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Stability Analysis of a Feedback-Controlled Resonant
DC-DC Converter

Octavian Dranga, Balazs Buti, and Istvan NaBgllow, IEEE

Abstract—This paper reports on the stability analysis of one ip S L. o
member of a dual-channel resonant dc—dc converter family. The = F L = +
study is confined to the buck configuration in symmetrical opera- + 1
tion. The output voltage of the converter is controlled by a closed GT I{p c i Sep C, R,,% Vop
loop applying constant-frequency pulsewidth modulation. The dy- 174 - <= { -|- 0 v—y 4y
namic analysis reveals that a bifurcation cascade develops as are- * 0 -+ l _I_ o "op " on
sult of increasing the loop gain. The trajectory of the variable- C= y % S C, RSV,
structure piecewise-linear nonlinear system pierces through the - f - T
Poincaré plane at the fixed point in state space when the loop gain  — < 3, Z’”’ <= -

n n 1

is small. For stability criterion the positions of the characteristic
multipliers of the Jacobian matrix belonging to the Poincaré Map
Function defined around the fixed point located in the Poincaré Fig.1. Resonant buck convertlr, = R,,; C, = C,,.
Plane is applied. In addition to the stability analysis, a bifurcation

diagram is developed showing the four possible states of the feed-joq o5 haye to be discussed. The first one is the reason beyond
back loop: the periodic, the quasi-periodic, the subharmonic, and

the chaotic states. Simulation and test results verify the theory.  the Strict symmetry for applying only one voltage control loop
to regulate the sum of the output voltages. This issue will be

treated in more detail in Section Ill. The second issue is the ex-
planation of the selection of the exact iterative-map approach
I. INTRODUCTION using the state-space description of the system. To investigate

the stability two main techniques were developed: the time-
T e an coreeeos erage method and th dscres eratve map approach T

D {lme—average model essentially ignores the switching details,
a number of other publications later [2]-[4]. The common bas]18 using only on the envelope of the dynamics. The drawback
configuration contains two channels, the so-called positive angd o time-average method is that as the deltailed dynamics
negative ones. They transfer the power from input to output an

) . within a switchin le are ignor nd only the low-fr n
are coupled by a resonating capacifof?], [3]. The converters as tching cycleareigno eda_l d ° ythe ow-irequency
; . ; : roperties are retained, the model gives information only about
can operate in symmetrical mode and in asymmetrical moge . . - . -
) . . e low-frequency behavior and its validity will be limited to
when the respective variables in the two channels vary syvj‘i
a

. . s range. In order to prove the development of quasi-periodic
metrically (without any energy exchange between channels ; . : )
. . d chaotic states the time functions of the state variables must
and asymmetrically (with energy exchange between channgls ; .
: : . € determined, that is, the state-space method must be used.
through the resonating capacitor), respectively. The converters_ . I :
tasi-periodic and chaotic states are connected to the fast pro-

f\;ﬁgrggommended to be applied in the middle and higher POVSses and they can be discovered only by following precisely

. T . . the time histories of the state variables within the switching pe-
The present investigation is restricted to the buck configura- ", . . )
riod without replacing them by their average value. More com-

tion (Fig. 1) in strictly symmetrical operation and strictly syms lete information can be achieved by deriving an iterative func-

metrical load. Its target is not the discussion of the dc—dc r‘%’dn based on the state space traiectory of the svstem. It ex-
onant converter family but the analysis of the stability of the b J y y i

. V\Presses the state variables at one sampling instant in terms of
output voltage control loop built around the buck converter. T 2 : . .2 N
the ones belonging to the previous sampling instant. This kind

of discrete-time model will be the instrument to detect the bi-
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control loop. Section IV offers a brief overview of the theo A
retical background of stability analysis based on the Poince
Map Function. Section V points out that one switching perio
consists of two subperiods. It presents the state equations -
the two consecutive structures exhibiting one subperiod. Ite i, e, )
tends the validity of the state equations for the next subperi

due to the periodicity property of the respective configuration  Circuit
Section VI develops the Poincaré Map Functions and its Jag Subperiod —

bian matrix belonging to the fixed point of the periodic solu One period > a.)
tion. Section VIl presents the bifurcation diagram. It plots th
output voltage sampled at each switching period as a functi Vopllj+ 1) Yon op

1
of a system parameter, gaf;,, and presents the calculation VOHFMW

results of the characteristic multiplier of Jacobian matrix as tw Vopl1y ) Vol )

iop (tk+ 1 Y .
\\0”
"~

of them leaves the unit circle due to the increas&f. Calcu- | % G tyia t
lation results of quasi-periodic and chaotic states are presen oT o
as well. Experimental results in Section VIII verify the theoret [ a, : b.)
ical considerations and calculation figures. v (5D
c
T clfk-u Tk+2 ﬂ ;
Il. CONVERTER CONFIGURATION AND OPERATION T(k) /ap 225_”;_\—007 \— ot
vc
The buck configuration is shown in Fig. 1. The converter he l <)

two channels from input to output, both with two controllec

.SW'tChes and one '_ndUCta.nOQ' Suffixes 7 and o re_fer to Fig. 2. (a) Time functions of input and output (inductor) currents, (b) output
input and output while suffixep andn refer to positive and voltages, and (c) condenser voltage in CCM.

