Results

General characteristics of coral FPs
We used six sets of degenerate primers targeting the whole

previously known diversity of Anthozoan FPs to isolate the coral

FPs described here. Every coral species was subject to PCR trials

with all degenerate primer combinations, resulting in identification

of up to four distinct FPs from a single species. All but one of the

newly cloned proteins fall into one of the four previously suggested

color classes: fluorescent cyan, green, and red proteins, and non-

fluorescent chromoproteins [5,9]. A novel color type was

represented by the protein from Echinopora forskaliana that exhibited

the spectral phenotype intermediate between chromoproteins and

DsRed-type red fluorescent proteins (hence its identifier is eforCP/

RFP). Table 1 summarizes the spectral characteristics of the

proteins cloned in this study, while Figure 1 shows all the

excitation and emission spectra. According to the conservative

method of semi-native gel electrophoresis [26], all the newly

cloned FPs are tetramers or higher-order oligomers.

Colors
Cyan. Although cyan proteins possess the same chromophore

as greens [14], their evolution in corals by means of positive natural

selection [12] warrants their recognition as a separate color class

since it indicates that cyan fluorescence must have a dedicated,

although yet unclear, role in corals’ physiology. Cyan proteins

typically have an emission peak between 485–495 nm, although

more blue-sifted variants can occasionally be found, down to 477 nm

[27] . The considerable variation in exact position of the maxima is

in a large part due to the poorly defined peaks in the spectral curves.

Cyan proteins have notably wider excitation and emission curves

than greens: the width of the curves at half-height is about 55 nm for

cyans compared to about 35 nm for greens. Cyan proteins typically

show the lowest molar extinction coefficient of all the colors (Table 1).

Two cyan proteins reported here (psamCFP and mmilCFP) exhibit

dramatically blue-shifted excitation maximum (404 nm), suggestive

of a predominantly neutral ground-state chromophore, which, as we

show below, is due to the presence of glutamic acid in position 167

(numeration according to GFP from Aequorea victoria). This spectral

modification was previously unknown in cyan fluorescent proteins,

either wild-type or artificially generated mutant variants.

Green. Green fluorescent color is the most common in corals

and is the most conspicuous of all the fluorescent colors in situ [8].

We discriminate green proteins from the cyans by position of

emission maximum (.500 nm), which usually correlates with the

narrow half-width of the excitation and emission curves (see

above). Occasionally there are borderline cases such as aacuGFP1,

which has a narrow ‘‘green-like’’ emission peak at 502 nm but a

rather ‘‘cyan-like’’ blue-shifted and wide excitation peak (Fig. 1).

The position of excitation maxima in the newly cloned green

proteins (around 478–512 nm) indicates the predominance of an

anionic ground chromophore state, although a group of closely

related proteins from Acropora species (aacuGFP1, aacuGFP2,

amilGFP and anobGFP) display a minor, but noticeable

absorption peak at about 395 nm corresponding to the neutral

chromophore state.

Yellow. There are two wild-type yellow fluorescent proteins

with emission maxima between 525 and 570 nm known at the

moment: zoanYFP from a Zoanthidea representative (emission

max 538 nm) and a hydromedusan protein phiYFP (emission max

535 nm). Despite the significant extent of our survey, not a single

protein of this color has been cloned from corals, although yellow

fluorescence with emission maximum exceeding 530 nm has been

occasionally observed [17]. zoanYFP and phiYFP represent two

different solutions to achieve yellow fluorescence. While phiYFP

contains a GFP-like chromophore in a modified environment,

zoanYFP possesses a unique three-ring chromophore structure

that seems to be a result of deviation from the DsRed-type

chromophore synthesis pathway. Interestingly, as it will be

discussed below, such an explanation is corroborated by the

phylogenetic position of zoanYFP.

Red. Corals possess either DsRed-type or Kaede-type red

fluorescent proteins. We find Kaede-type proteins mostly associated

with scleractinian corals of suborder Faviina. In addition, Kaede-

type proteins are found in at least one representative of the order

Corallimorpharia (carribean mushroom anemone Ricordea florida)

and at least one representative of the family Nephtiidae of the order

Alcyonaria, Dendronephtya sp. Red fluorescent proteins from all other

organisms studied thus far, including other suborders of reef-building

corals (Scleractinia), all sea anemones (Actiniaria) and two more

Corallimorpharia representatives, possess the DsRed-like

chromophore.

Purple-blue. The non-fluorescent chromoproteins (also called

pocilloporins [7]) are characterized by intense absorption with a

molar extinction coefficient commonly exceeding 100,000 and

virtually no fluorescence. The chromophore in the chromoproteins is

an isomerized non-coplanar version of the DsRed-like chromophore

[20]. A mutation was previously identified that results in the

Coral Fluorescent Proteins

PLoS ONE | www.plosone.org 2 July 2008 | Volume 3 | Issue 7 | e2680



Table 1. Names, origins and spectroscopic characteristics of the newly cloned proteins.

Host species max max Quant. Molar

accession Genus species (Sub-order, Family) Excit Emiss yield extinct.

