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INTRODUCTION

The extent of dispersal during their larval phase has
implications for the population dynamics of marine
organisms, potentially affecting genetic connectivity
(Doherty et al. 1995), levels of self-recruitment (Cowen et
al. 2000), and adult population dynamics (Doherty &
Williams 1988). In addition, knowledge of dispersal
patterns is essential for designing zoning plans and fish-
eries management (Botsford et al. 2001). Several studies
have recently demonstrated high levels of self-recruit-
ment for some coral reef fish populations (e.g. Jones et al.
1999, Swearer et al. 1999) and it appears that limited

dispersal may be a widespread phenomenon in marine
populations in general (Swearer et al. 2002). Although
some studies show that reduced dispersal distances may
occur through oceanic processes (e.g. James et al. 2002),
it is still unclear to what extent larval swimming behav-
iour may also influence dispersal distances in reef fish
populations. Over the last 10 yr, the swimming abilities
of tropical reef fish larvae have received considerable
attention (reviewed in Leis & McCormick 2002). It is now
clear that many of these larvae can sustain swimming
activity for considerable lengths of time (up to 271 h;
Stobutzki & Bellwood 1997) and show fast swimming
speeds (up to 60 cm s–1; Leis & Carson-Ewart 1997).
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However, the extent to which behaviour may influence
dispersal patterns relative to oceanic processes remains
controversial (Roberts 1998, Bellwood et al. 1998, Sale &
Cowen 1998, Mora & Sale 2002).

In order to determine the potential importance of
swimming behaviour, it is necessary to have informa-
tion on the maximum swimming abilities of larvae, how
these change throughout the entire pelagic phase, and
how they relate to the undisturbed sustainable swim-
ming speeds of larvae. With this information it is possi-
ble to calculate the potential distances that larvae can
swim based on realistic sustainable swimming speeds,
throughout their larval phase rather than just at settle-
ment (see Stobutzki & Bellwood 1997). U-crit (maxi-
mum sustainable swimming speed, following Brett
1964) provides a useful maximal performance estimate
of swimming speed of larvae, and it has been shown
larvae can maintain swimming at speeds of 50% U-crit
for significant lengths of time (24 h; Fisher & Bellwood
2002, Fisher & Wilson 2004). Furthermore, 19% U-crit
appears to be a good approximation of the undisturbed
swimming speeds of larvae during the day (Fisher &
Bellwood 2003). Maximum swimming-speed measure-
ments have only been examined in a small number of
reef fish species (Stobutzki & Bellwood 1994, Fisher et
al. 2000). There is also little information on the rate of
development of maximum swimming ability during the
pelagic phase (3 species from 2 families; Fisher et al.
2000). Indeed, the few models of larval dispersal that
incorporate behaviour have assumed that larvae will
only swim actively in the last portion of the larval phase
(Wolanski et al. 1997, Armsworth et al. 2001, James et
al. 2002). Testing this assumption is critically important
to fully understand the potential impact that swimming
behaviour can have on dispersal patterns of reef fish
larvae.

In this study, I examine the swimming abilities of
reef fish larvae at settlement, at hatching and through-
out their pelagic phase, to assess the extent to which
horizontal swimming capabilities may be used to influ-
ence their dispersal patterns. The specific objectives
are to: (1) present new data on the swimming speeds of
late-stage larvae and larvae at hatching in a range of
families, (2) derive a model to describe the develop-
ment of swimming abilities across families, and (3) use
this information to predict the potential distance larvae
can swim throughout their larval phase. Although I am
unable to determine if directed swimming behaviour
occurs and/or if larvae have the necessary sensory
capabilities to execute this behaviour in a directional
context in the field, this paper quantifies the magni-
tude of this effect on dispersal trajectories, thereby
establishing the extent to which horizontal swimming
behaviour may be used to influence the possible dis-
persal distances of these larvae.