negative channels, respectively. The capacitances across the

input terminals shorting high-frequency currents are aSSumt‘lac()jn the inductor current flows continuously,f > 0) (Fig. 2).

to be high and they will be neglected in the stability analysiﬁ.he inductor current... decreases both in DCM and in CCM
The configuration version studied in this paper applies on'g op

. . . . IN a linear fashion in intervak t Ts. After turning on
controlled switches (insulated gate bipolar transistors (IGBT p < W< whs 9

MOSFETS, or other switches) conducting current in the direc-é” the capacitor voltage. stops changing. It keeps its value

tion of arrow. Uep until wT /2.

: . - .. Th me pr k I in the n ive channel re-
The assumptions used in the description of operation in € same process takes place in the negative channel re

. : . sulting in a current pulsé,,, and negative condenser voltage
steady state are as follows: idealized and lossless circyit. g PUSEon g g

. Sswing after turning onS,, at the beginning of the next half
components, constant and smooth input voltigand output g 9 9 9

. ! . o . _cycle atwT /2 (Fig. 2).
voltages, identical load resistanBeat the positive and negative . ' .
sides @, — R, — R), neglected commutation times, and The input variables directly set by us afg «, f,, andR. The

symmetrical operation of the two channels. The input voItagIenSDUt voltageV; and the load resistangéare usually given. The

(Vi Vin), the output voltagessg,, v,), the peak COndenserselection of the switching angte and the switching frequency
wpyr Van) pr Yon)y

VOItages (op, |von|), and the commutation angles,, «,.) are f, depend on the control. Conditiofy < f,, must hold. The

identical. The asymmetrical operation and asymmetrical Ioér%ason 's thatthe change of condenser voltageone direction
. ' Y P y ust be completed before its change gets started in the opposite
is out of the scope of the current paper.

The controlled switches within one channel are always direction. Turning on switctf), and 5, must be phase shifted
. . . Y ‘5&/ wTs/2, the two input currents may flow only in separate
complementary states (that is, whép is on, S, is off and

. . . . . intervals. Furthermorey < w7, /2 must hold.
vice-versa). By turning on switchi,, a sinusoidal current pulse & < wly/

iy | The output variable determined by the set of input vari-
iip is developed fromut = 010 ay(w = 27, = 1/VLC)  piec’isy The basic steady-state relations are presented in
in circuit S, L, v,p,, C @andV;, (Fig. 2). (The ripple ofv,, and 'SVo. ' y i p i

von 1S drawn in Fig. 2(b) for the stability study. Here, ripple—freéAppendlx A
output voltages are assumed.) The currentsgre= i,, = i,

in interval0 < wt < «,. The capacitor voltage. swings from

Ven 10 Vep (Ve < 0). By turning on switchS,, at«,, the choke In order to control the output voltagg by pulsewidth mod-
current commutes frony, to S, and it circulates in the free- ulation (PWM) switching a feedback control loop is applied
wheeling pathS.,, L, andv,,. The energy stored in the choke[Fig. 3(a)]. Due to the strictly symmetrical load assum&g &
atwt = a, is depleted in the interval, < wt < wT, where R,), one single output voltage control loop provides the con-
T, = 1/f, is the switching period. At discontinuous currentrol of bothv,, andv,,, besidev,. By applying only one single
conduction (DCM) the stored energy is entirely depleted in iutput load resistanc& between thet and — rails and as-
tervala < wt < ae,, Wherea,, denotes the extinction anglesuming smooth ripple-free,, andwv,,, voltages in steady state
of the inductor current. In DCM the current is zero betwagn due to the large capacitana€s = C,, as was supposed in Sec-
andwTs. In the continuous conduction mode (CCM) of operaion Il, the operation of the converter would be the same as in

I1l. OUTPUT VOLTAGE CONTROL



DRANGA et al. FEEDBACK-CONTROLLED RESONANT DC-DC CONVERTER 143

Vramp periodT; from each other in time
v,

vref K Veon Com;;l'arator Switch onverter 2
T_?MPC—'T 2,41 = P(z,) @)
a.

(n = 1,2...) and in periodic state at the fixed point =

L P(z).
u Ay Veon Therefore, the stability is determined by the local behavior
/ t of PMF near the fixed point*. If all sufficiently small devi-
" B LT (g% v, ations aroundz* tends toward 0 with time, them* and the
T system areasymptotically stablethe trajectories are attracted

_ , to the steady-state trajectory, the limit cycte. and the limit
Hi gh_s‘”mh control signal =vsc cycle areunstableif any sufficiently small deviation increases
| | | | | | | l | | with time and the trajectories moves away from the initial limit
Low - Lz . cycle [6].
In particular, the local behavior of the PMF in the neighbor-

Fig. 3. Feedback loop to control output voltage: (a) block diagram, (b) PWKood of the fixed point* is governed by its linearization near
by ramp wave, and (c) switch control signal. that fixed point [6]

case of two separate but identical load resistanBgs< R,, = Aty yy = Jn(27) A2, )

R/2) connected tay,, andwv,,. Therefore, it is reasonable toyhere

presume that the stability analysis carried out for two separate

but identical loads will provide similar results as another sta- J (%) dP(z)
bility study would offer for a single load resistance, which is e dz
out of the scope of the current paper.