CYAN

amilCFP AY646070 Acropora millepora (Archaeocoeniina, Acroporidae) 441 489 0.9 29500

anobCFP1 AY646072 Acropora nobilis (Archaeocoeniina, Acroporidae) 462 490 0.86 27600

anobCFP2 AY646071 Acropora nobilis (Archaeocoeniina, Acroporidae) 477 495 0.49 67200

meffCFP DQ206381 Montipora efflorescens (Archaeocoeniina, Acroporidae) 467 492 0.55 88600

mmilCFP DQ206392 Montipora millepora (Archaeocoeniina, Acroporidae) 404 492 0.9 42500

meleCFP DQ206382 Mycedium elephantotus (Faviina, Pectiniidae) 454 485 0.74 47400

efasCFP DQ206397 Eusmilia fastigiata (Meandriina, Meandrinidae) 466 490 0.77 40333

psamCFP EU498721 Psammocora sp. (Fungiina, Siderastreidae) 404 492 0.96 30800

GREEN

aacuGFP1 AY646069 Acropora aculeus (Archaeocoeniina, Acroporidae) 478 502 0.61 36900

aacuGFP2 AY646066 Acropora aculeus (Archaeocoeniina, Acroporidae) 502 513 0.71 93900

aeurGFP EU498722 Acropora eurostoma (Archaeocoeniina, Acroporidae) 504 515 0.67 145700

afraGFP AY647156 Agaricia fragilis (Fungiina,Agariciidae) 494 503 0.61 100800

amilGFP AY646067 Acropora millepora (Archaeocoeniina, Acroporidae) 503 512 0.67 75200

anobGFP AY646068 Acropora nobilis (Archaeocoeniina, Acroporidae) 502 511 0.6 96200

eechGFP1 DQ206383 Echinophyllia echinata (Faviina, Pectiniidae) 497 510 0.75 124200

eechGFP2 DQ206395 Echinophyllia echinata (Faviina, Pectiniidae) 506 520 0.69 109800

eechGFP3 DQ206396 Echinophyllia echinata (Faviina, Pectiniidae) 512 524 0.45 120600

efasGFP DQ206385 Eusmilia fastigiata (Meandriina, Meandrinidae) 496 507 0.8 125800

fabdGFP EU498723 Favites abdita (Faviina, Faviidae) 508 520 0.54 116800

gfasGFP DQ206389 Galaxea fascicularis (Meandriina, Oculinidae) 492 506 0.73 102500

meffGFP DQ206393 Montipora efflorescens (Archaeocoeniina, Acroporidae) 492 506 0.58 92000

plamGFP EU498724 Platygira lamellina (Faviina, Faviidae) 502 514 0.96 98600

pporGFP DQ206391 Porites porites (Poritiina, Poritidae) 495 507 0.54 98200

sarcGFP EU498725 Sarcophyton sp.(Octocorallia, Alcyoniidae) 483 500 0.96 76700

stylGFP DQ206390 Stylocoeniella sp. (Archaeocoeniina, Astrocoeniidae) 485 500 0.7 86700

DsRed-type RED

amilRFP AY646073 Acropora millepora (Archaeocoeniina, Acroporidae) 560 593 0.49 90900

meffRFP DQ206379 Montipora efflorescens (Archaeocoeniina, Acroporidae) 560 576 0.56 99600

pporRFP DQ206380 Porites porites (Poritiina, Poritidae) 578 595 0.54 94900

Kaede-type RED

eechRFP DQ206387 Echinophyllia echinata (Faviina, Pectiniidae) 574 582 0.43 12100

meleRFP DQ206386 Mycedium elephantotus (Faviina, Pectiniidae) 573 579 0.85 45600

scubRFP AY646064 Scolymia cubensis (Faviina, Mussidae) 570 578 0.6 66400

CHROMO-RED

eforCP/RFP EU498726 Echinopora forskaliana (Faviina, Pectiniidae) 589 609 0.16 111300

CHROMOPROTEINS

aacuCP AY646077 Acropora aculeus (Archaeocoeniina, Acroporidae) 580 NA NA 109000

ahyaCP AY646076 Acropora hyacinthus (Archaeocoeniina, Acroporidae) 580 NA NA 132000

amilCP AY646075 Acropora millepora (Archaeocoeniina, Acroporidae) 588 NA NA 87600

gfasCP DQ206394 Galaxea fascicularis (Meandriina, Oculinidae) 577 NA NA 205200

gdjiCP DQ206376 Goniopora djiboutiensis (Poritiina, Poritidae) 583 NA NA 110300

meffCP DQ206377 Montipora efflorescens (Archaeocoeniina, Acroporidae) 574 NA NA 118300

stylCP DQ206378 Stylocoeniella sp. (Archaeocoeniina, Astrocoeniidae) 574 NA NA 96600

spisCP DQ206398 Stylophora pistillata (Archaeocoeniina, Pocilloporidae) 560 NA NA 61000

doi:10.1371/journal.pone.0002680.t001
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chromophore isomerization in chromoproteins, which converts

them into far-red fluorescent proteins with the emission maximum

above 600 nm. Although the quantum yield in such mutants is

typically low, they show sufficient brightness to be considered useful

biotechnology markers since they retain a high ‘‘chromoprotein-

like’’ molar extinction. Another useful feature of the chromoproteins

is the ‘‘kindling’’ behavior [19,28], which makes them prospective

photoactivatable markers. All but one chromoprotein from the order

Scleractinia identified previously, as well as in this study, are very

similar in sequence and fall into the same phylogenetic group. The

only significantly different chromoprotein is the novel pink spisCP

from Stylophora pistilata. Its absorption maximum is at 560 nm (Fig. 1),

which represents a blue shift by at least 14 nanometers in comparison

to other known coral chromoproteins (hence pink rather than purple

appearance). It should be noted, however, that some of the

chromoproteins that arose independently in sea anemones (order

Actiniaria) possess similarly blue-shifted absorption: for example,

chromoproteins asCP562 [29] and cgCP [30] possess absorption

maxima at 562 and 571 nm, respectively.

Chromo-red. In addition to the above color classes proposed

by Labas et al (2002), in this study we identified a protein

eforRFP/CP from Echinopora forskaliana possessing rather unusual

spectroscopic characteristics. This protein has a molar extinction

coefficient exceeding 100,000 M21, which is more typical of

chromoproteins than of red fluorescent proteins; however, it also

shows the considerable (0.16) quantum yield of red fluorescence.

