
Learning Implicit Models during Target Pursuit

Chris Gaskett‡, Peter Brown†1, Gordon Cheng‡, and Alexander Zelinsky†

†Robotic Systems Laboratory,Department of Systems Engineering, RSISE,

The Australian National University, Canberra, ACT 0200 Australia

{pfb,alex}@syseng.anu.edu.au, http://www.syseng.anu.edu.au/rsl/

‡Department of Humanoid Robotics and Computational Neuroscience,

ATR Computational Neuroscience Laboratories, Kyoto, Japan

{cgaskett,gordon}@atr.co.jp, http://www.cns.atr.co.jp/hrcn/

Abstract— Smooth control using an active vision head’s
verge-axis joint is performed through continuous state and ac-
tion reinforcement learning. The system learns to perform vi-
sual servoing based on rewards given relative to tracking per-
formance. The learned controller compensates for the velocity
of the target and performs lag-free pursuit of a swinging target.
By comparing controllers exposed to different environments we
show that the controller is predicting the motion of the target by
forming an implicit model of the target’s motion. Experimental
results are presented that demonstrate the advantages and dis-
advantages of implicit modelling.

I. I NTRODUCTION

This research demonstrates learned control using one joint
of a 4DOF active vision head. The task is to control the
position of a target object to the centre of the robot’s field
of view by reacting to the target’s movement, as shown in
Fig. 1. The controller performsvisual servoing—closed-loop
control based on visual information—to fixate on both static
and moving targets [1].

Although visual servoing does not necessarily require
learning, a learning system can reduce the amount of required
knowledge about the system to be controlled and reduce the
reliance on calibration. A visual servoing system with learn-
ing capabilities could learn to predict the movements of the
target. Investigation of human vision has shown that adaption
and learning improves the efficiency of gaze control [2, 3]
and compensates for imperfections or changes in the eyes [4–
6]. Eye movement skills may develop incrementally during
infancy [7].

Reinforcement learning is a suitable approach for learning
visual servoing. Reinforcement learning systems do not re-
quire an explicit dynamic model of the system to be con-
trolled or a teacher to present ideal behaviour. Behaviour
can be optimised over time, where the optimisation criteria
is set through a reward function [8]. Our earlier research suc-
cessfully applied a reinforcement learning algorithm to mo-
bile robot tasks [9]. Although we were able to show that the

†This research was performed at the Robotic Systems Laboratory, ANU.
For a video demonstrating the results or for further information please contact
Chris Gaskett.

1Department of Foreign Affairs and Trade, Canberra, Australia.

Fig. 1. The current target-object’s position in the robot’s view (inset lower
left) is marked with a red cross. The desired position is shown by a green
line to the left of the cross.

robot moved smoothly, we could not confirm that the algo-
rithm was predicting target movement since the robot moved
slowly. Further, in the uncontrolled environment it was diffi-
cult to perform comparative experiments. Performing exper-
iments on an active head allowed repeated, safe experiments
at speeds high enough to investigate the dynamic qualities of
a learned controller.

A controller with good dynamic properties would pursue
moving targets smoothly with the minimum possible lag.
Smooth, low-lag pursuit reduces blurring and reduces the
probability of losing the target from view. Lag is introduced
by delays in sensing, processing, and actuation. To minimise
lag, the controller should compensate for the velocity of the
target, predict the target’s movement, and be capable of pro-
ducing smoothly varying actions.

II. T HE LEARNING ALGORITHM

In reinforcement learning tasks the learning system must
discover by trial-and-error whichactions, u, are most valu-
able in particularstates, x [8]. In reinforcement learning
nomenclature thestateis a representation of the current sit-
uation of the learning system’s environment. Theaction is an
output from the learning system that can influence its envi-
ronment. The learning system’s choice of actions in response

to states is called itspolicy.
Evaluative feedback is provided in the form of a scalarre-

ward signal, r, that may be delayed. The reward signal is
defined in relation to the task to be achieved; reward is given
when the system is successfully achieving the task.
Q-Learning is a method for solving reinforcement learning

problems. Q-Learning stores theexpected value, Q (x, u),
of performing each action in each state, assuming that the
actions with the highest expected values will be performed
thereafter:

Q (xt, ut) = E

[
rt (xt, ut, Xt+1)

+ γrt+1

(
Xt+1, arg max

ut+1
Q (Xt+1, ut+1) , Xt+2

)
+γ2rt+2

(
Xt+2, arg max

ut+2
Q (Xt+2, ut+2) , Xt+3

)
+. . .

