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Stability Analysis of a Feedback-Controlled Resonant
DC–DC Converter

Octavian Dranga, Balázs Buti, and István Nagy, Fellow, IEEE

Abstract—This paper reports on the stability analysis of one
member of a dual-channel resonant dc–dc converter family. The
study is confined to the buck configuration in symmetrical opera-
tion. The output voltage of the converter is controlled by a closed
loop applying constant-frequency pulsewidth modulation. The dy-
namic analysis reveals that a bifurcation cascade develops as a re-
sult of increasing the loop gain. The trajectory of the variable-
structure piecewise-linear nonlinear system pierces through the
Poincaré plane at the fixed point in state space when the loop gain
is small. For stability criterion the positions of the characteristic
multipliers of the Jacobian matrix belonging to the Poincaré Map
Function defined around the fixed point located in the Poincaré
Plane is applied. In addition to the stability analysis, a bifurcation
diagram is developed showing the four possible states of the feed-
back loop: the periodic, the quasi-periodic, the subharmonic, and
the chaotic states. Simulation and test results verify the theory.

Index Terms—Resonant dc–dc converter, stability.

I. INTRODUCTION

A FAMILY OF dual-channel resonant dc–dc converters,
with 12 members, was introduced in [1] and discussed in

a number of other publications later [2]–[4]. The common basic
configuration contains two channels, the so-called positive and
negative ones. They transfer the power from input to output and
are coupled by a resonating capacitor[2], [3]. The converters
can operate in symmetrical mode and in asymmetrical mode
when the respective variables in the two channels vary sym-
metrically (without any energy exchange between channels)
and asymmetrically (with energy exchange between channels
through the resonating capacitor), respectively. The converters
are recommended to be applied in the middle and higher power
ranges.

The present investigation is restricted to the buck configura-
tion (Fig. 1) in strictly symmetrical operation and strictly sym-
metrical load. Its target is not the discussion of the dc–dc res-
onant converter family but the analysis of the stability of the
output voltage control loop built around the buck converter. Two
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Fig. 1. Resonant buck converterR = R ; C = C .

issues have to be discussed. The first one is the reason beyond
the strict symmetry for applying only one voltage control loop
to regulate the sum of the output voltages. This issue will be
treated in more detail in Section III. The second issue is the ex-
planation of the selection of the exact iterative-map approach
using the state-space description of the system. To investigate
the stability two main techniques were developed: the time-
average method and the discrete iterative-map approach. The
time-average model essentially ignores the switching details,
focusing only on the envelope of the dynamics. The drawback
of the time-average method is that as the detailed dynamics
within a switching cycle are ignored and only the low-frequency
properties are retained, the model gives information only about
the low-frequency behavior and its validity will be limited to
this range. In order to prove the development of quasi-periodic
and chaotic states the time functions of the state variables must
be determined, that is, the state-space method must be used.
Quasi-periodic and chaotic states are connected to the fast pro-
cesses and they can be discovered only by following precisely
the time histories of the state variables within the switching pe-
riod without replacing them by their average value. More com-
plete information can be achieved by deriving an iterative func-
tion based on the state space trajectory of the system. It ex-
presses the state variables at one sampling instant in terms of
the ones belonging to the previous sampling instant. This kind
of discrete-time model will be the instrument to detect the bi-
furcations in the high-frequency range.

Computer simulation studies published in [2] have revealed
interesting bifurcation phenomena developing in the course of
changing the voltage loop gain. The basics of the method ap-
plied in the paper can be found in [6] and [7]. Chaotic behavior
of other types of dc–dc converters was investigated in [8]–[15]
and chaotic state was treated in drives in [16]–[19]. The general
related problem can be read in [20] and [21].