The fluorescence peaks at 609 nm (Fig. 1), which is never seen in

wild-type coral red fluorescent proteins (all of which emit below

600 nm), but is rather typical of fluorescent mutants of

chromoroteins along with the relatively low quantum yield

[19,30]. Its alkaline and acid denaturation behavior suggests the

presence of a DsRed-like chromophore (not shown). Since the

spectroscopic characteristics of this protein most closely resemble

an artificially generated fluorescent mutant of a chromoprotein

Figure 1. Excitation (solid lines) and emission (dashed lines) spectra of the newly cloned GFP-like proteins. Horizontal axis: wavelength
in nanometers, vertical axis: relative fluorescence amplitude.
doi:10.1371/journal.pone.0002680.g001
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[19,30] rather than a wild-type DsRed-like fluorescent protein,

and given its isolated phylogenetic position (see below), we believe

that it is warranted to recognize this protein as a representative of

its own new color class, ‘‘chromo-red fluorescent protein’’.

Phylogeny
The phylogenetic tree for Cnidarian fluorescent proteins is

presented on Fig. 2. Scleractinian FPs form three separate clades,

which we earlier designated B through D [13]. Each of these

clades has a strong phylogenetic support (posterior probability

essentially equals one), although the relationship between them

remains unresolved. The grouping of these three clades to the

exclusion of all but one FP from Actiniaria (clade A), Pennatu-

lacea, and Ceriantharia is also very highly supported. Of the three

Scleractinia clades, clade B is a clear example of a separate

paralogous lineage that is retained in the genome, despite presence

of multiple other FP genes, due to functional specialization. This

clade contains non-fluorescent purple-blue chromoproteins from

nearly every sampled family of Scleractinia (plus some from

Corallimorpharia). Clades C and D underwent sorting among

coral groups, so that we never find representatives of both within a

single coral species. Each of these two clades contains a full

complement of typical coral fluorescent colors: green, cyan, and

red. Notably, the red fluorescent proteins of clade C are all

DsRed-type, whereas they are Kaede-type in clade D. The

specrtroscopically unique chromo-red protein eforCP/RFP from

Echinopora forskaliana does not belong to any of the three major

clades, although it constitutes their sister group. Some of the

relationships between coral FPs resemble patterns suggested by the

novel molecular-based coral phylogeny [31,32]; however, its most

basic subdivision into Robusta and Complexa is not recapitulated,

most likely due to the extensive lineage sorting in the FP family.

Clade B. This clade is comprised mostly of the purple-blue

non-fluorescent chromoproteins, which have been cloned from

families Acroporidae, Pocilloporidae, Poritidae, Faviidae,

Pectinidae, Oculinidae, and Dendrophyliidae. Most of these

families yielded other FPs situated elsewhere within the tree.

The tree on Fig. 2 includes only a small subset of the known

chromoproteins, which we first describe in this paper. Omitting

the others does not affect the overall phylogeny since all the

chromoproteins of clade B are unusually similar in sequence, even

the ones from different orders, Scleractinia and Corallimorpharia.

Multiple, very similar chromoproteins can often be identified

within a single species [33], suggesting a possibility of concerted

evolution that may contribute to their sequence conservation. In

addition to chromoproteins, clade B contains a group of

corallimorpharian FPs, two of which are DsRed-type reds

(including DsRed itself) and one cyan, plus a novel red FP from

Porites porites (pporRFP) that occupies the most basal position

within the clade and is also of the DsRed type. Thus far, clade B

does not include any green FPs, which suggests that the common

ancestor of this clade might have been either a red FP or a

chromoprotein. Whether this is true or not, the grouping of all but

one coral chromoproteins within one clade unequivocally indicates

that the paralogous gene lineage responsible for the purple-blue

color originated before the separation of scleractinian families.

Clade C. This clade received significant expansion through

addition of the proteins reported here, as well as cloned by other

laboratories since 2002. Ironically, clade C originally contained

only the proteins from order Zoanthidea and the cyan protein

from Anemonia majano (order Actiniaria), the placement of which

within this clade we now tend to view as a phylogenetic

complication (see Discussion). All of the other 24 proteins that

joined clade C as a result of recent studies came from the order

Scleractinia. Clade C includes three well-supported subclades (C1,

C2 and C3, Fig. 2) each of which contains its own events of color

diversification.

C1 subclade unites representatives from coral families Fungiidae

(suborder Fungiina), Meandrinidae (Meandriina) and Rhizangiidae

(Faviina), which may correspond to a grouping of these families into

one of the Robusta subclades in the novel coral phylogeny [32]. C1

features diversification into cyan, green, and DsRed-type red

fluorescent colors. At the divergence point of subclades C2 and C3

there is a surprise: the pink chromoprotein spisCP from Stylophora

pistillata (suborder Archaeocoeniina, family Pocilloporidae). This

protein clearly has evolved independently from the rest of coral

chromoproteins. Interestingly, other representatives of the same

coral family (but not of the same genus) yielded ‘‘conventional’’

chromoproteins of the clade B affiliation.

Subclade C2 contains green and cyan proteins from Archae-

ocoeniina suborder (families Acroporidae and Pocilloporidae) plus

a cyan protein from sea anemone Anemonia majano (amajCFP,

original name amFP486). Notable in this subclade are the multiple

splits between cyan and green lineages: apparently these colors

evolved from each other several times.

The C3 subclade is again a mixture of coral suborders: it contains

a green protein from Porites porites (suborder Poritiina), cyan from

Psammocora sp. (Fungiina) and one green and two red proteins from

Acroporidae family (Archaeocoeniina); plus a group of proteins from

order Zoanthidea. C3 is the most controversial subclade in the whole

tree: its composition cannot be reconciled with any of currently

considered phylogenies (see Discussion below). A notable feature of

the subclade C3 is the secondary color radiation within Zoanthidea

branch. The three Zoanthidea sequences correspond to red, yellow

and green protein of which the red is basal; moreover, red

fluorescent proteins amilRFP and meffRFP occupy the sequential

basal positions with respect to the Zoanthidea branch. This renders it

most likely that common ancestor of all the Zoanthidea proteins was

a fluorescent red protein.