MATERIALS AND METHODS

Maximum swimming speeds of late-stage larvae.
Late-stage larval reef fishes were collected from Lizard
Island, Australia, using light traps over 2 summer sam-
pling seasons (November to December, 2000 and
2001). Light traps catch predominantly late-stage lar-
vae, generally considered ready to settle onto a reef
(Choat et al. 1993). Larvae of as many species as possi-
ble were used for swimming experiments, although no
more than 10 individuals of any 1 species were used.
Only families for which swimming data was obtained
from at least 5 individuals were included in analyses.
Larvae were used in swimming experiments at Lizard
Island Research Station within 12 h of capture, utilising
several different swimming flumes (with different
maximum flow capacities to allow for different-sized
larvae) similar in design to those of Stobutzki & Bell-
wood (1997). Experimental protocol followed Bellwood
& Fisher (2001), with velocity increments equivalent to
approximately 3 body lengths s–1 with a time interval
of 2 min. The critical swimming speed (U-crit) of larvae
was calculated as: U-crit = U + (t/t i × Ui), where U is the
penultimate speed, U i is the velocity increment, t is the
time swum in the final velocity increment and t i is the
time interval for each velocity increment. Average U-
crit swimming speed was plotted for each family and
compared to mean transport speeds around reefs,
extracted from data presented in published papers.

Maximum swimming speeds of larvae at hatching.
Unhatched eggs of 10 different species (Pomacentrus
amboinensis, P. mollucensis, Chromis viridis, Abudef-
duf sexfasciatus, Amphiprion melanopus, A. percula,
Acanthurus nigrofuscus, Salarius patzneri, Sphaera-
mia nematoptera and Apogon compressus) were
obtained from a variety of different breeding parents
from the reefs around Lizard Island as well as from
captive breeding pairs at the James Cook University
research aquarium. Eggs from demersal spawning
species (Pomacentridae and Blennidae) were obtained
by removing the substrate on which they were laid or
by gently scraping the eggs off the substrate with a
sharp knife. Eggs were obtained from oral brooders
(Apogonidae) by gently catching the adult using the
anaesthetic clove oil. Eggs were obtained from pelagic
spawners (Acanthuridae) by watching adult behaviour
in the field using SCUBA and collecting the eggs using
a 32 µm net immediately following release. Eggs were
hatched overnight in laboratory aquariums and were
used for swimming experiments on the day immedi-
ately after hatching (Day 1) following the young larvae
protocol of Fisher et al. (2000). 

Development of swimming abilities. Using empirical
data, 2 simple models were examined and compared in
terms of their ability to successfully characterise the de-
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velopment of maximum swimming speeds of larval reef
fishes throughout their pelagic phase. Data were ob-
tained from larvae reared at James Cook University
and in the field at the Lizard Island Research Station,
following the methods of Fisher et al. (2000). Data for
3 species are directly from Fisher et al. (2000; Pomacen-
trus amboinensis, Amphiprion melanopus and Sphae-
ramia nematoptera). Data for an additional 3 species
have since been obtained (P. moluccensis, Amphiprion
percula and Apogon compressus). Both models are
based on the assumption that swimming ability (S)
develops as a function of age or total length (size) to a
species-specific maximum at settlement. Both age and
length can be used as a measure of ontogenetic devel-
opment in fishes, although better relationships are
often found using length (Fuiman et al. 1998). Model 1
assumes that development starts from some species-
specific speed, age and size at hatching (S = speed –
speed at hatching, age = time since hatching, TL = size
– size at hatching), whereas Model 2 assumes that
swimming ability develops continuously from fertilisa-
tion (S = speed, age = time since fertilisation, TL = size).
Both models can be normalised, normalising age and
length to a species-specific value at settlement. For
Model 1: An = age (time since hatching)/age (time since
hatching) at settlement, TLn = (TL – TL at hatching)/
(TL at settlement – TL at hatching); for Model 2: An =
age (time since fertilisation)/age (time since fertilisa-
tion) at settlement, TLn = TL/TL at settlement), and
swimming speed can be normalised to a species-spe-
cific speed at settlement. For Model 1: Sn = (speed –
speed at hatching)/(speed at settlement – speed at
hatching); for Model 2: Sn = speed/speed at settlement).
In addition, because the developmental scale is multi-
plicative (1 d represents more developmental change
early than it does later), all values were converted to a
log scale before normalisation. Such a normalisation
yields a predicted relationship between An and Sn that
is 1:1. Based on this predicted relationship, R2 values
and residual plots were used to assess the adequacy of
the fit of both models to the empirical data and an F-ra-
tio was used to determine if either model was a signifi-
cantly better fit. F-ratios were also used to determine if
there were any significant differences in the fit of each
model among different species, or among different
families and subfamilies.