The control voltage..,, is obtained by amplifying the error is the Jacobian matrix of the Poincaré map funcfitie,, ), eval-
signal (V;ef — v,) by gainK, . veon is compared to the repetitive uated at the fixed point*. SubstitutingJ,,(z*) by its eigen-
sawtooth waveform [Fig. 3(b)]. Whenever the amplified erroralues orcharacteristic multipliers\; and its rightu,,. and left
signalv..,, is greater than the sawtooth waveform, the switch;; eigenvectors, the linearized relation or the linear map be-
control signalv,, is high [Fig. 3(c)] and the selected controlleccomes
switchS,, or.S,, turns on. Otherwise, the switch is aff, andsS,, T
are turned on and off successively, i.e., the switch control signal Apyy = (Z /\i@ir@il) Ay, (4)
vse for S, is generated in on@,. period of the sawtooth wave
and in the nexfl’. periodwv,. controls switchS,,. Hence, the
period of the sawtooth wavE. is half of the switching period:
T, = T, /2. Note that no switching occurs whén,,,,| > Viy =

®3)

The eigenvalues give the amount of expansion and contraction
near the periodic solution during one period. Starting froea
1, the valueAz, ., = J;, (z*)Az,, that s,

-V, within T;,.. A£n+l = (Z )\?QW@Z;) Agl_ (5)
_ The position of the eigenvalues in the complex plane deter-
IV. THEORETICAL BACKGROUND: STABILITY OF A mines the stability of the fixed point. The fixed point and the
PERIODIC SOLUTION limit cycle are asymptotically stable if and only if all eigenvalues

As presented above, in normal operation the converter d3(5) have modulus less than unity, i.e., they lie inside the unit
hibits periodic behavior. Periodic time functions describe tlférde; if any elgen_va!ue has m_OC?“'“S gr_eater than unity, i.e., it
waveforms of the state variables with periBd(Figs. 2 and 3). lies out_5|de th‘? unit P'rde’ the limit cycle is unstableAs, |

One of the most useful methods for investigating continuo&gepS increasing with due toA7’.
nonlinear systems involves a discretization technique and by the
introduction of thePoincaré map function (PMRr in short the
Poincaré mapFor a nonautonomous system the PMF gives the
relation between two consecutive points obtained by the sam-The studied resonant converter igaiable-structure piece-
pling of the trajectory evolving in the state space at a rate beingse-linear nonlinear dynamicalystem. The structure of the
equal to the switching frequengy. Assuming that the period of active circuit varies during the periodic steady-state operation
the periodic state is the same as that of the switching frequen@ig. 2). Thestructureschange periodically during the opera-
the periodic state corresponds to a fixed paihitlenoted byP  tion. Oneperiodcorresponds to the switching cyde and it is
in the state space. The stability of the periodic state is the sadigided into twosubperiod€semiperiods in time) by the repeti-
as the stability of the fixed point in the Poincaré map. In thiion of consecutive two structures presented in Fig. 4. The cor-
succeeding discussion of stability, “fixed point” can be replacedspondence between the circuits in Fig. 4 and the active parts
everywhere by “normal (fundamental) periodic solution.”  of the converter configuration (Fig. 1) during one switching pe-

The Poincaré map function relates the coordinates of consdod is shown in Table I. The time sequence of structure changes
utive sampled points in state space separated by one switchimgutlined in Fig. 5. The durations of the same structure in the

V. STATE EQUATIONS OF THE DUAL-CHANNEL
RESONANT CONVERTER
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L
SUB- Sul CR;
PERIOD Sa] Ci R
i,
STRUCTURE I: ote[0,0.p) 1 STRUCTURE 2: ote[o.,0Ts/2]
ote[wTs/2, ®Ts/2+ ay] 2 ote[oTs/2 + dy ©Ts]
Fig. 4. Converter structures during either subperiod | or subperiod II.
TABLE | where
CORRESPONDANCEBETWEEN THE CONVERTER AND THE STRUCTURES IN )
FIG. 4 DURING ONE SWITCHING PERIOD r] =—2L
A
ONE SWITCHING PERIOD £y = Yon
- A
SUBPERIOD I SUBPERIOD II ‘7
STRUCTURE 1 | STRUCTURE 2 | STRUCTURE 1 | STRUCTURE 2 3 Ve
S % : S = e
S - S, - Sen ;
1 P o Z ° Zop
Spl Sm SM Srp Scp .T4 — V.
L L, L, Ly Ln -
L L, Ly L Ls Z “ion
C Gy G, G G Ty =—;,
G Ca Cy C, G 2
R R, R, R, R, _t
R R R R, R, T= T,
T,
a=="
T,
two subperiods are equal in periodic state due to the symmet- b :”TC — ¢
rical operation investigated, = a, = «. 1o Co
Since each structure has linear dynamics, the resonant con- T, =RC,
verter is giecewise-lineasystem. On the other hand, the whole Tc =RC,
system, the feedback controlled converter is nonlinear due to the L
dependence of commutation anglgs «,, on the state variable Z=\l¢ (8)