Clade D. Clade D includes several well-resolved nested

subclades. The most basal branch corresponds to the green

protein from coral genus Agaricia (suborder Fungiina). Moving up

clade D, there is a group of FPs from order Corallimorpharia

(mushroom anemones) and, rather unexpectedly, a group from

order Alcyonaria (soft corals). The rest of clade D contains only

FPs from families Faviidae, Mussidae, Trachyphyllidae,

Oculinidae, and Pectinidae, all belonging to the suborder

Faviina. With the exception of FPs from genus Galaxea (family

Oculinidae), these proteins fall into three groups corresponding to

cyan, green, and red fluorescent colors, of which cyan and red are

monophyletic and green–paraphyletic.

Gene conversion
Within the C3 subclade, there is an obvious case of gene

conversion between green and red proteins of Montipora efflorescens

(meffGFP and meffRFP): these two proteins are identical starting

with the residue 66 (according to GFP numeration; in fact it is the

chromophore-forming tyrosine) with not even a single third codon

position substitution, whereas the N-terminal parts are substan-

tially different (76% identity over 198 nucleotides of the

corresponding coding region). The existence of such transcripts

in the original Montipora efflorescens RNA sample was confirmed

through independent RT-PCRs with gene-specific primers

followed by sequencing of the product. Comparison to the closely

related red fluorescent protein from Acropora millepora (amilRFP)

revealed that amilRFP coding region is 90% identical to the 498

nucleotides of the converted meffRFP/meffGFP portion. Exactly

the same level of identity is found between amilRFP and meffRFP

Coral Fluorescent Proteins
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within the remaining 198 nucleotides of the coding region,

whereas the corresponding region in meffGFP is only 74%

identical to amilRFP. This difference is highly significant

(p,0.001) for the number of nucleotides involved. It can be

concluded therefore that it was the portion of meffRFP gene that

was copied into meffGFP via gene conversion and not the other

way around. meffGFP was therefore excluded from the main

phylogenetic analysis and its placement within clade C2 is

tentatively based on the short unconverted portion of its coding

sequence.

Ancestral colors
For this study we reconstructed two ancestral proteins: one was

the common ancestor of all coral proteins and the other an

ancestor of all Faviina proteins (‘‘all-coral’’ and ‘‘all-Faviina’’

respectively, Fig. 2). We applied a novel strategy of reconstruction

to address the problem of uncertainty associated with the ancestral

sequence prediction. Instead of synthesizing the protein having the

most probable amino acid at each site, for each of the ancestral

nodes we reconstructed five proteins in which the identity of the

amino acid at a site was a result of random sampling from the

Figure 2. Bayesian phylogenetic tree of the cnidarian fluorescent proteins; Arthropoda FPs are shown as an outgroup. The edges
with posterior probability less than 0.95 are collapsed. Black dots identify the proteins first described in this paper. Major clades and sub-clades are
denoted, as well as the two reconstructed ancestral proteins (All-coral and All-Faviina). See legend for the color-coding of FP color classes. The
position of meffGFP is tentative based on the short portion of its sequence that did not undergo gene conversion (see text for details). See Table S1
for the GenBank accession numbers corresponding to the protein names, and File S1 for the FASTA-formatted alignment of coding cDNA sequences.
doi:10.1371/journal.pone.0002680.g002
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underlying posterior distribution. Such a probabilistic mode of

reconstruction has been proposed as a way to avoid bias towards

higher stability and overall functional efficiency that could be

expected in a consensus protein [34]. Using five samples, we

expected to see the same phenotype in all the reconstructed variants,

which would indicate that this phenotype represents a majority of all

possible ancestral phenotypes with 95% confidence [35].

The sampled ancestral sequences corresponding to the all-coral

ancestor differed between each other by 8–12%, all-Faviina

sequences by 6–9% (Fig. 3 A, B). Despite these sequence

differences, all the reconstructed variants exhibited practically

identical fluorescence and absorbance phenotypes per ancestral

node, with positions of the major peaks matching within 2 nm.

This result indicates that the uncertainties of the ancestral

sequence prediction did not affect the reconstructed ancestral

phenotypes.

All of the reconstructed ancestral proteins demonstrated green

emission (Fig. 3 E ) with the maximum of 505–506 nm and

mirror-image excitation spectrum peaking at 493–495 nm (Fig. 3

D). Interestingly however, the absorbance spectrum differed rather

dramatically between the all-coral and all-Faviina ancestors (Fig. 3

C): whereas all-Faviina absorbance spectrum was very similar to

the excitation spectrum, suggesting the presence of typical GFP-

like chromophore in its anionic ground state [36,37], the

absorbance spectrum of the all-coral ancestor featured a major

peak at 375 nm that was practically not manifested in the

excitation spectrum. This absorbance peak most likely corresponds

to the chromophore in the neutral state, although it is more UV-

shifted than in GFP from A. victoria (395 nm) or any of the cyan

fluorescent proteins mentioned above (404 nm). Another distinc-

tive feature that may actually be related to the UV-shift is that in

the all-coral ancestor this chromophore state is very low-

fluorescent (hence the almost complete absence of the 375 nm

peak in the excitation spectrum, Fig. 3D), perhaps due to the lack

of the proton transfer pathway that enables fluorescence after

absorption in the neutral state [37]. The low molar extinction

coefficient at 493 nm (31,000–33,000 M21 for different variants)

and low quantum yield (0.43–0.47) of the all-coral ancestor are

ostensibly due to the large fraction of the protein being ‘‘locked’’ in

the dark neutral state. The same parameters in the all-Faviina

ancestor were on par with extant wild-type green proteins: its

different sequence variants had molar extinction coefficient

88,000–100,000 M21 and quantum yields of 0.67–0.80. All the

reconstructed protein were tetrameric or higher order oligomeric

according to the semi-native electrophoresis [26].