The best-fit model was Model 1 and the best relation-
ship was with total length, rather than age. Using
Model 1, swimming speed at size (x) can be calculated
as: S (x) = [10TLn(x)

. log10(Ssett – Shatc)] + S hatc, where S(x) is
the swimming ability at size (x) in cm s–1, TLn(x) is the
normalised size at size (x) [log10 (TLx – TLhatc)/log10

(TLsett – TLhatc)], S sett is the species-specific swimming
ability at settlement in cm s–1, S hatc is the species-
specific swimming ability at hatching in cm s–1, TLsett is

size at settlement in mm and TLhatc is the species-
specific size at hatching in mm. This calculation was
used to predict the rate of development of swimming
ability in 11 reef fish families. Average swimming
speeds of the late-stage larvae for each family collected
in this study were used as the swimming ability of each
family at settlement (S sett). Because individual growth
data were not available for larvae of these families,
growth rates were estimated from TLsett, TLhatc and lar-
val duration, assuming that growth is linear throughout
the pelagic phase. Values for S hatc were estimated from
the empirical relationship between swimming speed at
hatching and size at hatching (see Fig. 2). Values for
egg and larval durations, and TLhatc were obtained from
numerous published sources (Bryan & Madraisau 1977,
Brothers et al. 1983, Thresher et al. 1989, Wellington &
Victor 1989, Doherty et al. 1995, Kerrigan 1996, Leis
et al. 1996, Leis & Carson-Ewart 1997, Wilson &
McCormick 1997, 1999, Stobutzki & Bellwood 1998,
McCormick 1999, Victor & Wellington 2000, Wellington
& Robertson 2001, Gill 2002, Zapata & Herron 2002). If
more than 1 estimate of larval duration, TLhatc or egg
duration was available for the same species, these were
averaged. An overall average across all species was
used as the mean for each family. Because the mean
transport speed around Lizard Island (13.5 cm s–1, Frith
et al. 1986) represents the mid-point in the range of
speeds reported for various coral reefs around the
world (see Fig. 1), the age at which larvae could swim at
13.5 cm s–1 was determined. This age was used to esti-
mate the time during the larval phase each family could
potentially begin to utilise horizontal swimming behav-
iour to influence dispersal patterns by swimming di-
rectly against ocean currents.

Potential distance swum and distance transported.
Predicted swimming speeds for each day of develop-
ment were used to calculate the potential distance lar-
vae could swim throughout their larval phase. Recent
work on undisturbed swimming behaviour suggests
that larvae consistently maintain swimming speeds of
approximately 19% of their average U-crit speed dur-
ing the day and about 35% of their U-crit at night
(Fisher & Bellwood 2003). In addition, larvae from
these families do not swim at night until they reach last
20% of their pelagic phase (Fisher & Bellwood 2003).
In these calculations I have assumed that larvae will
swim during the day throughout development at a
speed of 19% of their U-crit and at night at a speed of
35% of their U-crit. I re-analysed the data from Fig. 3
of Fisher & Bellwood (2003) and obtained 95% confi-
dence limits of this value to estimate the potential vari-
ance in total distance swum. In addition, I re-analysed
the data from their Fig. 4 and found a strong (R2 = 0.90)
positive exponential relationship: Time spent active =
e4.17.(developmental age), where developmental age = age
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(time since fertilisation)/age (time since fertilisation) at
settlement. This empirical relationship was used to cal-
culate the time larvae spend swimming actively at
night, and variance (95% confidence limits) associated
with this relationship was also incorporated into vari-
ance estimates of distance swum. Other potential
sources of variance also included (in the form of 95%
confidence limits for each parameter) were size at set-
tlement, speed at settlement and the error associated
with estimating swimming speed at hatching using the
relationship shown for total length (see Fig. 2). Implicit
in the calculations is the assumption that pelagically
spawned eggs float passively until hatching.