The structure of the paper is as follows. Section II describes
the configuration and its basic operation in steady state. Sec-
tion III summarizes the setup and operation of the output voltage
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control loop. Section IV offers a brief overview of the theo-
retical background of stability analysis based on the Poincaré
Map Function. Section V points out that one switching period
consists of two subperiods. It presents the state equations for
the two consecutive structures exhibiting one subperiod. It ex-
tends the validity of the state equations for the next subperiod
due to the periodicity property of the respective configurations.
Section VI develops the Poincaré Map Functions and its Jaco-
bian matrix belonging to the fixed point of the periodic solu-
tion. Section VII presents the bifurcation diagram. It plots the
output voltage sampled at each switching period as a function
of a system parameter, gain , and presents the calculation
results of the characteristic multiplier of Jacobian matrix as two
of them leaves the unit circle due to the increase of. Calcu-
lation results of quasi-periodic and chaotic states are presented
as well. Experimental results in Section VIII verify the theoret-
ical considerations and calculation figures.

II. CONVERTERCONFIGURATION AND OPERATION

The buck configuration is shown in Fig. 1. The converter has
two channels from input to output, both with two controlled
switches and one inductance. Suffixes and refer to
input and output while suffixes and refer to positive and
negative channels, respectively. The capacitances across the
input terminals shorting high-frequency currents are assumed
to be high and they will be neglected in the stability analysis.
The configuration version studied in this paper applies only
controlled switches (insulated gate bipolar transistors (IGBTs),
MOSFETs, or other switches) conducting current in the direc-
tion of arrow.

The assumptions used in the description of operation in
steady state are as follows: idealized and lossless circuit
components, constant and smooth input voltageand output
voltages, identical load resistanceat the positive and negative
sides ( ), neglected commutation times, and
symmetrical operation of the two channels. The input voltages
( , ), the output voltages ( , ), the peak condenser
voltages ( , ), and the commutation angles (, ) are
identical. The asymmetrical operation and asymmetrical load
is out of the scope of the current paper.

The controlled switches within one channel are always in
complementary states (that is, when is on, is off and
vice-versa). By turning on switch , a sinusoidal current pulse

is developed from to
in circuit , , , and (Fig. 2). (The ripple of and

is drawn in Fig. 2(b) for the stability study. Here, ripple-free
output voltages are assumed.) The currents are
in interval . The capacitor voltage swings from

to ( ). By turning on switch at the choke
current commutes from to and it circulates in the free-
wheeling path , and . The energy stored in the choke
at is depleted in the interval where

is the switching period. At discontinuous current
conduction (DCM) the stored energy is entirely depleted in in-
terval , where denotes the extinction angle
of the inductor current. In DCM the current is zero between
and . In the continuous conduction mode (CCM) of opera-

Fig. 2. (a) Time functions of input and output (inductor) currents, (b) output
voltages, and (c) condenser voltage in CCM.

tion the inductor current flows continuously ( ) (Fig. 2).
The inductor current decreases both in DCM and in CCM
in a linear fashion in interval . After turning on

the capacitor voltage stops changing. It keeps its value
until .

The same process takes place in the negative channel re-
sulting in a current pulse and negative condenser voltage
swing after turning on at the beginning of the next half
cycle at (Fig. 2).

The input variables directly set by us are, , , and . The
input voltage and the load resistanceare usually given. The
selection of the switching angleand the switching frequency

depend on the control. Condition must hold. The
reason is that the change of condenser voltagein one direction
must be completed before its change gets started in the opposite
direction. Turning on switch and must be phase shifted
by , the two input currents may flow only in separate
intervals. Furthermore, must hold.

The output variable determined by the set of input vari-
ables is . The basic steady-state relations are presented in
Appendix A.