Vo = Vop + Von. The linear state equations for structure 1 in

subperiod | using Table | are given in (6) and in dimensionle 0dVi/2 = Vip = Vin, L = Ly = Ln , Co = Cp = Cy,

=R, = R, ,andT, = T,/2 = n/LC. The state equation

form in (7) of structure 1 in matrix form is
d 1 1 o
Uop . T2
== =—=Vop + =% .
dt R,C, " C, " i=A,-z+B, x=|z3|;
o _ L L, n
it R.C, " " 5
d 1 —a 0 0 b O 0
e iy 0 —a 0 0 b 0
dt A=[0 0 0 7 o0|l;B=|0]. ©
dzﬂ = — iva — L’UC + L’Uz’ -7 0 —m 0 0 T
dt L, " L, L, " 0 -7 0 0 0 0
dion, 1 State equations for structure 2 in subperiod | are given in (10)
- —v (6)
dt L, " and they are presented in matrix form in (11)
dxq dv 1 1
_— = = b B R
g Mmthm dt R,C, T g,
ds d 1 1
—= = —axy + bx; Son _ 2 —1
dr at R.C, "t a,
drs _ dve _,
dr 4 dt
dxs di"p — _ i
E——W(Jh-l-l’:s—l) i LPUO;D
d:l’," dion 1
2 — _ = — 7 Uon 10
-~ " dt L.' (10)
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ONE SWITCHING PERIOD
T;

SUBPERIOD 1 SUBPERIOD I1

»

T,/2=T, < T,/2=T, >

A
v

A

Circuit—» | STRUCTURE 1 _i‘ STRUCTURE 2 STRUCTURE 1 . STRUCTURE 2
Duration— ) T 7 o o

Time Lsty Lia Lo esa
Fig. 5. Time sequence of structure changes.
T=Ay-x VI. STABILITY ANALYSIS

IS
I
5
o
8
NS
8
Y
8
'S
8
v

A. Introduction

—a 0 0 b 0 It has been stated in Section IV that the stability of the feed-
0 —a 0 0 b back control loop including the converter in periodic operation

A= 0 0 000 (11) s determined by the eigenvalues of the Jacobian maiyix*)
—07T Oﬂ 8 8 g of the Poincaré map function at the corresponding fixed point

z* [(3)]. It has been shown in the previous section that the dy-
Due to the periodicity the following relations hold in stead)?am'cs of one .SW'tChmg period can be descrlbed by applying

. . 1he state equation (9) and (11) on two consecutive steps for sub-
state among the end and start values of the state variables in each . ) )

: . - ) _ ) . . period | but before applying them in the second time the end
subperiod (Fig. 2)op,c = vons; Von,e = Vop,si Vee = ~Ues; alues of state variabl must be transformed backward b
Gop,e = %on,s; fon,e = fop,s Where suffixes ands stands for v .u ¢ v .' Q_S,€7e.T_lJl 15 W y
end and start, respectively. In short, using trgns orma.tlon matrix , I( ) - , ,

The first target is the determination of the Poincaré map func-
(12) tion (PMF) P(z*). The starting value of the five state variables

z, at the start of the switching periofls in steady state is

s h f th itchi idfls i d i

chosen at fixed point* = z,. Changingz, by small devia-

tion Az, ; = Az,, the end value of the state vector at #th

z, =Tz,

where the periodicity or transfer matrix

01 0 0 0 subperiod is
1 0 0 0 O
= 1
T=T"'=[00 -1 0 0 (13) Lee = S2is) (16)
00 0 01 wherek = 1,2,... is the number of subperiods. Functigh
00 0 1 0

can easily be determined first by solving state (9) and after state

Multiolicat fth . | fth iableb (11) provided thatg, , andr, 1 are known. Intervat, ; lasts
T u t'? |cat|0n.o t N sftartmgdva UE oft gs’;a:]e Va”;‘—lf'e. {j as long as switcls), (or S,,) is on (Fig. 5).7, 1 is a function of
T transformsz, in time forward to the end of the subperiod to, * “ipavis (. ). After transformingz, . backward, the
calculatez,. On the other hand, the equation . ’ . ’

starting value of the state vector in the next subpetiad1 is
obtained [(15)]

Tpy1,s = Zilikﬂ = Iili (£k75) . an
obtained from (12) can be interpreted as a backward transfor- ) _ ) )
mation in time to calculate  from z . The equations and the procedure is the same in subperiod