Purple to blue shift in chromoproteins
The chromoprotein amilCP is very similar to other coral

chromoproteins in sequence; however, its absorption maximum

(592 nm) is red-shifted by about 10 nm, making the protein

appear blue instead of purple to the naked human eye. The closest

homolog of amilCP is gfasCP, in comparison to which the amilCP

protein has only four amino acid substitutions: S64C, I162L,

S183T and S229P (numeration according to GFP from A. victoria).

We investigated the effect of all combinations of these four

mutations by introducing them into gfasCP and found that the

blue phenotype was due to the substitutions at two sites: S64C and

S183T (Fig. 4). The mutation at the fourth site (I162L) when

introduced alone severely impaired the protein maturation: it took

several days for soluble protein extract isolated after overnight

Figure 3. Analysis of ancestral proteins. A: alignment of the amino acid sequences of the reconstructed ancestral variants, five corresponding to
All-coral ancestor (all-cor, 0 to 4) and five corresponding to All-Faviina ancestor (all-fav, 0 to 4). B: Unrooted neighbor-joining tree illustrating the
degree of divergence between the synthesized ancestral sequences. C–E: absorbance, excitation, and emission spectra of a representative all-coral
ancestor (black curves) and all-Faviina ancestor (red curves).
doi:10.1371/journal.pone.0002680.g003
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induction of the expression in bacteria to develop color to the

intensity comparable to what was seen already overnight in other

variants. This effect was completely rescued by either of the two

color-affecting mutations.

Neutral versus anionic chromophore in cyan proteins
Two novel cyan proteins from clade C, psamCFP and mmilCFP,

feature an excitation spectrum very similar in shape to the wild-type

GFP from Aequorea victoria, with the major peak at 404 nm (Fig. 1 and

Table 1). It is very likely that such a spectrum, by analogy to GFP,

indicates the predominantly neutral ground-state of the chromo-

phore. In addition, in acroporid cyans (anobCFP and amilCFP) the

excitation curve seems to contain a blue-shifted component,

suggestive of a possible presence of the neutral chromophore in

these proteins as well (Fig. 1 and 5). We noticed that in all these

proteins, unlike all other FPs, the position 167 (GFP numeration) is

occupied by glutamic acid. In a closely related cyan protein

meffCFP, which does not have the 404 nm excitation band, position

167 is occupied by glycine. We mutated the residue 167 to glutamic

acid in meffCFP and to glycine in anobCFP. In the former case the

shortwave excitation band appeared and in the latter it vanished

(Fig. 5), thus confirming the role of E167 in conferring the

shortwave-excitation phenotype that is most likely associated with

the neutral chromophore ground state.

Discussion

FP phylogeny versus host organism phylogeny
A substantial number of FPs from organisms not belonging to the

order Scleractinia are intermingled within the three coral clades with

high phylogenetic support. These include three other orders of

hexacorals (sub-class Zoantharia), Corallimorpharia, Zoanthidea

and Actiniaria–as well as, unexpectedly, order Alcyonacea (soft

corals) from another sub-class (octocorals, Alcyonaria) (Fig. 2).

Alcyonacea placement received additional support as a result of the

present study in the form of yet one more protein , green sarcGFP,

cloned from an Alcyonacea representative Sarcophyton sp. that groups

together with the two previously known Alcyonacea FPs (clavCFP

and dendRFP) within clade D. This is in strong contradiction with

the current taxonomy that calls for the separation of subclasses

(Alcyonaria and Zoantharia) preceding the separation of Zoantharia

orders (Actiniaria, Zoanthidea, Corallimorpharia and Scleractinia).

There are three ways to explain the FP/taxonomy incongruence: (i)

spurious taxonomy; (ii) sorting of ancient paralogous gene lineages

and (iii) horizontal gene transfer.

Unresolved taxonomic relationships between Scleractinia and

Corallimorpharia may account for most of the discordance

involving these two orders. Scleractinia have been proposed to

originate several times from a Corallimorpharia-like ancestor by

acquiring the ability to deposit a calcium carbonate skeleton [38].

More recent molecular analysis suggested a different scenario

where Corallimorpharia originate once within Scleractinia by

means of losing the skeleton [39]. Placement of Corallimorpharia

proteins among Scleractinia is therefore expected. The polyphy-

letic origin of Scleractinia could also be responsible for the curious

pattern of sorting of coral suborders between FP clades. On the

basis of a combination of molecular and morphology characters at

least two separate origins of Scleractinia have been proposed

[31,40]. These two groups of corals do not correspond to the

traditional classification by suborders and have been named

Figure 4. Positions of emission maxima in the mutated purple
chromoprotein gfasCP in comparison to the blue amilCP.
Horizontal axis is wavelength in nanometers, the bars indicate the
position of the absorption peak in the mutant. The colors of the bars
approximately correspond to the colors of the mutants. Mutations S64C
and S183T were found to be responsible for the blue color in amilCP
(numeration according to GFP). Mutation I162L results in a very slowly
maturing protein, hence pale color of the corresponding bar. This effect
is rescued by any of the other two mutations.
doi:10.1371/journal.pone.0002680.g004

Figure 5. Glutamic acid at position 167 (numeration according to GFP) determines the ‘‘neutral-chromophore’’ phenotype in novel
cyan fluorescenr proteins. A: Replacement of native E 167 by glycine in anobCFP leads to disappearance of 425 nm excitation peak and shift of
both excitation and emission curves towards green. B: Reciprocal replacement G167E in a cyan protein meffCFP leads to the opposite results: virtually
all the protein bulk started absorbing at 400 nm. Notably, the emission peak did not change.
doi:10.1371/journal.pone.0002680.g005
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Complexa and Robusta referring to the prevailing mode of

skeleton deposition [32]. There is some resemblance of this novel

phylogeny in the FP tree, such as the C1 subclade uniting FPs

from Fungiidae, Rhizangiidae and Meandrinidae (Robusta), close

positioning (although not as sister groups) of Agariciidae and

Oculinidae (Complexa) within clade D, as well as grouping of

Poritiidae and Acroporidae (Complexa) within subclade C3.