III. OUTPUT VOLTAGE CONTROL

In order to control the output voltage by pulsewidth mod-
ulation (PWM) switching a feedback control loop is applied
[Fig. 3(a)]. Due to the strictly symmetrical load assumed (

), one single output voltage control loop provides the con-
trol of both and beside . By applying only one single
output load resistance between the and rails and as-
suming smooth ripple-free and voltages in steady state
due to the large capacitances as was supposed in Sec-
tion II, the operation of the converter would be the same as in
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Fig. 3. Feedback loop to control output voltage: (a) block diagram, (b) PWM
by ramp wave, and (c) switch control signal.

case of two separate but identical load resistances (
) connected to and . Therefore, it is reasonable to

presume that the stability analysis carried out for two separate
but identical loads will provide similar results as another sta-
bility study would offer for a single load resistance, which is
out of the scope of the current paper.

The control voltage is obtained by amplifying the error
signal ( ) by gain . is compared to the repetitive
sawtooth waveform [Fig. 3(b)]. Whenever the amplified error
signal is greater than the sawtooth waveform, the switch
control signal is high [Fig. 3(c)] and the selected controlled
switch or turns on. Otherwise, the switch is off. and
are turned on and off successively, i.e., the switch control signal

for is generated in one period of the sawtooth wave
and in the next period controls switch . Hence, the
period of the sawtooth wave is half of the switching period:

. Note that no switching occurs when
within .

IV. THEORETICAL BACKGROUND: STABILITY OF A

PERIODIC SOLUTION

As presented above, in normal operation the converter ex-
hibits periodic behavior. Periodic time functions describe the
waveforms of the state variables with period(Figs. 2 and 3).

One of the most useful methods for investigating continuous
nonlinear systems involves a discretization technique and by the
introduction of thePoincaré map function (PMF)or in short the
Poincaré map. For a nonautonomous system the PMF gives the
relation between two consecutive points obtained by the sam-
pling of the trajectory evolving in the state space at a rate being
equal to the switching frequency. Assuming that the period of
the periodic state is the same as that of the switching frequency,
the periodic state corresponds to a fixed pointdenoted by
in the state space. The stability of the periodic state is the same
as the stability of the fixed point in the Poincaré map. In the
succeeding discussion of stability, “fixed point” can be replaced
everywhere by “normal (fundamental) periodic solution.”

The Poincaré map function relates the coordinates of consec-
utive sampled points in state space separated by one switching

period from each other in time

(1)

( ) and in periodic state at the fixed point
.

Therefore, the stability is determined by the local behavior
of PMF near the fixed point . If all sufficiently small devi-
ations around tends toward 0 with time, then and the
system areasymptotically stable, the trajectories are attracted
to the steady-state trajectory, the limit cycle. and the limit
cycle areunstableif any sufficiently small deviation increases
with time and the trajectories moves away from the initial limit
cycle [6].

In particular, the local behavior of the PMF in the neighbor-
hood of the fixed point is governed by its linearization near
that fixed point [6]

(2)

where

(3)

is the Jacobian matrix of the Poincaré map function , eval-
uated at the fixed point . Substituting by its eigen-
values orcharacteristic multipliers and its right and left

eigenvectors, the linearized relation or the linear map be-
comes

(4)

The eigenvalues give the amount of expansion and contraction
near the periodic solution during one period. Starting from
, the value , that is,

(5)

The position of the eigenvalues in the complex plane deter-
mines the stability of the fixed point. The fixed point and the
limit cycle are asymptotically stable if and only if all eigenvalues
in (5) have modulus less than unity, i.e., they lie inside the unit
circle; if any eigenvalue has modulus greater than unity, i.e., it
lies outside the unit circle, the limit cycle is unstable as
keeps increasing with due to .

V. STATE EQUATIONS OF THE DUAL-CHANNEL

RESONANT CONVERTER

The studied resonant converter is avariable-structure piece-
wise-linear nonlinear dynamicalsystem. The structure of the
active circuit varies during the periodic steady-state operation
(Fig. 2). Thestructureschange periodically during the opera-
tion. Oneperiodcorresponds to the switching cycle and it is
divided into twosubperiods(semiperiods in time) by the repeti-
tion of consecutive two structures presented in Fig. 4. The cor-
respondence between the circuits in Fig. 4 and the active parts
of the converter configuration (Fig. 1) during one switching pe-
riod is shown in Table I. The time sequence of structure changes
is outlined in Fig. 5. The durations of the same structure in the
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Fig. 4. Converter structures during either subperiod I or subperiod II.