]
where probabilistic variables are capitalised; andγ is the dis-
count factor, between 0 and 1, that makes rewards that are
earned later exponentially less valuable. The action-values
are updated through the one-stepQ-update equation [10]:

Q (xt, ut)
α←− r (xt, ut, xt+1) + γ max

ut+1
Q (xt+1, ut+1)

whereα is a learning rate (or step size), between 0 and 1, that
controls convergence.

Accurate pursuit of a moving target requires continuously
variable actuator commands, and the ability to respond to
smooth changes in state. However, the world of discourse
for most reinforcement learning algorithms is a symbolic rep-
resentation. They treat continuous variables, for example
speeds or positions, as discretised values. Discretisation does
not allow smooth control and disregards important sensed in-
formation.

We avoided the limitations of discrete state and action re-
inforcement learning by applying our continuous state and
actionQ-learning method: wire fitted neural networkQ-
learning, orWFNN. The WFNN method is based on an idea
from Baird and Klopf [11]. It combines a feedforward neural
network with a moving least squares approximator to imple-
mentQ-learning (see Fig. 2). All of the learned parameters
are stored in the neural network; the interpolator assists by
generalising between similar actions and performing struc-
tural credit assignment. The action, not only the action’s ex-
pected value, is an output from the neural network. Thus the
action can vary smoothly in response to smooth changes in
the state. The algorithm is capable of learning and selecting
actions in real-time. It also supports off-policy learning, al-
lowing learning from observation of other controllers.

The WFNN algorithm is described in detail in [12], which
also includes a description of several other continuous state
and actionQ-learning algorithms. Further methods are de-
scribed in [13–16]. The purpose of this paper is not re-
description of our learning algorithm; rather, it is to discuss
issues that affect all reinforcement learning systems.

~́ut

rt+1

~xt+1

��

~xt
//

Neural
Network

(multilayer
feedforward)

~u0,q0 //
~u1,q1 //

~ui,qi
//

//

~un,qn
//

Wire
Fitter

(interpolator)
//Q

(
~x, ~́u

)......

//____

��

state actions,
values

︸ ︷︷ ︸
estimate

ofQ

Fig. 2. Architecture of theWFNN learning system

III. E XPERIMENTAL PLATFORM: HYDRA

The experiments were performed on the HyDrA binocu-
lar active vision platform shown in Fig. 3 [17]. HyDrA is
equipped with a pair of colour NTSC cameras and has four
mechanical degrees of freedom: pan, tilt, left verge-axis, and
right verge-axis. The experiments reported here used only
the right verge-axis and the corresponding camera. The same
approach could be used for the other joints, either using one
MDOF controller, or using several independent controllers.
The right verge-axis controller could be transferred directly
for the left verge-axis joint.

Fig. 3. The HyDrA binocular active vision head

IV. EXPERIMENTAL TASK

The task was to control HyDrA to fixate on static and mov-
ing targets. The dynamics of the system and the camera pa-
rameters were unknown to the controller. The tracking targets
were a lead weight suspended with string, a target mounted on
a stick, and fixed targets attached to a backing-board. Target
tracking was performed through grey-scale template match-
ing. The target with the highest correlation with a stored tem-
plate image was chosen automatically as thecurrent target.
This can be regarded as a random selection. Once a target had
been selected, the target tracking process searched for the cur-
rent target in a small window around the current target’s last
location. Therefore, it remained fixated on one target, rather
than switching randomly between the visible targets. If the

State θ: joint angle
θ̇: joint angular velocity

x: pixels error to target
∆x: pixels velocity of target

Action θ̇′: desired joint angular velocity

Reward
∑

−
∣∣∣θ̇ − θ̇′

∣∣∣: smooth joint motion

− |x|: movement to target
− |∆x|: keep target still

Fig. 4. Task representation. All components are scaled by hand-crafted
weighting factors.

current target was lost, the tracking process searched again
over the entire view for the best matching target and selected
a new current target. The learning system measured the state
and produced actions at a rate of 15Hz. The low control rate
exacerbates the problem of lag and, consequently, facilitates
comparison of lag reduction methods.