By utilizing the periodicity of the structure series explaine§f T 1 &S in subperiod
in Figs. 4 and 5 and in Table I, even in transient, can b - (-
in Figs. 4 and 5 and in Table I, even in transient, can be Corns =T f (2ryrs) =T (T (22) . (18)

transformed backward to calculatg , ;
Equation (18) is the PMF of one switching period (Fig. 5)
£k+1,s = I_lgk e (15) (gn,s = Qk,s)

}

T, = I_lze (14)

wherek denotes thé'th subperiodz, , , , can be used as initial Tpp1,s =P (2,) - (19)
value of the subperioél + 1 for structure 1 and the same state . ,
(9) and (11) can be applied in subperiod- 1 as the ones used On the other hand, (17) is the PMF of one subperiod
in subperiodk d_ue to the periodicity of the.st.ructures. o Thirs = Py (Qk,s) ) (20)

As was mentioned above, the system within each subperiod is
piecewise linear. The PWM-controlled feedback converter be-In steady state* = P, (z*) = Ek(g*). As the PMF is the
comes aonlinear systendue to the dependence of the structursame in each subperiod the dynamics of the system is fully de-
change instant; (the turn-on time of the switck., andS.,) scribed byP, (z*). Conclusion for stability can be drawn either
on the state variable, the output voltage. from P,, or P,.
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For small deviation around the fixed point by linearizingC. Jacobian MatrixJ, (z*)

P, (z*) in the neighborhood of* in subperiod 1 [(3), (4)] The next step is the determination of the Jacobian matrix

J. [(23)]. The basic equations needed are (28) and (27) where
Tps =1 andé, 1 = ¢1 have to be substituted and the derivative
of P, has to be evaluated at the fixed pairit 6; (z*) belongs

to z* and determined by*. As f(z*) is expressed in (28) as a
function ofz* andé; (z*) the Jacobian matrix

Ay =y (27) Ay o = J (27) Az, o (21)
and in the next subperiod

A£n+1,s = A£lc-i—2,s = lk (g*) A£lc-i—l,s = li ( ) Az

—n,s

(22) T 1) df (x, 61 (z))

[ of (d&
whereJ, (z*) is the Jacobian matrix aP, (z*) L -Jp(Z) = dr = l% + oo 96, <d$>
o _ 4Py (z 29
=B (23 29

z Two out of three partial derivatives can be calculated from
From (22), the relation between the two Jacobian matrices(zg) and (27)

of
I, (@) = J2 (7). 4) |, ~Wa(l =) - Wa(d) (30)
The absolute values of the eigenvalues/gfor J,, mustbe 9f | W, (1 - é1)
smaller than 1 for stable operation [(5)]. The eigenvalueg,of 96, |,. 061
are used for the stability study and a Matlab program was de- . .
veloped to compute them. AW, (81) -z + W, (61) = I]- AT - By }
L + Wy(1—61)
B. Determination ofP, (z*) =)
_ O{W,(8:) -a* + [W,(61) —I]- A, - By}

First, functionf(z,, ) is determined [see (16)]. The solution
of state equation (9) is

961

_ e A _ oy, 9x(é)
() = Wy () o + Wy (50) — 11 A7 "B, (25) =Wl =) Ay a(0) + W (1= 00) - =50
=W,(1—61)- (_iz,s + il,e) (31)

and that of state (11) is
wherei, . andi, , are the velocities of state vectoat the end

Ty e = Wo (1= 0k1) 2y, (6k,1) (26) of structure 1 [(9)], and at the beginning of structure 2 [(11)],
respectively.
wheredy 1 = m6.1/Tr; 6k 2 = T 2/Tr =1 — 611 To determine(ds, /dz)” the relation betweed; andz is
needed.
W, (61) =e2Pr; The PWM control terminates the structure 1 in subperiod 1
Wo(1 = 6pq) =2 (1- 6k 1) (27) até; when the difference between the control voltagg, and

the sawtooth waveform,..,, becomes zero (Fig. 3). In dimen-
are the transition matrixes of the two structures, respectivefjonless form in steady state,

as well as one payuc_ulq solutuzn_q> = AT - Bis obtalngd  Veon(81) = Vramp(61)
from (9) by substitutingc = 0. By using (9) and calculating e(z, 61)| = 7
z, = —A7* B1 = —adjA,/|A,|- B,, the result ist; = 0, zt 2

To = 0,23 = ( )/( /2) =1,24 =0 and$5 = 0. This =Ky - [ ref = 3?1((51)—1172((51)]
result as one possible particular solution can easily be deduced -Vi—=(Vg—=Vi) 6=
by physpal COI’]S.IdeI‘atIOI’l wnhoyt any calculayon as Welks =Ky - Vi — KT 2(81) = Vi — (Vi = Vi) - 61=
the identity matrix. The determination ¢f, ; will be treated T
|ater_ i :KV : ref k {W (51)