TABLE I
CORRESPONDANCEBETWEEN THECONVERTER AND THESTRUCTURES IN

FIG. 4 DURING ONE SWITCHING PERIOD

two subperiods are equal in periodic state due to the symmet-
rical operation investigated: .

Since each structure has linear dynamics, the resonant con-
verter is apiecewise-linearsystem. On the other hand, the whole
system, the feedback controlled converter is nonlinear due to the
dependence of commutation angles, on the state variable

. The linear state equations for structure 1 in
subperiod I using Table I are given in (6) and in dimensionless
form in (7)

(6)

(7)

where

(8)

and , , ,
, and . The state equation

of structure 1 in matrix form is

(9)

State equations for structure 2 in subperiod I are given in (10)
and they are presented in matrix form in (11)

(10)
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Fig. 5. Time sequence of structure changes.

(11)

Due to the periodicity the following relations hold in steady
state among the end and start values of the state variables in each
subperiod (Fig. 2): ; ; ;

; where suffixes and stands for
end and start, respectively. In short,

(12)

where the periodicity or transfer matrix

(13)

Multiplication of the starting value of the state variableby
transforms in time forward to the end of the subperiod to

calculate . On the other hand, the equation

(14)

obtained from (12) can be interpreted as a backward transfor-
mation in time to calculate from .

By utilizing the periodicity of the structure series explained
in Figs. 4 and 5 and in Table I, even in transient can be
transformed backward to calculate

(15)

where denotes the’th subperiod. can be used as initial
value of the subperiod for structure 1 and the same state
(9) and (11) can be applied in subperiod as the ones used
in subperiod due to the periodicity of the structures.

As was mentioned above, the system within each subperiod is
piecewise linear. The PWM-controlled feedback converter be-
comes anonlinear system, due to the dependence of the structure
change instant (the turn-on time of the switch and )
on the state variable, the output voltage.

VI. STABILITY ANALYSIS

A. Introduction

It has been stated in Section IV that the stability of the feed-
back control loop including the converter in periodic operation
is determined by the eigenvalues of the Jacobian matrix
of the Poincaré map function at the corresponding fixed point

[(3)]. It has been shown in the previous section that the dy-
namics of one switching period can be described by applying
the state equation (9) and (11) on two consecutive steps for sub-
period I but before applying them in the second time the end
values of state variables must be transformed backward by
using transformation matrix [(15)].

The first target is the determination of the Poincaré map func-
tion (PMF) . The starting value of the five state variables

at the start of the switching period in steady state is
chosen at fixed point . Changing by small devia-
tion , the end value of the state vector at theth
subperiod is

(16)

where is the number of subperiods. Function
can easily be determined first by solving state (9) and after state
(11) provided that, and are known. Interval lasts
as long as switch (or ) is on (Fig. 5). is a function of

, that is, . After transforming backward, the
starting value of the state vector in the next subperiod is
obtained [(15)]

(17)

The equations and the procedure is the same in subperiod
as in subperiod

(18)

Equation (18) is the PMF of one switching period (Fig. 5)
( )

(19)

On the other hand, (17) is the PMF of one subperiod

(20)

In steady state . As the PMF is the
same in each subperiod the dynamics of the system is fully de-
scribed by . Conclusion for stability can be drawn either
from or .
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For small deviation around the fixed point by linearizing
in the neighborhood of in subperiod 1 [(3), (4)]

(21)

and in the next subperiod

(22)
where is the Jacobian matrix of

(23)

From (22), the relation between the two Jacobian matrices

(24)

The absolute values of the eigenvalues ofor must be
smaller than 1 for stable operation [(5)]. The eigenvalues of
are used for the stability study and a Matlab program was de-
veloped to compute them.