To approach the visual servoing problem through rein-
forcement learning a state, action, and reward formulation
must be chosen. Figure 4 describes the representation and
reward function for the fixation task. The output or action of
the controller is the desired joint angular velocity. The state
representation is composed of: joint position and velocity;
and target position and velocity from the vision system. Joint
angular velocity as returned by the HyDrA system software is
a copy of the last velocity command sent; it is not measured.
The joint position was included since the joint behaves differ-
ently at the extremes of its range of rotation. Image velocity
was estimated from the position of the target in two consecu-
tive frames.

The reward is a weighted sum of negative components that
punish for coarse joint motion, error in the target’s position,
and target movement. Minimising the error in the target’s po-
sition is the main learning task. The punishment terms are
included to improve the quality of the solution by encourag-
ing smooth motion.

V. RESULTS

Initially, the robot’s motions were random and the target
was lost several times. User intervention was required to
bring the target back into view. Within a few minutes the
robot’s movements pursued the target. However, learning a
controller that was competent at both pursuing moving targets
and fixating on static targets was difficult. The controller was
always competent at some parts of the task, but not others.
More consistent results were obtained by dividing the task be-
tween two controllers: the first specialising in step movement
to a target (the static-trained controller), the second special-
ising in smooth pursuit (the swing-trained controller). Eval-
uating both of these controllers with both tasks helped us to
understand why achieving competence at both tasks simulta-
neously was difficult.

0 0.5 1 1.5 2 2.5 3
−25

−20

−15

−10

−5

0

5

10

15

Time (seconds)

P
os

iti
on

 (
de

gr
ee

s,
 o

r
pi

xe
ls

/2
0)

V
el

oc
ity

 (
de

gr
ee

s/
se

c,
 o

r
pi

xe
ls

/2
0/

se
c)

Target Position
Target Velocity
Joint Position
Joint Action

Fig. 5. Results from the static-trained controller pursuing a static target.
The joint action is the un-filtered output from the learned controller. The
target data is the error in the target object’s position and velocity based on
image data in pixels, approximately scaled to the same degrees and degrees
per second units as the joint data.

A. Training with Static Targets—
Evaluating with Static Targets

The static targets were the hand-held target and the targets
fixed to the backing-board. The controller learnt to reliably
fixate to the static targets in both directions within a few min-
utes. A graph of the response showing fixation to a newly
selected target is shown in Fig. 5.

Smoothness of joint motion was varied by adjusting the
weighting of thesmooth joint motionandpixels velocity of
targetcoarseness penalties in the reward function (see Fig. 4).

With appropriate coarseness penalties, the commanded ac-
tion changed smoothly in response to the step change in target
position. This is unlike the behaviour of a simple PID fam-
ily controller and shows that the learned controller took the
cost of acceleration into account. The learned controller ac-
celerated more quickly than it decelerated, unlike HyDrA’s
existing trapezoidal profile motion (TPM) controller [17].

The TPM controller accelerated with fixed acceleration
to a maximum ceiling velocity, coasted at that velocity,
then decelerated at a fixed rate equal to the acceleration
rate. The learned controller’s strategy of accelerating more
quickly seems practical since final positioning accuracy is
more dependent on the deceleration phase than the accelera-
tion phase. Large saccadic motions in humans also accelerate
more quickly than they decelerate [6].

B. Training with Static Targets—
Evaluating with Swinging Targets

Figures 6 and 7 show the performance of the controller
trained with static targets when pursuing a swinging target.
Learning was manually disabled during these experiments so
that the controller must perform the task based only on its
experience with static targets.

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

10

15

Time (seconds)

P
os

iti
on

 (
de

gr
ee

s,
 o

r
pi

xe
ls

/2
0)

Target Position
Joint Position
Calculated Best Joint Position

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
−15

−10

−5

0

5

10

15

Time (seconds)

P
os

iti
on

 (
de

gr
ee

s,
 o

r
pi

xe
ls

/2
0)

Target Position
Joint Position
Calculated Best Joint Position

Fig. 6. Position data from the static-trained controller following a swinging
target. The ideal target position is 0, the centre of the field of view.