To compare the magnitude of the potential swim-
ming distance of larvae to the effects of oceanic cur-
rents, estimates of total distance swum throughout
development for each family were plotted against dis-
tance transported. Transport distances were obtained
from Frith et al. (1986) for around Lizard Island, but are
in the range reported in other studies (see Roberts
1997, James et al. 2002) and provide a benchmark for
comparing the effect of behaviour relative to oceanic
processes. Clearly, there is a large degree of spatio-

temporal variation in current speeds observed around
reefs; this comparison merely aims at comparing the
relative importance of swimming behaviour and the
median effect of oceanic currents.

RESULTS

The maximum swimming speeds of late-stage reef
fish larvae varied considerably among families (Fig. 1).
However, all families measured were able to swim
faster than mean transport speeds in the Bahamas
(Thorrold et al. 1994), Florida Keys (Pitts 1994) as well
as the lower estimates of mean transport speeds on the
Great Barrier Reef (GBR) (Hamner & Hauri 1981,
Andrews 1983, Frith et al. 1986). The late-pelagic-
stage larvae of all 11 families of reef fishes could swim
at speeds greater than 13.5 cm s–1, which is the mean
transport speed around Lizard Island (Frith et al. 1986)
and represents a good mid-point among the range
reported for average current speeds around coral reefs
in general (Fig. 1). Of the families examined, 7,
comprising the Acanthuridae, Siganidae, Lutjanidae,

Lethrinidae, Pomacentridae, Chaetodonti-
dae and Nemipteridae were able to swim
faster than the upper estimates of mean
transport speeds worldwide (Fig. 1). No
families of reef fishes were capable of
swimming against the maximum current
speeds reported (100 cm s–1, Fig. 1).

Swimming speeds at hatching varied
considerably among the species examined
(Fig. 2). Significant positive relationships
were found between swimming ability at
hatching and both egg duration (F1,9 =
10.87, p = 0.01) and size (F1,9 = 7.55, p =
0.03). The fastest-swimming larvae at
hatching were the Amphiprion melanopus
larvae, which also have the largest size at
hatching and an extended egg duration.
The slowest swimmers at hatching were
the pelagically spawned Acanthurus ni-
grofuscus larvae, which had the shortest
egg duration and also the smallest size at
hatching of the species examined (Fig. 2).

A comparison of the 2 simple models for
predicting the development of swimming
ability throughout ontogeny suggested
that a model based on a species-specific
speed at hatching and at settlement
(Model 1) provides a more accurate approx-
imation of the development of swimming
ability across taxa than a model based on
continuous development from fertilisation
(Fig. 3). While F-ratios directly comparing

226

U - crit (cm s–1)

0 20 40 60 80 100

Apogonidae

Pomacanthidae

Pseudochromidae

Monacanthidae

Nemipteridae

Chaetodontidae

Pomacentridae

Lethrinidae

Lutjanidae

Siganidae

Acanthuridae

abc d e f gb e, g f

Fig. 1. Average (+SE) swimming speed (U-crit) of late-stage larvae from 11
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transport speeds reported by researchers in various locations around world;
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the fit of the 2 models to the empirical data indicated that
neither was a significantly better fit for either age
(F37,37 = 0.79, p = 0.76) or size (F37,37 = 0.56, p = 0.96), R2

values indicated that Model 1 explained considerably
greater variation in swimming ability throughout devel-
opment than Model 2 for both age and size (Fig. 3).
Moreover, for Model 1 there was no significant differ-
ence in the fit among species (F37,27 = 1.00, p = 0.49) or
among taxa (Amphiprioninae, Pomacentrinae and
Apogonidae; F37,33 = 1.16, p = 0.34), whereas for Model 2
there was a significant difference in the fit among spe-
cies (F37,27 = 1.91, p = 0.03) as well as among taxa (F37,33 =
1.82, p = 0.05). For all models there was no significant
difference in the fit of the model to different species
within taxa (Amphiprioninae, Pomacentrinae and
Apogonidae). While not a significantly better fit (F37,37 =
1.41, p = 0.15), the higher R2 value (0.92) and a better
residual distribution among the different taxa suggests
that Model 1 based on size rather than age provides a
more accurate description of the development of
swimming abilities throughout ontogeny across taxa
(Fig. 3).