However, the FP phylogeny does not generally recapitulate the

Complexa-Robusta split: FPs from groups that are thought to

belong to Complexa (Poritiidae, Acroporidae, Agariciidae and

Oculinidae) show no tendency to cluster into a unique clade

(Fig. 2). For example, FPs from ‘‘robust’’ Pocilloporidae family

(pdamCFP and spisCP) fall within subclade C2/C3 alongside the

sequences from ‘‘complex’’ Acroporidae and Astrocoeniidae,

seemingly in accord with the traditional taxonomic grouping of

these families within Archaeocoeniina suborder.

We think that the best explanation for most of these discrepancies

is paralogous lineage sorting. This explanation assumes that gene

divergence within the ancestral genome preceded the organismal

divergence. For example, to account for the occurrence of

Alcyonaria proteins within clade D as well as deeper within the

phylogeny (FPs from order Pennatulacea, Fig. 2) without the need to

invoke pervasive polyphyly of Anthozoa orders, one may assume

that the diversity of sequences bracketed by these two occurrences

(i.e., all the major Zoantharia clades, from A to D) existed as

paralogous genes within the genome of the common ancestor of

Zoantharia and Alcyonaria [5]. The multiplicity of closely related

genes accounting for each basic color in a closely investigated great

star coral Montastrea cavernosa [9] suggests that the rate of gene

duplication in the coral GFP-like gene family is indeed very high.

The FP phylogeny may be predominantly reflecting the process of

gene birth and death interspersed by selective sweeps leading to

novel spectral features [12], which may considerably obscure the

phylogenetic signal form the host organism evolution.

A group of sequences that does not quite fit any of the above

explanations are Zoanthidea FPs, occupying a surprising position

among scleractinian FPs within subclade C3 (Fig. 2). Unlike

Corallimorpharia, order Zoanthidea was never suggested to have

originated within Scleractinia by any analysis, so taxonomic

uncertainty is not likely to be the case here. On the other hand, the

position of Zoanthidea FPs within the FP tree is probably too

derived to plausibly evoke the paralogous sorting explanation. In

this case, it would require assuming a very unlikely scenario in

which most of the FP diversity evolved as paralogous lineages in

the common ancestor of Anthozoa orders and not much evolution

happening since then. Zoanthidea FPs are not an artifact resulting

from contamination by Scleractinian material, since the first

Zoanthidea proteins were isolated before any coral material was

searched for FPs, at least in our lab [23]. It is tempting to speculate

that Zoanthidea acquired the FP gene from Scleractinia relatively

recently via horizontal gene transfer, which may have been

mediated by a common symbiont or pathogen. It is possible that

some evidence of this event may be obtained through comparison

of the genomic context of FP genes in Zoanthids and corals.

Ancestral colors
Understanding the order and direction of the color transitions

within the FP phylogeny is very important for studies of the

structural determinants of color. To identify these, a typical

comparative approach considers amino acid differences between

the two most closely related proteins of different colors. However,

in addition to the sites that are responsible for the color difference

such a comparison will also reveal changes that were either neutral

or related to a modification of other properties rather than color in

both lineages since their separation. To narrow down the search, it

is possible to compare the present-day proteins not to each other,

but to their common ancestor. This at once removes half (on

average) of the ‘‘ballast’’ mutations from consideration since only

one of the two evolutionary lines of descent is considered. There is

also an additional benefit of having the reconstructed ancestral

proteins available for site-directed mutagenesis studies. Mutagen-

esis of present-day proteins can verify whether identities of certain

residues are essential for the color; however, only changing these

residues in the reconstructed ancestral protein in the evolutionary-

forward direction can prove that such modifications are also

sufficient [12]. We therefore reconstructed two ancestral proteins,

all-coral ancestor and all-Faviina ancestor, which provide

perspective to the history of coral color evolution.

We found that both ancestral proteins, the one at the root of the

whole coral FP diversity as well as the much more derived protein

ancestral to all Faviina FPs, were green and virtually identical in their

excitation-emission properties (Fig. 3 D and E), although the all-coral

ancestor had a peculiar absorbance spectrum indicative of the

presence of the chromophore in a dark neutral state (Fig. 3 C). Such

remarkable stability of ancestral fluorescence phenotype over

considerable evolutionary distance is rather surprising, considering

that in the present dataset a substantial number of non-green

proteins appear very shortly after the diversification of the three

major coral FP clades (B–D). These include the whole of clade B that

does not have any green members, the chromo-red protein eforCP/

RFP, the unusual pink chromoprotein spisCP that branches off early

within clade C, as well as the red protein from Corallimorpharia that

appears in the subclade that splits off in between the two

reconstructed ancestral nodes (Fig. 2). It is reasonable to expect

therefore that most of the coral FP tree has a ‘‘green trunk’’, i.e., that

nearly every ancestral protein that had green descendants was green.

One likely exception from this rule may be Zoanthidea proteins,

which conceivably evolved from a red fluorescent protein since they

arise from within a group of red FPs within C3 subclade (Fig. 2). The

evolution of green from red is achievable simply by inhibition of the

third stage of autocatalysis during the red chromophore synthesis

[15]. The appearance of the unique three-ring yellow chromophore

in zoanYFP [22] also becomes less surprising if it is viewed as a result

of deviation from the already complex pathway of the red

chromophore formation. Given the diversity of chromophores in

Zoanthidea FPs despite high sequence similarity, addressing this

particular case of color diversification will be a promising subject for

a future in-depth study.