0 2 4 6 8 10 12 14 16 18 20
−30

−20

−10

0

10

20

30

Time (seconds)

V
el

oc
ity

 (
de

gr
ee

s/
se

c,
 o

r
pi

xe
ls

/2
0/

se
c)

Joint Action
Target Velocity

Fig. 7. Velocity data from the static-trained controller following a swinging
target. The ideal target velocity is 0, i.e. the target’s position is stationary in
the field of view.

0 5 10 15 20 25 30 35 40
−15

−10

−5

0

5

10

15

Time (seconds)

P
os

iti
on

 (
de

gr
ee

s,
 o

r
pi

xe
ls

/2
0)

Target Position
Joint Position
Calculated Best Joint Position

30 30.5 31 31.5 32 32.5 33 33.5 34 34.5 35
−15

−10

−5

0

5

10

15

Time (seconds)

P
os

iti
on

 (
de

gr
ee

s,
 o

r
pi

xe
ls

/2
0)

Target Position
Joint Position
Calculated Best Joint Position

Fig. 8. Position data from the swing-trained controller following a swinging
target

0 5 10 15 20 25 30 35 40
−30

−20

−10

0

10

20

30

V
el

oc
ity

 (
de

gr
ee

s/
se

c,
 o

r
pi

xe
ls

/2
0/

se
c)

Time (seconds)

Joint Action
Target Velocity

Fig. 9. Velocity data from the swing-trained controller following a swinging
target

When attempting to follow smoothly moving targets there
was some lag. Lag is inevitable due to sensing and actuation
delays unless the controller can predict the movement of the
target. Figure 6 shows that the positioning error is highest at
the bottom of the swinging motion, when the target’s veloc-
ity is highest. Ideally the target position and velocity should
be maintained at zero. Using our controller there was some
variance in the target position and velocity but the bias was
small.

C. Training with Swinging Targets—
Evaluating with Swinging Targets

When trained only with swinging targets the controller
learnt to smoothly follow the target with excellent perfor-
mance within a few minutes. Figures 8 and 9 show that the
swing-trained controller eliminated the pursuit lag that was
seen with the static-trained controller. The swing-trained con-
troller had small target velocity bias, target velocity variance,
and target position variance. However, there was some bias
in the target position; the bias was largest when the target was
swung at a higher than normal velocity in a different position.
At all times the target velocity bias and variance remained
small.

D. Training with Swinging Targets—
Evaluating with Static Targets

Figure 10 shows the swing-trained controller’s behaviour
when exposed to a static target. Learning was again disabled
so that the controller must perform the task based only its ex-
perience with swinging targets. The target was held static to
the left for 17 seconds. During that time the active head failed
to purse the target and was nearly static. When the swinging
target was released the controller successfully pursued the tar-
get. The behaviour was repeatable across training sessions.

The controller rotated the camera towards the right during
the first swing, matching the target velocity rather than imme-
diately eliminating the target position bias. The target posi-
tion bias was eliminated when the target was about to swing
back. The graph shows that the joint was wiggling slightly
while the target was static. The large downward spike in tar-
get velocity was due to the release of the target. The lower
(zoomed) portion of the graph shows that the controller was
not responding to the change in target position as the target
was released; it was responding to the velocity of the target.
The upward spike in target velocity was due to an overshoot
in the joint velocity as the controller matched the velocity of
the target.