A linear fit to Model 1 was therefore used to predict
developmental rates of swimming ability across a
range of reef fish families: 4 families, the Apogonidae,
Nemipteridae, Pomacanthidae and Pseudochromidae
would be unable to swim against mean transport
speeds at Lizard Island (13.5 cm s–1) for more than one-
half of their larval phase (Table 1); 3 families, the
Acanthuridae, Lutjanidae and Siganidae, could theo-
retically swim against mean transport speeds around
Lizard Island for > 65% of their larval phase (Table 1);
the remaining 4 families, the Chaetodontidae, Lethri-
nidae, Monacanthidae and Pomacentridae, should be
able to swim against mean transport speeds around
Lizard Island for a significant portion of their larval
phase (53 to 60%, Table 1).

Based on mid-point transport distances from Lizard Is-
land and mid-range swimming speeds, no families would
be capable of self-recruiting using horizontal swimming
behaviour alone, although for 3 families (Acanthuridae,
Lutjanidae and Siganidae) potential distances swum are
very close to the distances transported (Fig. 4), while 4
other families (Chaetodontidae, Lethrinidae, Nemi-
pteridae and Pomacentridae) should be able to swim at
least half the distances they would be transported which,
given the high variability in oceanographic processes,
could clearly have a substantial impact on their dispersal
patterns (Fig. 4). The Apogonidae, Monacanthidae, Po-
macanthidae and Pseudochromidae are the only 4 fam-
ilies unable to swim even half of the distance they would
be transported from their natal reef. No families have the
capability to actively self-recruit to Lizard Island using
horizontal swimming behaviour under conditions of
maximum transport (Fig. 4).
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Fig. 2. Swimming speed (U-crit) at hatching as a function of
(A) egg duration and (B) total length (TL) at hatching for
10 different species of coral reef fishes. Lines: fitted linear 

least-squares regressions

Family ED LD TLhatc TLsett PPL
(d) (d) (mm) (mm) (%)

Acanthuridae 1.1 64 1.7 29.4 72
Apogonidae 6.5 22.5 2.6 12.6 29
Chaetodontidae 1 33.6 1.5 19.8 54
Lethrinidae 1.6 35.8 1.6 21.8 60
Lutjanidae 0.9 34.2 2.1 27.7 69
Monacanthidae 1.2 24 2.1 24.8 58
Nemipteridae 1 19 1.6 17.1 35
Pomacanthidae 1 19 1.8 16.4 35
Pomacentridae 3.5 23.2 2.5 15.0 53
Pseudochromidae 3.5 27.5 3.4 17.4 45
Siganidae 1.1 32.5 2.4 28.9 70

Table 1. Duration of egg development (ED), duration of larval
development (LD), size at hatching (TLhatc), size at settlement
(TLsett), and proportion of pelagic-phase larvae (PPL) capable
of swimming at a speed > 13.5 cm s–1 (mean water transport 

speed around Lizard Island; Frith et al. 1986)
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DISCUSSION

This is the first attempt to compare the swimming
abilities of tropical reef fish larvae with potential
transport distances based on undisturbed routine
swimming abilities throughout the pelagic phase. The
results demonstrate that some families are capable of
swimming faster than mean transport speeds for a
substantial portion of their larval phase. Furthermore,
some may have the potential to swim distances com-
parable to their potential transport distances from
reefs. Although transport distances are based on data
from Lizard Island, the distances are also comparable
to data from a range of reef systems. For example,
James et al. (2002) suggest that larvae would be
transported 21 to 43 km (mid-point dispersal trajecto-
ries) over 6 d at 4 locations on the Great Barrier Reef,
which is in the range considered in this study. Roberts
(1997) also reports transport distances of 145 to
219 km in the Caribbean, over 1 and 2 mo respec-
tively (Roberts 1997), corresponding to a transport
rate of 26 to 36 km wk–1. Clearly, the swimming capa-
bilities of larvae are of a magnitude comparable to the
effect of average currents in a range of reef locations.
Although the swimming speeds and distances trav-
elled by larvae are similar to average transport speeds
and distances, this is not true for maximum current
speeds, which are in the order of 100 cm s–1 (Cowen &
Castro 1994). No reef fish family was able to swim at
such high speeds, even nearing settlement. However,
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calculation of potential swimming distances in this
study have also assumed no use of vertical or horizon-
tal shear to maximise retention and are thus conserva-
tive estimates of the impact of larval behaviour
(Armsworth 2001).