B. Determination of

First, function is determined [see (16)]. The solution
of state equation (9) is

(25)

and that of state (11) is

(26)

where ;

(27)

are the transition matrixes of the two structures, respectively,
as well as one particular solution is obtained
from (9) by substituting . By using (9) and calculating

, the result is: ,
, , and . This

result as one possible particular solution can easily be deduced
by physical consideration without any calculation as well.is
the identity matrix. The determination of will be treated
later.

By applying in cascade the solutions of differential equation
(9) and (11), Poincaré map function and function from
(16), (17), (20), (25), and (26)

(28)

In periodic steady state, .

C. Jacobian Matrix

The next step is the determination of the Jacobian matrix
[(23)]. The basic equations needed are (28) and (27) where

and have to be substituted and the derivative
of has to be evaluated at the fixed point. belongs
to and determined by . As is expressed in (28) as a
function of and the Jacobian matrix

(29)

Two out of three partial derivatives can be calculated from
(28) and (27)

(30)

(31)

where and are the velocities of state vectorat the end
of structure 1 [(9)], and at the beginning of structure 2 [(11)],
respectively.

To determine the relation between and is
needed.

The PWM control terminates the structure 1 in subperiod 1
at when the difference between the control voltage and
the sawtooth waveform becomes zero (Fig. 3). In dimen-
sionless form in steady state,

(32)

where , ,
, and .

Relations (8) and (25) were used in (32).
The derivative can be calculated from (32). For

small changes and

(33)
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The two partial derivatives from (32) are

(34)

(35)

Substituting (33) into (29),

(36)

Substituting all derivatives, that is, (30), (31), (34), and (35)
into (36), the Jacobian matrix

(37)

The calculation of matrix

(38)

requires the velocity of state vector at the end of structure 1
( ) and that at the start of structure 2 ( ), which are de-
fined by the state models of the two structures, by (9) and (11),
respectively. The state vector is needed for the calculation
both for and . It can
be determined from the solution of (9) [see (28)]

(39)

Knowing all terms in matrix , its eigenvalues can be calcu-
lated, e.g., by Matlab.

Matrix takes into account the sudden change in the ve-
locity of the state vector at the switching instantfrom to

. If , then .

D. Determination of

To calculate the eigenvalues of the value must be deter-
mined. An iterative algorithm was used to this end. The initial
value was obtained from the steady-state relations derived
in Appendix A, where the filter capacitor at the output was as-
sumed to be very large, as it is normally the case in applications

requiring a nearly ripple-free instantaneous output voltage.
The corresponding steady-state duty ratio was determined
by the PWM control [Fig. 3(b)]

(40)

The average output voltage can be expressed from(a9) by
taking into consideration that

(41)

Substituting from (41) into (40), was
calculated from the transcendental equation.

The accurate value deviates from due to the ripple
in . It has been shown that in periodic steady-state

, where is the accurate value giving
the accurate meeting point of and within period
[Fig. 3(b)], that is, satisfying (32). The iteration for the calcula-
tion of starts by substituting in (28) and calculating

, that is, the first approximation of the time function or
or in general in the th iteration step from relation

(42)

Equation (42) was derived from (28) by assuming steady
state, that is, . Knowing , the meeting
point of and provides the new value for in
the next iteration step. By setting a limit for the deviation
in in two consecutive iteration steps in such a way that

, can be approximated at will,
where is the number of iteration steps.

VII. CALCULATION RESULTS

A. Bifurcation Diagram

One of the most useful ways for the presentation of the
great amount of information obtained by simulation or test
and describing the complex behavior of nonlinear dynamic
system is thebifurcation diagram. Selecting one single state
variable for observation, e.g., the sampled output voltage,
the diagram records its change as a function of one system
parameter, e.g., over its range of interest in steady state.
To generate the bifurcation diagram of the feedback converter
configuration studied, the output voltage was sampled and
stored at the start of every switching cycle ( ).
The data were collected only after the initial transient is
over.