Another unexpected behaviour sometimes occurred when
a pursued swinging target was seized near the extreme of its
swing. The controller did not fixate the camera consistently
on the now still target: it moved the joint back a few de-
grees towards the central position, stopped, moved to fixate
on the target again, stopped, then repeated the process. Some-
times the controller made several of the ticking motions then

12 14 16 18 20 22 24
−20

−15

−10

−5

0

5

10

15

20
Target Position
Target Velocity
Joint Position

Time (seconds)

P
os

iti
on

 (
de

gr
ee

s,
 o

r
pi

xe
ls

/2
0)

V
el

oc
ity

 (
de

gr
ee

s/
se

c,
 o

r
pi

xe
ls

/2
0/

se
c)

target released

16 16.2 16.4 16.6 16.8 17 17.2 17.4 17.6 17.8 18
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Time (seconds)

Target Position
Target Velocity
Joint Position
Joint Action

P
os

iti
on

 (
de

gr
ee

s,
 o

r
pi

xe
ls

/2
0)

V
el

oc
ity

 (
de

gr
ee

s/
se

c,
 o

r
pi

xe
ls

/2
0/

se
c)

Fig. 10. Swing-trained controller failing to pursue a stationary target

stopped, fixated on the target. On other occasions the tick-
ing motion was repeated, interspersed by pauses of variable
length, until the target was released.

VI. D ISCUSSION

Although the static-trained and swing-trained controllers
had the same initial conditions, the learned controllers dif-
fered because the controllers were exposed to different expe-
riences. This resulted in qualitatively different behaviour. The
difference was emphasised when the controllers were applied
to tasks other than their speciality.

The static-trained controller did not accurately compensate
for the velocity of swinging targets and lagged somewhat.
Further, the bias in the target position was small, indicating
that the static-trained controller responds strongly to the tar-
get position.

The behaviour of the swing-trained controller when ex-
posed to static targets is strong evidence that the controller
is predicting target behaviour. When faced with a static

target the controller acted as if it was expecting swinging
behaviour—waiting for the target to swing towards the mid-
dle, and moving in expectation that the target will swing to-
wards the middle. Prediction of target behaviour also ex-
plains the zero-lag tracking performed by the swing-trained
controller when exposed to swinging targets.

To verify the theory, we compared the actions of the control
system to the dynamics of a pendulum model. The pendulum
model was developed based on measurement of the weight
of the target hanging on the string, the length of the string,
and the gravitational constant. Incorporating the approximate
relationship between the robot’s joint angle and the angle of
the string gives the required joint acceleration to match target
acceleration due to gravity2 :

β̈ =
βg

l

√
1−

(
βd

l

)2

(1)

Comparison of the model to the behaviour of the con-
troller does not necessarily require analysis of experimental
data gathered using the robot. It is not possible to investigate
the controller’s behaviour overmultiple time steps without a
dynamic model of the environment, but the controller’s be-
haviour over asingletime step can be extracted directly from
the controller itself by providing an appropriate state input.
In this case the state vector has joint velocity, target position,
and target velocity of zero. The joint position is the indepen-
dent variable; the dependent variable is the joint acceleration,
which is calculated from the initial joint velocity and output
joint velocity. Figure 11 shows joint acceleration for various
joint positions. It compares the output of the swing-trained
and static-trained controllers with the pendulum model and
a static object model (̈β = 0 radians/s2). The output from
the swing-trained controller resembles the pendulum model,
while the output from the static-trained controller is similar
to the static model. This evidence supports the theory that the
controllers are predicting the behaviour of the target.

We validated the theory further by investigating the situa-
tion in which a new, static target has just appeared. In this
case the state vector has joint velocity, joint position, and
target velocity set to zero. The target position is the inde-
pendent variable. As before, the dependent variable is the
joint acceleration. Figure 12 shows the output from the static-
trained and swing-trained controllers. The static-trained con-
troller moves in the direction of the target. The swing-trained
controller moves inconsistently: if the target is to the right
it moves towards the target, but if the target is to the left it
moves away! The result shows that the swing-trained con-
troller was specialised towards pursuing swinging targets and
was not capable of fixating to static targets.

2Equation (1) is an approximation, and based on rough measurements of
the pendulum string length and the distance from the camera to the target at
rest. The variables arëβ radians/s2, the joint acceleration to match target
acceleration; andβ radians, the joint angle to match pendulum angle. The
constants areg = 9.81m/s2, the acceleration due to gravity;l = 1.6m, the
length of the pendulum string; andd = 0.64m, the distance from the camera
to target at rest.