The potential for behaviourally mediated self-
recruitment in several reef fish families raises the
question of whether or not such homing behaviour
might actually occur. In a recent review, Strathmann et
al. (2002) suggested that the advantages of long-dis-
tance dispersal of larvae are not apparent, and that
broad dispersal patterns may be an incidental by-prod-
uct of an ontogenetic migration from and back to the
parental habitat. Furthermore, selection may even
favour larval retention rather than dispersal, because
the parental area must contain suitable habitat for
growth and reproduction (Strathmann et al. 2002).
Although modelling by Armsworth et al. (2001) indi-
cates that a return-based strategy by larval pomacen-
trids and acanthurids would be unsuccessful because
larvae would exhaust energy reserves before return-
ing to the parental area, it is sensitive to the assump-
tion that larvae do not feed (Fisher & Bellwood 2001).
This assumption is unlikely to hold for most reef fish
larvae. Furthermore, a return-based strategy would be
favoured even more if larvae were capable of reducing
rates of advection from an early age. The results of this
study suggest that many reef fish families may be able
to influence their dispersal patterns as early as 30 to
70% of the way through their larval phase.

For active behaviour to be effective in influencing
dispersal patterns, larvae need to have the capabilities
to detect and respond to the presence of suitable habi-
tats at a variety of scales. For coral reef fishes, recent
findings have shown that larvae have well-developed
sensory abilities and may have the potential to locate
reefs and actively search for suitable settlement sites
(see recent reviews by Montgomery et al. 2001, Kings-
ford et al. 2002, Leis & McCormick 2002). On small
scales, both visual (Job & Bellwood 1996, 2000) and
chemosensory (Arvedlund & Nielsen 1996, Arvedlund
et al. 1999, 2000) cues may be used for active habitat
selection by settling larvae. On a larger scale, several
in situ experiments have demonstrated that late-stage
larvae are capable of responding to the presence of
reefs at considerable distance (Leis et al. 1996, Sto-
butzki & Bellwood 1998, Leis & Carson-Ewart 1999).
Long-distance detection of reef location may be possi-
ble through the use of either auditory (McCauley &
Cato 2000, Tolimieri et al. 2000) or chemical (Atema et
al. 2002) cues, although the latter could only be used
from down-reef locations. Other navigational cues that
may be available to fishes include a magnetic compass,
inertial mechanisms, sun-compass, polarised light and
electric fields (Montgomery et al. 2001 and papers

cited therein), all of which could provide directional
cues for navigation over considerable distances.

An interesting finding is that both demersal as well
as pelagic spawning species have the swimming capa-
bility to substantially influence their dispersal patterns
and potentially actively self-recruit using swimming
behaviour. While larvae from pelagic eggs tend to
have longer larval durations and may be transported
farther from shore (Leis 1993), the greater swimming
capabilities generally exhibited by these species indi-
cates that they have a similarly high potential to facili-
tate self-recruitment. This may explain why, in some
situations, reproduction mode has little impact on
small-scale (within-region) connectivity of marine pop-
ulations or genetic diversity, especially when com-
paring different taxa (for example in the Caribbean,
Shulman & Bermingham 1995). In addition, potential
self-recruiters come from families with long larval
duration (e.g. Acanthuridae ~64 d) as well as those that
have considerably shorter larval durations (e.g. Poma-
centridae ~20 d). This could account for the generally
poor relationship between the length of larval duration
and species ranges for reef fishes (Victor & Wellington
2000, Jones et al. 2002).