A bifurcation diagram of the feedback converter showing its
behavior in a wide variation range of the gain is presented
in Fig. 6. Starting from left, the bifurcation diagram reveals the
stable period-1 domain (Fig. 2), since in this region there is just
one single sampled value [ ] for a given gain ,
i.e., the output voltage repeats itself in each switching period

. The first bifurcation, shown in magnified form in Fig. 7,
takes place about and, in fact, it is the subject of the
stability analysis just deduced.
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Fig. 6. Bifurcation diagram.

Fig. 7. Enlarged part of the bifurcation diagram (1: periodic range; 2:
quasi-periodic range).

B. Loci of the Characteristic Multipliers

They are presented in Fig. 8 for three values of the voltage
gain: with “+” mark, with “o” mark, and

with “x” mark. It can clearly be seen that a com-
plex-conjugate pair of characteristic multipliers passes through
the unit circle as the feedback loop gain is increased. The numer-
ical values are listed in Table II and it denotes a Hopf bifurcation.
According to the stability condition, as long as the characteristic
multipliers lie inside the unit circle, the periodic steady state so-
lution is asymptotically stable. When a complex-conjugate pair
of characteristic multipliers gets outside the unit circle the pe-
riodic solution loses stability and a quasi-periodic solution is
generated, which turns into a chaotic one by increasing further
the feedback gain.

C. Quasi-Periodic Behavior

It is readily identified by means of Poincaré map. A quasi-pe-
riodic solution can be expressed as a countable sum of periodic
functions with incommensurate frequencies and its trajectory
winds around a torus in state space. Since the ratio of the fre-
quencies is irrational, the trajectory never closes on itself and

Fig. 8. Loci of characteristic multipliers as the feedback gain varies. Arrows
indicate increasing feedback gain.

the torus becomes more densely filled in. The Poincaré section
is in the Poincaré plane cutting through the torus, therefore the
Poincaré map of the quasi-periodic trajectory is a set of separate
points along a closed curve so densely populated that it looks
like a curve. Fig. 9(a) shows the Poincaré map in quasi-peri-
odic operation at in the reference frame of condenser
voltage versus output voltage .
Similar Poincaré maps are shown in the reference frame
vs. in Fig. 9(b) and versus in Fig. 9(c), respec-
tively. All three Poincaré maps prove that the converter operates
in quasi-periodic state.

D. Time Functions

The time waveforms of the condenser voltageand con-
trol voltage are plotted in Fig. 10 at . Quasi-peri-
odic behavior appears in systems containing two or more com-
peting frequencies and the quasi-periodic signals may look in
the time domain like an amplitude modulated waveform. The
time waveform of the condenser voltage is clearly amplitude
modulated [Fig. 10(a)]: the “carrier” frequency is the forcing
frequency of the ramp wave; in addition, a natural frequency
of the system is developed and acts as a modulating frequency.
It can be seen from the succession of the peak values that the
condenser voltage is not periodic. Since the two frequencies are
incommensurate, the resulting waveform becomes quasi-peri-
odic. The control voltage , changing with the natural fre-
quency of the system, hits the ramp wave once per ramp cycle.
The forcing frequency of the ramp wave is present in the control
voltage [Fig. 10(b)].

The quasi-periodic operation pertains approximately from
up to . Increasing further the system

state turns to chaotic one, i.e., this is a route to chaos through
quasi-periodic states. Fig. 11 shows the Poincaré map in chaotic
behavior at in the reference frame of condenser
voltage versus output voltage .
This chaotic map appears as set of organized points, reflecting
a multilayered structure and order. The time functions of
the condenser voltage and control voltage in chaotic
operation are plotted in Fig. 12, at . The control
voltage fails to hit the ramp wave in its every cycle.
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TABLE II
COMPLEX-CONJUGATEPAIR OF CHARACTERISTIC MULTIPLIERS RESULTING IN THE HOPFBIFURCATION

(a) (b)

(c)

Fig. 9. Poincaré maps in quasi-periodic operation (K = 4).