−15 −10 −5 0 5 10 15
−100

−50

0

50

100

150
Swing−Trained Action
Static−Trained Action
Pendulum Model Prediction
Static Model Prediction

Jo
in

t A
cc

el
er

at
io

n
(d

eg
re

es
/s

ec
2)

Joint Position (degrees)

Fig. 11. Actual output and model-predicted joint acceleration for both the
static-trained and swing-trained controllers. Joint velocity, target position,
and target velocity are zero.

−8 −6 −4 −2 0 2 4 6 8
−150

−100

−50

0

50

100

Target Position (approximate degrees, or pixels/20)

Jo
in

t A
cc

el
er

at
io

n
(d

eg
re

es
/s

ec
2)

Swing−Trained Action
Static−Trained Action

Fig. 12. Joint acceleration for both the static-trained and swing-trained
controllers when exposed to a static change in target position. Joint position,
joint velocity, and target velocity are zero.

The WFNN algorithm does not represent the target’s be-
haviour or the dynamics of the active-head mechanism ex-
plicitly. An explicit model would be a specific part of the sys-
tem that can be identified as a model of the target’s behaviour,
or a model of the active-head dynamics. Rather,Q-learning
systems represent behaviour and dynamicsimplicitly through
the stored action-values; reinforcement learning systems are
known as model-free.

The state representation shown in Fig. 4 makes no distinc-
tion between state variables of the robot, such as joint veloc-
ity, and state variables from the environment, such as target
position. There is no explicit connection between the actions
and the related state variables. The learning algorithm is in-
teracting with a meta-environment consisting of the robot and

its environment, in which much of the relevant state informa-
tion is unmeasured and not represented by the state vector.
However, theQ-learning algorithm assumes interaction with
a Markov environment, that is, the probability distribution of
the next-state is affected only by the execution of the action
in the current, measured state.

Consequently, the swing-trained controller learnt to predict
the acceleration of the swinging target based on the joint po-
sition (Fig. 11). Inclusion of the joint position in the state
information was necessary since the joint behaves differently
at the extremes of its rotation range. Nevertheless, predicting
target behaviour based on joint position is obviously flawed
since the model is no longer applicable if the position of the
pendulum’s anchor changes (i.e. the position at rest changes).
Learning a controller is competent both issuing swinging tar-
gets and static targets was difficult because the learning sys-
tem confounds the movement of the target with its joint move-
ment. This illustrates a flaw in the model-free learning system
paradigm: failing to separate controllable mechanisms from
uncontrollable environment can lead to learning a controller
that is fragile with respect to the behaviour of the environ-
ment.

The results could be dismissed as merely another example
of over-fitting, except that the type of over-fitting is highly
specific, and occurs due to confounding controllable mech-
anisms with the uncontrollable environment. Avoiding the
problem requires a method of specifying, or learning, the dis-
tinction.

VII. R ELATED WORK

Several other controllers for active heads have included ex-
plicit mechanisms for coping with delays by modelling their
effect and attempting to compensate [18–21]. Shibata and
Schaal’s [22] active head controller had anexplicit module
for learning target behaviour that was capable of adapting to
patterns in target movement in only a few seconds.

Human eye movements demonstrate a range of mecha-
nisms for minimising lag. Basic human eye movements in-
cludesaccades, smooth pursuit, vergence, and thevestibular-
ocular reflexes[23]. In general, the purpose of these move-
ments is to allow the gaze tofixateon a particular object. Sac-
cades are jerky eye movements that are generated by a change
of focus of attention [6]. During these fast eye movements
the target is not visible, making saccades anopen-loopmech-
anism. Saccades are based on both position and velocity so
that the saccade can compensate for the expected movement
of the target. Estimating the target velocity before the sac-
cade is generated also allows smooth pursuit to commence
immediately at approximately the correct velocity [24]. Mur-
ray et al. [21] demonstrated this capability for a non-learning
active head.

Smooth pursuit movements follow moving objects and
keep them in the centre of the field of view [25]. The eye
movement is driven by the velocity of the object, not its po-
sition [26]. Positional errors are corrected through saccades.
Smooth pursuit is closed-loop, predictive and adaptive [2].

Velocity of the target is an important part of the human gaze
control system and non-learning mechanical active and con-
trollers. Yet, many learning active head controllers do not use
velocity information—they can not make a different decision
based on whether the target is swinging towards the centre of
the view or away.