While many of these long pelagic-duration, broad-
cast-spawning species have significant potential for
behaviourally-mediated self-recruitment, it is also pos-
sible they may use behaviour to actually increase rates
of long-distance dispersal, a strategy that may be
advantageous under some circumstances (e.g. in the
presence of specialised natural enemies [Muller-
Landau et al. 2003] or to colonise distant locations).
Depending on localised current regimes, larvae could
potentially use active swimming behaviour to increase
dispersal distances by a similar order of magnitude rel-
ative to their passive dispersal trajectories. While some
studies suggest that larval reef fishes have relatively
restricted dispersal patterns compared to what one
would expect of passive particles (e.g. Doherty et al.
1995), there is evidence that long-distance dispersal
does occur. Several studies have found the larvae of
coral reef fishes at great distances from shore (e.g. Vic-
tor 1987) and there is a tendency for long-pelagic-
duration species to have greater geographic ranges at
sufficiently large scales (e.g. across the Pacific; Victor
& Wellington 2000). Furthermore, several studies have
found a strong significant relationship between
genetic differentiation and pelagic larval duration and
other early life history reproductive characteristics
(Doherty et al. 1995, Riginos & Victor 2001). It appears
that while a long larval duration and a broadcast-
spawning reproductive mode does not necessarily pre-
clude the use of behaviour to enhance local retention,
behaviour may also be used to enhance long-distance
dispersal capabilities in some species. Indeed, if larvae
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utilise horizontal swimming in a random direction,
they may simultaneously facilitate local retention as
well as long-distance dispersal, thereby expanding the
overall dispersal kernel. A greater understanding of
how swimming behaviour is utilised by different taxa
with differing early life history characteristics is essen-
tial to determine the overall impact this behaviour may
have on dispersal patterns.

The results reported here rely on the model used to
predict swimming ability during ontogeny. Of the
2 models compared, that based on a species-specific
speed at hatching and at settlement (Model 1) showed
the closest correspondence to the empirical data.
There were clear differences among taxa in the devel-
opment of swimming abilities based on Model 2
(assuming that swimming ability develops continu-
ously from fertilisation). While the Pomacentrinae and
Apogonidae show a relatively consistent relationship,
the Amphipioninae clearly have much poorer swim-
ming abilities at hatching than would be expected if
development occurred continuously from fertilisation.
This suggests that the development of swimming abil-
ities in larvae occurs at a different rate (in proportion to
age as well as length) prior to hatching than during the
pelagic phase.

The results presented in this paper are also sensitive
to the type of swimming ability that has been mea-
sured and how this relates to undisturbed in situ
behaviour. Here I have used U-crit (a measure of max-
imum swimming speed) to estimate undisturbed or
routine speeds of larvae. The values used in the model
were based primarily on the comparison of U-crit to
undisturbed speed in Fisher & Bellwood (2003), which
suggested that during the day larvae swim at 19% of
their maximum potential. Their experiments, however,
were conducted in an enclosed environment without
external stimuli and may therefore represent conserv-
ative estimates of swimming speed. Recent work sug-
gests that speeds as high as 50% of U-crit are sustain-
able by larvae for considerable lengths of time (over
24 h) (Fisher & Wilson 2004) and that larvae also
appear to swim in situ at similarly high relative speeds
(J. Leis & R. Fisher unpubl. data). If this is true, then the
impact of swimming behaviour may be considerably
greater than presented here.

The ultimate impact of behaviour on the dispersal
patterns of marine larvae will result from the interac-
tion of this behaviour with prevailing oceanographic
processes. Although a detailed analysis of oceano-
graphic processes is beyond the scope of this paper, it
is clear that these will vary considerably on both spa-
tial and temporal scales (reviewed in Cowen 2002).
This variation will lead to spatial and temporal varia-
tion in the relative importance of active behaviour and
oceanography in shaping the dispersal patterns of reef

fish larvae. There is no doubt that detailed oceano-
graphic models will provide valuable insights into the
likely dispersal trajectories of larvae (e.g. James et al.
2002). However, given that larval behaviour may have
an effect similar in magnitude to that of oceanic pro-
cesses, it is clear that such behaviour needs to be incor-
porated into models of larval dispersal. The full impact
of swimming on dispersal distances can only be deter-
mined once we have a greater understanding of the
behaviour exhibited by larvae in the field. Larvae may
undergo vertical migration to take advantage of verti-
cal shear, swim either with or against the direction of
current flow or even shoreward, perpendicular to long-
shore currents. How swimming abilities are employed
and the overall behaviour of larvae in the field remains
a critical issue that urgently warrants further investiga-
tion. However, this study does provide the first esti-
mates of potential horizontal swimming distances of
larvae based on the development of realistic undis-
turbed swimming speeds and known activity patterns
throughout ontogeny for several coral reef fish fami-
lies, and clearly demonstrates the potential importance
of this behaviour.
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