By applying in cascade the solutions of differential equation +W,(61) - I]- AT - By }
(9) and (11), Poincaré map functig®, and functionf from -Vi—=(Vg—-Vi) - 6=0 (32)
(16), (17), (20), (25), and (26)

where Vi, = Vier/(Vi/2), Vi = Vi/(Vi/2), Vi =

Tpyr s =Ly (iks) = I_1£k,e = I_li@k,s> Vu/(Vi/2), andk” = [Kv Ky 0 0 0]

YWl — s Relations (8) and (25) were used in (32).
=T" Wo(1 = bk1) i The derivative(ds; /dz)T can be calculated from (32). For
AW, (6ka) g s + W (6ka) = 1] AT' By} small change$de/dz)” dx + (9e/d6:) ds; = 0 and

(28)

T -1 T
. B @)@
In periodic steady statey, , , = z;, , = z*. or ) . 961 oz
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The two partial derivatives from (32) are requiring a nearly ripple-free instantaneous output voltége
The corresponding steady-state duty ratig, was determined
Oe |\ _ by the PWM control [Fig. 3(b)]
851 o -
- « Kv ‘/re - ‘/0 - V
I{W,(61) -z + [W,(81) — 1] - AT* - B, } bpan = & = Kollhet Vo) 2 Vi (40)
. 98 ™ VU — VL
1
. . r O0x(61) . . The average output voltagé, can be expressed from(a9) by
~(Vo=Vp)=—-k" - 26, (Vo = Vr) taking into consideration that /f,. = 1
=—k" iy, - (V5 - V)) (34) :
9e\T : o Vo = % (41)
<a_> =k W (), (35) L+

o ) SubstitutingV, from (41) into (40),61 i, = 7 /T = /7 was
Substituting (33) into (29), calculated from the transcendental equation.
The accurate valué; deviates fromy; ;,, due to the ripple
. 8f 8f de 1 de T 1 1, pp
TJp(z")= | 5= — 5 | 5 — ) i
Jr 001 \ 961 Oz i T™ - f(z*,61,4c), Whereé, 4. is the accurate value giving
- the accurate meeting point of,, andwv,amp Within period7;.

(36) In v,. It has been shown that in periodic steady-stete =
Substituting all derivatives, that is, (30), (31), (34), and (39Fig. 3(b)], that is, satisfying (32). The iteration for the calcula-

into (36), the Jacobian matrix tion of 61 4. Starts by substituting; ,, in (28) and calculating
i} . 7, 5, that is, the first approximation of the time functiop or
Jp(z®) =T - [Wo(1 = 61) - W, (1) Veon OF in general;, , in the kth iteration step from relation

_E2<1 - 61) : (il,e - 22,5) 'ET E1(61)
k' iy 4+ VE =V

zy = [T = Wy(1 —bp1) 'wl(‘sk,l)]_l
=L Wy(1-6y) Wo(1 = bk1) - [Wy(8k1) = 1] A7' - By (42)

il,e _§2,S T
'gl,e—i— U L

Equation (42) was derived from (28) by assuming steady
state, that istnk?S = Tpirse Knowing v..n, the meeting
point of veo, and vpamp provides the new value fof; in
the next iteration step. By setting a limitfor the deviation

(37) in 6, in two consecutive iteration steps in such a way that
|0k+1,1 — Ok,1|/0k+1,1 < €, 61,4 CaN be approximated at will,
The calculation of matrix wherek is the number of iteration steps.

'El(‘Sl):I_l 'Ez(l - 51) 'M'E1<61>'

i — @
“Zl,e L
M I- - o kT

L= |4 T k (38) VII. CALCULATION RESULTS
— E -2y +Vu—-Vi

A. Bifurcation Diagram

requires the velocity of state vector at the end of structure 10ne of the most useful ways for the presentation of the
(2, .) and that at the start of structure 2,(;), which are de- great amount of information obtained by simulation or test
fined by the state models of the two structures, by (9) and (18nd describing the complex behavior of nonlinear dynamic
respectively. The state vectefd; ) is needed for the calculation system is thebifurcation diagram Selecting one single state
both fori, , = A, - 2(61) + By andz, ; = A, - 2(61). It can variable for observation, e.g., the sampled output voltage
be determined from the solution of (9) [see (28)] the diagram records its change as a function of one system
parameter, e.g.ky over its range of interest in steady state.
z(61) = Wi (61) -z + [Wy(61) —I]- A;'-B;.  (39) To generate the bifurcation diagram of the feedback converter
configuration studied, the output voltage was sampled and
Knowing all terms in matrix/,,, its eigenvalues can be calcu-tgored at the start of every switching cycle = v,(kT})).
lated, e.g., by Matlab. The datav,, were collected only after the initial transient is
Matrix M takes into account the sudden change in the vgyer.

locity of the state vector at the switching instapfrom z, . to A pifurcation diagram of the feedback converter showing its

iy M iy, =2y, thenM = L. behavior in a wide variation range of the gdify is presented
L in Fig. 6. Starting from left, the bifurcation diagram reveals the
D. Determination of, stable period-1 domain (Fig. 2), since in this region there is just

To calculate the eigenvalues.ff the valued; must be deter- one single sampled valuey, = v,(kTs)] for a given gainKy,
mined. An iterative algorithm was used to this end. The initidle., the output voltage, repeats itself in each switching period
valued, ;, was obtained from the steady-state relations derivdd. The first bifurcation, shown in magnified form in Fig. 7,
in Appendix A, where the filter capacitor at the output was asakes place about’yy = 3.5 and, in fact, it is the subject of the
sumed to be very large, as it is normally the case in applicatiostaibility analysis just deduced.
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Chaotic and subharmonic range .