For example, Berthouze et al. [27] smooth pursuit con-
troller, based on Feedback Error Learning (FEL) [28], did not
use velocity of the target. Also, current artificial ocular-motor
map techniques for saccadic motion have not considered tar-
get velocity [29–32]. Researchers at the LiraLab developed
an integrated system, combining various biologically inspired
eye and head movement mechanisms [33]. Target velocity
was not considered, except when compensating for induced
pan movements [34].

Shibata and Schaal’s [18] controller included velocity com-
ponents as well as position components, based on a model of
the human vestibulo-ocular reflex (VOR) and optokinetic re-
flex (OKR). The VOR model included a learning component,
using FEL with an eligibility trace mechanism [35].

Reinforcement learning was applied to active head control
by Piater et al. [36]. The system controlled one degree of free-
dom, vergence movements, in which both eyes turn inward or
outward to look at an object at a particular distance [37]. Five
discrete actions were available: changes in vergence angle
between 0.1 and 5 degrees. The direction of the change was
hard-wired. States were also represented discretely, including
the positioning error. The discrete state and action representa-
tion without generalisation is ill-suited for this task. Vergence
motions were made using discrete actions in a few steps; in
contrast, human vergence motions are smooth and closed-
loop [37]. The lack of generalisation in the state and action
representations requires exploration of every possible repre-
sentable state and action. The pure-delayed reward signal was
the negative of the final positioning error. Given that this error
signal is available at all times a delayed reward statement of
the problem would probably result in faster learning. Piater
et al.’s work appears to be the only application of reinforce-
ment learning to active head control.

VIII. C ONCLUSION

Continuous state and action reinforcement learning was
successfully applied to control of an active head. The learned
controller generated precise, smoothly varying actions. Fur-
ther, the system considered the velocity of the target and per-
formed lag-free tracking of a swinging target. This was possi-
ble through implicitly predicting the target’s behaviour. Rein-
forcement learning’s ability to optimise behaviour over time
helps to compensate for sensing delays.

Extracting the implicit models through synthetic input was
a valuable technique that allowed us to gain a deeper un-
derstanding of the controller’s behaviour. The controller de-
veloped qualitatively different behaviours depending on the
learning environment. Although the lag-free tracking perfor-
mance was excellent, the controller’s solution was somewhat

fragile with respect to changes in the target’s behaviour. The
model-free approach is the source of the fragility: it makes no
distinction between controllable mechanisms and uncontrol-
lable environment.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments, Dr.
Thomas Brinsmead for assistance with the pendulum model,
and Leanne Matuszyk and Orson Sutherland for introducing
us to HyDrA.

REFERENCES

[1] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on
visual servo control,”IEEE Transactions on Robotics and Au-
tomation, vol. 12(5):pp. 651–670, 1996.

[2] R. J̈urgens, A. W. KornHuber, and W. Becker, “Prediction
and strategy in human smooth pursuit eye movements,” in
G. Lüer, U. Lass, and J. Shallo-Hoffman, eds.,Eye Move-
ment Research: Physiological and Psychological Aspects, C.
J. Hogrefe, G̈ottingen, Germany, 1988.

[3] D. L. Zhao, A. G. Lasker, and D. A. Robinson, “Interactions
of simultaneous saccadic and pursuit prediction,” inProc. of
Contemporary Ocular Motor and Vestibular Research: A Trib-
ute to David A. Robinson, pp. 171–180, 1993.

[4] R. J. Leigh and D. S. Zee, “Oculomotor disorders,” in [23].
[5] H. Collewijn, A. J. Martins, and R. M. Steinman, “Compen-

satory eye movements during active and passive head move-
ments: Fast adaption to changes in visual magnification,”Jour-
nal of Physiology, vol. 340:pp. 259–286, 1983.

[6] W. Becker, “Saccades,” in [23].
[7] R. N. Aslin, “Development of smooth pursuit in human in-

fants,” in Proc. of the Last Whole Earth Eye Movement Con-
ference, Florida, 1981.

[8] R. S. Sutton and A. G. Barto,Reinforcement Learning: An
Introduction, Bradford Books, MIT, 1998.