The evolutionary significance of the strange absorption spectrum

of the all-coral ancestor (Fig. 3C) is unclear at the moment, since

none of its descendants show anything similar. It is tempting to

speculate that this unusual phenotype reflects an important

transitional stage that enabled quick diversification into a variety

of colors early in the history of coral FPs. However, it is still possible

that such an ancestral phenotype is, after all, a result of some

unidentified systematic bias in the ancestral sequence prediction

algorithm. Further ancestral reconstruction studies as well as in-

depth structure-function analysis of the all-coral ancestral protein

(beyond the scope of this paper) will clarify this issue.

It is important to add that the phenotype of the all-Faviina

ancestral protein reported here was identical to the previously

reconstructed version of the same node based on much less sequence

data [6]. This indicates that our ancestral reconstruction results are

robust to the inclusion of new sequences into the phylogeny.

Structural determinants of color variation
The current dataset provides rich material for reconstruction of

the evolutionary paths resulting in novel spectral features and
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identification of the structural determinants of color variation. In

this paper, we addressed two cases of color change. Two mutations

turned out to be responsible for the unusual blue color in

chromoprotein amilCP: S64C and S183T (Fig. 4). Residue 64 is

immediately adjacent to the chromophore-forming triad, while the

183th side chain is involved in the interface between monomers

within a tetrameric FP structure. Interestingly, position 64 is also

occupied by cysteine in an artificially generated far-red emitting

mutant of DsRed, mPlum [41]. There is unexpected epistatic

interaction of these two mutations with the third one, I162L,

which dramatically slows down the maturation of the chromo-

protein if introduced alone, but does not have such an effect in

combination with either S64C or S183T. Interestingly, the

mutation I162L makes the protein slightly bluer if combined with

S64C. From this it is reasonable to speculate that if the blue color

was indeed the target of selection, the natural order of mutations

most likely was S64C, I162L, S183T, resulting in a gradual

transition towards the blue color.

Two blue chromoproteins from sea anemones (order Acti-

niaria): aeCP (absorption maximum 597 nm) [42] and the

remarkable cjBlue (absorption maximum 610 nm) [43] must be

mentioned here. All the Actiniaria chromoproteins belong to the

Actiniaria-specific clade A, and thus clearly arose independently

from coral chromoproteins. Similar to amilCP, both aeCP and

cjBlue contain C64 and T183-but so do many other Actiniaria

chromoproteins that are purple. It can be speculated that,

although the structural determinants of blue color in aeCP and

cjBlue may include the same residues that we identified in amilCP,

the non-fluorescent color variation in Actiniaria is due to some

other mutations that also contribute to the blue color.

The second key spectrum-modifying mutation that we deter-

mined is the glutamic acid in position 167, conferring a novel

excitation property to cyan proteins presumably indicative of a

neutral chromophore ground state (Fig. 5). Such a modification

was previously unknown in cyan FPs, either wild-type or artificially

generated mutant variants, although the residue at position 167

has been previously implicated in contributing to the cyan

phenotype in general [12,44]. Neutral-chromophore cyan pro-

teins, similar to GFP, may become valuable photoactivated

markers [45] due to the proton transfer process characteristic of

their photocycle [37].

Understanding the function of coral FPs
Despite the great interest in discovering new FPs and adopting

them for biotechnology needs, the progress in understanding their

biological function (or functions) in non-bioluminescent organisms

such as corals has been frustratingly slow. Currently there are

several hypotheses based on indirect evidence, of which several or

none may eventually turn out to be true. The ideas related to

symbiosis with dinoflagellate algae of the genus Symbiodinium

(zooxanthellae) include photoprotection (suggested by Kawaguti

[46,47] and substantiated by physiology data by Salih and co-

authors [48]), fine symbiosis regulation [12], aposematic colora-

tion, and masking the presence of algal pigments within coral

tissues from herbivorous fishes [8]. Alternative explanations

include deactivation of reactive oxygen species [49] and proton

pumping [50,51]. It should be noted that both of these latter

hypotheses have been suggested based on the experiments with the

original jellyfish-derived GFP, which has a neutral ground state

chromophore and shows a peculiar proton transfer during the

photocycle [37]. Until now neutral chromophores were not

observed in coral FPs; however, this study reveals multiple such

cases in cyan proteins. It is possible therefore that the proton-

transfer photocycle, perhaps associated with either proton

pumping or reactive oxygen species deactivation, constitutes part

of the function of the cyan color in particular. Our recent statistical

phylogenetic analysis of FPs from Faviina, coupled with the site-

directed mutagenesis study, revealed that the new non-green

colors (cyan and red) evolved under the pressure of positive natural

selection, which means that the diverse colors must serve some

essential function [12]. Multiple events of parallel evolution of the

same colors highlighted by this present work strongly corroborate

this result. We also found previously that a subset of residues

arranged as an intra-molecular interface in Faviina FPs evolved

under diversifying positive selection, suggestive of a ‘‘co-evolu-

tionary arms race’’ with an unknown binding partner [12].

Although we chose to interpret these observations in light of the

symbiosis-related functionality, other explanations may be equally

probable, involving functions unrelated to symbiosis, and perhaps

even not related to fluorescence or any light modification (such as

deactivation of oxygen radicals) if different colors translate into

different reactive properties. To finally settle the question of the

function of coral fluorescence a series of studies is necessary,

dedicated specifically to finding the ecological correlates of coral

fluorescence variation. Spatial and temporal patterns of protein

and gene expression have to be analyzed, as well as the tissue

distribution of individual color types. Preferably, such a study

should be conducted across color morphs of a single coral species

for which the full complement of FP colors has been cloned. The

present work suggests a promising model for such kind of research:

Acropora millepora, which yielded all four principal colors (cyan,

green, red and non-fluorescent blue) and is an emerging genomic

model [52,53]. Studies of genomic loci of coral GFP-like proteins

may shed additional light on their evolutionary history, by

generally improving the resolution of the phylogenetic tree and

highlighting major transition events related to gene duplication

and subfunctionalization. Such information will be invaluable for

reconstructing the ancestral sequences and backtracking the

phenotypic shifts, to get to the basics of color determination at

the sequence level. Finally, very important for understanding the

biological function of the coral GFPs will be to investigate their

protein-protein interactions in vivo, which is especially interesting in

relation to the putative molecular interface that is under positive

natural selection [12].