The chaotic region suddenly changes to a periodic window
about at (Fig. 6), followed by a cascade of period dou-
blings. Increasing further a little above 24, chaotic state de-
velops again. This period-doubling route to chaos was reported
in detail in [5].

VIII. E XPERIMENTAL RESULTS

The values of parameters and variables used in this study are
listed in Appendix B. Those ones belonging to the converter

basic configuration were chosen to ensure and sym-
metrical CCM both in open loop ( ) and in stable feed-
back operation.

The oscilloscope traces of the condenser voltageand choke
current are shown in Fig. 13 at and in Fig. 14 at

. The choke current waveforms confirm the continuous
conduction mode. The shapes of the time functions verify the
results of the stability analysis performed through this paper.
Quantitatively, the simulation and test results are in good agree-
ment. The main source of deviations is the assumption of ideal
components used both in the derivation of the relations and in
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(a)

(b)

Fig. 10. (a) Condenser voltagev and (b) control voltagev in
quasi-periodic state (K = 4).

Fig. 11. Poincaré maps for chaotic operation (K = 22).

the simulations. Parasitic elements (the equivalent series resis-
tance of the inductor, the forward voltages of the semiconduc-
tors) are always present in the practical circuit and they affect its
behavior, but they do not affect the bifurcation structure. They
were only found to shift the bifurcation points and are not es-
sential to the phenomena reported. For example, the Hopf bi-

(a)

(b)

Fig. 12. (a) Condenser voltagev and (b) control voltagev in chaotic
operation (K = 22).

furcation occurs in the practical circuit for an upper value of the
gain, about .

IX. CONCLUSION

This paper has reported for the first time the stability analysis
for the feedback buck member of a dual-channel resonant dc–dc
converter family. The converter has five energy storage compo-
nents and its output voltage is controlled by a feedback loop.
The controlled switches are turned on and off by a PWM pat-
tern using a ramp function of constant frequency. The stability
of the limit cycle describing the operation of the converter is lost
by increasing the loop gain and a quasi-periodic state developes.
Increasing further the gain, chaotic state is reached through the
quasi-periodic route. Bifurcation diagrams and Poincaré maps
present the various system states.

In the stability analysis, the characteristic multipliers of the
Jacobian matrix of the Poincaré map function evaluated at the
fixed point of the limit cycle located in the Poincaré hyperplane
were determined. The stability is lost when a complex-conjugate
pair of characteristic multipliers leaves the interior of the unit
circle.
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(a)

(b)

Fig. 13. Oscilloscope trace of the (a) condenser voltage and (b) choke current
in period-1 operation (K = 3).

APPENDIX A
BASIC STEADY-STATE RELATIONS

Assuming symmetrical CCM, the current time functions in
the chokes are

(a1)

in the interval , and

(a2)

in the interval , where (Fig. 2),
the ripple free instantaneous output voltages are

and is the characteristic impedance, further-
more,

(a3)

where (Fig. 2) and .
The choke current is the same at and at

(a4)

(a)

(b)

Fig. 14. Oscilloscope trace of the (a) condenser voltage and (b) choke current
in quasi-periodic operation (K = 8).

The capacitor voltage change is the result of current in
interval

(a5)

Substituting (a1) into (a5),

(a6)

and (a2) into (a4),

(a7)

Let us substitute now from (a7) into (a6)

(a8)

The output voltage is on the basis of (a8) and (a3)

(a9)
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APPENDIX B
PARAMETER AND VARIABLE VALUES

H; nF; F; ;
V; V; V; and V.
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