10 20 30 40 50 60 70 80 1 05 0 05 1 15
Ky
Fig. 8. Loci of characteristic multipliers as the feedback gain varies. Arrows
Fig. 6. Bifurcation diagram. indicate increasing feedback gain.

6.2

the torus becomes more densely filled in. The Poincaré section
is in the Poincaré plane cutting through the torus, therefore the
Poincaré map of the quasi-periodic trajectory is a set of separate
points along a closed curve so densely populated that it looks
like a curve. Fig. 9(a) shows the Poincaré map in quasi-peri-
odic operation af(y, = 4 in the reference frame of condenser
voltagev.r, = v.(kTs) versus output voltage,;, = v, (kT5).
Similar Poincaré maps are shown in the reference fraye

VS. v,k IN Fig. 9(b) andi,,i, versusv, in Fig. 9(c), respec-
tively. All three Poincaré maps prove that the converter operates

8 in quasi-periodic state.

D. Time Functions

5.4t

The time waveforms of the condenser voltageand con-
trol voltagev.,, are plotted in Fig. 10 ak’yy = 4. Quasi-peri-

. . . . o odic behavior appears in systems containing two or more com-
Fig. 7. Enlarged part of the bifurcation diagram (1: periodic range; 2: .. . . L .
quasi-periodic range). peting frequencies and the quasi-periodic signals may look in
the time domain like an amplitude modulated waveform. The
time waveform of the condenser voltage is clearly amplitude
modulated [Fig. 10(a)]: the “carrier” frequency is the forcing

They are presented in Fig. 8 for three values of the voltag@quency of the ramp wave; in addition, a natural frequency
gain: K, = 3 with “+" mark, K, = 3.6 with “0” mark, and  of the system is developed and acts as a modulating frequency.
K, = 4 with *x” mark. It can clearly be seen that a com-t can be seen from the succession of the peak values that the
plex-conjugate pair of characteristic multipliers passes throughndenser voltage is not periodic. Since the two frequencies are
the unit circle as the feedback loop gain is increased. The nUmgizommensurate, the resulting waveform becomes quasi-peri-
ical values are listed in Table Il and it denotes a Hopf bifurcatioggic. The control voltage..., changing with the natural fre-
According to the stability condition, as long as the characteris;jﬁjency of the system, hits the ramp wave once per ramp cycle.
multipliers ||e inside the Unit CirCIe, the periOdiC Steady state Sq"he forcing frequency Of the ramp wave is present in the Contro|
lution is asymptotically stable. When a complex-conjugate pajpitage [Fig. 10(b)].
of characteristic multipliers gets outside the unit circle the pe- The quasi-periodic operation pertains approximately from
riodic solution loses stability and a quasi-periodic solution ig. — 3.6 up to Ky = 20. Increasing furtheis- the system
generated, which turns into a chaotic one by increasing furthgite turns to chaotic one, i.e., this is a route to chaos through
the feedback gain. quasi-periodic states. Fig. 11 shows the Poincaré map in chaotic
behavior atKy, = 22 in the reference frame of condenser
voltagev.r, = v.(kTs) versus output voltage,,, = v,(kTs).

Itis readily identified by means of Poincaré map. A quasi-p&-his chaotic map appears as set of organized points, reflecting
riodic solution can be expressed as a countable sum of periogdianultilayered structure and order. The time functions of
functions with incommensurate frequencies and its trajectattye condenser voltage. and control voltages.., in chaotic
winds around a torus in state space. Since the ratio of the foperation are plotted in Fig. 12, &, = 22. The control
guencies is irrational, the trajectory never closes on itself amdltage fails to hit the ramp wave in its every cycle.

B. Loci of the Characteristic Multipliers

C. Quasi-Periodic Behavior
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TABLE I
COMPLEX-CONJUGATE PAIR OF CHARACTERISTIC MULTIPLIERS RESULTING IN THE HOPF BIFURCATION

Ky I Pair of Characteristic Multipliers I Modulus I Stability of Periodic Solution

3 0.8004 £ 0.2978i 0.8540 Asymptotically stable (period-1)
32 0.8428 £ 0.3225i 0.9024 Asymptotically stable (period-1)
34 0.8852 + 0.3479i 0.9511 Asymptotically stable (period-1)
3.6 0.9274 £ 0.3740i 1.0000 Structurally unstable (Hopf bifurcation)
38 0.9696 + 0.4008i 1.0491 Unstable (quasiperiodic)
4 1.0115 £ 0.4282i 1.0984 Unstable (quasiperiodic)
S ' ' ' 0.4
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Fig. 9. Poincaré maps in quasi-periodic operatiii( = 4).