Materials and Methods

Collection of samples
Samples (100–500 mg of tissue) of the Caribbean coral species

(Agaricia fragilis, Scolymia cubensis, Eusmilia fastigiata, Montastrea cavernosa,

and Porites porites) were obtained from the Florida Keys Marine

Sanctuary under National Marine Sanctuary authorization

FKNMS-2000-009. Samples of Indo-Pacific corals (Acropora aculeus,

Acropora millepora, Acropora nobilis, Acropora eurostoma, Echinophyllia

echinata, Echinopora forskaliana, Galaxea fascicularis, Goniopora djiboutiensis,

Montipora efflorescens, Montipora millepora, Mycedium elephantotus, Psammo-

cora sp., Stylocoeniella sp., and Stylophora pistillata) as well as soft coral

Sarcophyton sp were collected at several locations on the Great Barrier

Reef, Australia under Marine Parks Permit #G05/13283.1.

Cloning and expression of coral FPs
Total RNA was isolated from the organism using RNAqueous

kit (Ambion) and amplified cDNA was prepared from it using

SMART protocol [54]. The complete cDNA coding sequences for

GFP-like proteins were obtain by modified Step-Out RACE

[55,56] using degenerate primers for homology cloning. For 5’

stage of RACE, 12 pairs of upstream-directed degenerate primers

were used:
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The ‘‘1’’ primers were used in the first 5’ RACE PCR reaction

together with 5prox (5’ proximal adaptor primer [56]) for 12

cDNA samples from different organisms. The PCR reaction was

performed in 96-well plate. The cycling parameters were: 94uC
400- 55uC 300-72uC 19, 30 cycles. The product of the first PCR

was used in the nested PCR reaction with ‘‘n’’ primers and Udist

(universal adaptor primer, [56]). The cycling parameters: 94uC
400- 55uC 300-72uC 19, 18 cycles.

The RACE products were cloned into pGEM-T vector

(Promega) and sequenced (6–8 clones per each product). The

sequences were assembled in SeqMan II software (Lasergene) and

the contigs were checked for homology using BLASTX [57]. A

pair of 3’-RACE primers were designed for each FP-related contig

to amplify a complete open reading frame (ORF). The nested 3’-

RACE primer corresponded to the very beginning of the ORF

and contained a ‘‘translation initiation heel’’ [58]. After identifi-

cation and sequencing of fluorescent clones, the inserts from them

were re-amplified using the same 3’-RACE nested primer and a

primer corresponding to the C-terminus of the ORF with six

histidine codons inserted in front of the termination codon, as we

described earlier [9]. The product of this amplification was cloned

into pGEM-T vector and used to produce a heterologously

expressed protein that could be purified by metal-affinity

chromatography using Ni-NTA agarose (Qiagen).

Spectroscopy
The fluorescent properties of isolated proteins were determined

using LS-50B spectrofluorometer (Perkin Elmer Instruments);

emission spectra were corrected for the dependence of photo-

multiplier sensitivity on the wavelength. Molar extinction

coefficients of native proteins were determined from the

absorption of the chromophore in denaturing conditions (in 1M

NaOH) assuming a molar extinction coefficient of 44,000 for cyan,

green, chromoproteins and DsRed-like red proteins[25] and

28,000 for Kaede-like proteins [10]. Quantum yields were

determined by using either fluorescein (QY = 0.97) or sulforhoda-

mine 101 (QY = 0.90) as a reference standard.

Phylogenetic analysis
The coding DNA sequence alignment of the fluorescent

proteins was assembled following the protein sequence alignment,

that was in turn constructed by appending the previously reported

alignment [25]. The appropriate model of evolution was identified

as GTR+G+I [59] with the help of Modeltest software [60]. The

phylogenetic analysis was performed using MrBayes 3.1 [61]. The

MCMCMC chain was run for 1,500,000 iterations with a sample

frequency of 200 resulting in 7,500 trees, of which the first 6,000

were discarded while summarizing the data. The analysis was run

three times to ensure convergence.

Probabilistic ancestral reconstruction
To reconstruct ancestral proteins sequences for the common

ancestor of all coral proteins (‘‘all-coral ancestor’’) and the ancestor

of all proteins from representatives of the Faviina suborder (‘‘all-

Faviina ancestor’’) we used MrBayes 3.1 with the fixed amino

acid-based model JTT [62]. Five sequences per ancestral gene

were probabilistically assembled by drawing the site states from the

underlying posterior distribution of state probabilities and

synthesized individually as described earlier [6].

Supporting Information

Table S1 List of GenBank accession numbers for all the

sequences used in the phylogenetic analysis. The newly cloned

sequences are shown in blue.

Found at: doi:10.1371/journal.pone.0002680.s001 (0.04 MB PDF)

File S1 FASTA-formatted alignment of the coding sequences

used for the phylogenetic analysis.

Found at: doi:10.1371/journal.pone.0002680.s002 (0.10 MB

DOC)
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cladeD_fav_1 ATHWTYTCDGTGGATGSYTCCCAYTT

cladeD_fav_n TYMGGRAACRWCTGCTTGAAATA

cladeD_rest_1 ATCTCAATGCRRTGGTCCACAAA

cladeD_rest_n TASTTTTRAAGTCACAYMGGTAAT
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