The chaotic region suddenly changes to a periodic winddvasic configuration were chosen to ensfirgf,, = 1 and sym-
about atk'y, = 23 (Fig. 6), followed by a cascade of period doumetrical CCM both in open loopi(yy = 0) and in stable feed-
blings. Increasing furthek(y- a little above 24, chaotic state de-back operation.
velops again. This period-doubling route to chaos was reportedlhe oscilloscope traces of the condenser voliagand choke
currenti,, are shown in Fig. 13 aky = 3 and in Fig. 14 at
K+ = 8. The choke current waveforms confirm the continuous
conduction mode. The shapes of the time functions verify the
results of the stability analysis performed through this paper.

in detail in [5].

VIIl. EXPERIMENTAL RESULTS

Quantitatively, the simulation and test results are in good agree-
The values of parameters and variables used in this study arent. The main source of deviations is the assumption of ideal
listed in Appendix B. Those ones belonging to the converteomponents used both in the derivation of the relations and in
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Fig. 12. (a) Condenser voltage and (b) control voltage... in chaotic
operation 'y = 22).

furcation occurs in the practical circuit for an upper value of the
gain, aboutky, = 7.

IX. CONCLUSION

This paper has reported for the first time the stability analysis
for the feedback buck member of a dual-channel resonant dc—dc
converter family. The converter has five energy storage compo-
nents and its output voltage is controlled by a feedback loop.
The controlled switches are turned on and off by a PWM pat-
tern using a ramp function of constant frequency. The stability
of the limit cycle describing the operation of the converter is lost
by increasing the loop gain and a quasi-periodic state developes.
Increasing further the gain, chaotic state is reached through the
guasi-periodic route. Bifurcation diagrams and Poincaré maps
present the various system states.

the simulations. Parasitic elements (the equivalent series residn the stability analysis, the characteristic multipliers of the
tance of the inductor, the forward voltages of the semicondugacobian matrix of the Poincaré map function evaluated at the
tors) are always present in the practical circuit and they affect fised point of the limit cycle located in the Poincaré hyperplane
behavior, but they do not affect the bifurcation structure. Thayere determined. The stability is lost when a complex-conjugate
were only found to shift the bifurcation points and are not egair of characteristic multipliers leaves the interior of the unit
sential to the phenomena reported. For example, the Hopf bircle.
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Fig. 13. Oscilloscope trace of the (a) condenser voltage and (b) choke currieigh 14.  Oscilloscope trace of the (a) condenser voltage and (b) choke current
in period-1 operationk, = 3). in quasi-periodic operation’{y. = 8).

APPENDIX A The capacitor voltage change is the result of curignt i, in
BASIC STEADY-STATE RELATIONS interval0 < wt < «
Assuming symmetrical CCM, the current time functions in a
the chokes are Z/ iod(wt) =2V.. (as)
0

io(wt) = I, coswt + Iy sinwt (al) substituting (al) into (a5),

in the intervald < wt < «, and Z[I,sina + I(1 — cos )] = 2V, (a6)
V. .
io(wt) = I, cosa + I sina — % (wt — @) (a2) and (a2)into (a4),

. . . . Ipsina— L. ‘”TT_O‘
in the intervala < wt < wTs, wherel, = i, (wt = 0) (Fig. 2), I, = 2 . (a7)
the ripple free instantaneous output voltagesigge= V,, = 1 —cosa

Vo/2andZ = \/L/C'is the characteristic impedance, furthert et ys substitute now, from (a7) into (a6)
more,

V. V. sin a
_ (Y vi I+ =4+ 2 (wTs — o) ——— =0. 8
Ik:VC (2)"‘(2) (a3) k+Z+4Z(w OOl—cosoz (a8)

Z
) The output voltage is on the basis of (a8) and (a3)
whereV, = V., = —V.,, (Fig. 2) andV;/2 = V;,, = Vj,,.
The choke current is the sameudt= 0 and atwt = w7, V;
V, = - . (a9)
wly — « sin o
io(wt = 0) = ip(wt = wly) = I, (a4) It T csa
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APPENDIX B [18] J. H. Chen, K. T. Chau, S. M. Siu, and C. C. Chan, “Experimental sta-

PARAMETER AND VARIABLE VALUES bilization of chaos in a voltage-mode DC drive systetEE Trans.
Circuits Syst. |vol. 47, pp. 1093-1095, July 2000.

L =125 pH; C = 100 nF; C), = C,, = 100 pF; R = 7 €, [19] A. Magauer and S. Banerjee, “Bifurcations and chaos in the tolerance
Vip — Vi, =8V: Vg =6V: V, = —6V:andVy = 6 V. band PWM technique,1IEEE Trans. Circuits Syst., Ivol. 47, pp.

254-259, Feb. 2000.
[20] 1. Vajk, J. Hetthéssy, and H. Charaf, “Neural network approximators
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