[9] C. Gaskett, L. Fletcher, and A. Zelinsky, “Reinforcement learn-
ing for a vision based mobile robot,” inProc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS2000), Takamatsu, Japan, 2000.

[10] C. J. C. H. Watkins and P. Dayan, “Technical note: Q learning,”
Machine Learning, vol. 8(3/4):pp. 279–292, 1992.

[11] L. C. Baird and A. H. Klopf, “Reinforcement learning with
high-dimensional, continuous actions,” Tech. Rep. WL-TR-
93-1147, Wright Laboratory, 1993.

[12] C. Gaskett, D. Wettergreen, and A. Zelinsky, “Q-learning in
continuous state and action spaces,” inProc. of the 12th Aus-
tralian Joint Conference on Artificial Intelligence, Sydney,
Australia, 1999.

[13] F. Saito and T. Fukuda, “Learning architecture for real robot
systems—extension of connectionist Q-learning for continu-
ous robot control domain,” inProc. of the International Con-
ference on Robotics and Automation (IROS’94), pp. 27–32,
1994.

[14] Y. Takahashi, M. Takeda, and M. Asada, “Continuous val-
ued Q-learning for vision-guided behavior,” inProc. of
the IEEE/SICE/RSJ International Conference on Multisensor
Fusion and Integration for Intelligent Systems, 1999.

[15] F. Maire, “Bicephal reinforcement learning,” inProc. of the 7th
International Conference on Neural Information Processing
(ICONIP-2000), Taejon, Korea, 2000.

[16] W. D. Smart and L. P. Kaelbling, “Practical reinforcement
learning in continuous spaces,” inProc. of the 17th Interna-
tional Conference on Machine Learning, 2000.

[17] O. Sutherland, S. Rougeaux, S. Abdallah, and A. Zelinsky,
“Tracking with hybrid-drive active vision,” inProc. of the Aus-
tralian Conference on Robotics and Automation (ACRA2000),
Melbourne, Australia, 2000.

[18] T. Shibata and S. Schaal, “Biomimetic gaze stabilization based
on feedback-error learning with nonparametric regression net-
works,” Neural Networks, vol. 14(2), 2001.

[19] C. Brown, “Gaze controls with interactions and delays,”IEEE
Transactions on Systems, Man, and Cybernetics, vol. 20(1):pp.
518–527, 1990.

[20] D. W. Murray, F. Du, P. F. McLauchlan, I. D. Reid, P. M.
Sharkey, and J. M. Brady, “Design of stereo heads,” in A. Blake
and A. Yuille, eds.,Active Vision, MIT Press, 1992.

[21] D. W. Murray, K. J. Bradshaw, P. F. McLauchlan, I. D.
Reid, and P. M. Sharkey, “Driving saccade to pursuit us-
ing image motion,”International Journal of Computer Vision,
vol. 16(3):pp. 205–228, 1995.

[22] T. Shibata and S. Schaal, “Biomimetic smooth pursuit based
on fast learning of the target dynamics,” inProc. of the IEEE
International Conference on Intelligent Robots and Systems
(IROS2001), 2001.

[23] R. H. S. Carpenter, ed.,Eye Movements, vol. 8 of Vision and
Visual Dysfunction, Macmillan, 1991.

[24] A. L. Yarbus,Eye Movements and Vision, Plenum Press, New
York, 1967.

[25] J. Pola and H. J. Wyatt, “Smooth pursuit: Response character-
istics, stimuli and mechanisms,” in [23].

[26] C. Rashbass, “The relationship between saccadic and smooth
tracking eye movements,”Journal of Physiology, vol. 159:pp.
338–362, 1961.

[27] L. Berthouze, S. Rougeaux, Y. Kuniyoshi, and F. Chavand, “A
learning stereo-head control system,” inProc. of the World Au-
tomation Congress/International Symposium on Robotics and
Manufacturing, France, 1996.

[28] M. Kawato, K. Furawaka, and R. Suzuki, “A hierarchical neu-
ral network model for the control and learning of voluntary
movements,”Biological Cybernetics, 1987.

[29] H. Ritter, T. Martinetz, and K. Schulten,Neural Computation
and Self-Organizing Maps: An Introduction, Addison Wesley,
1992.

[30] R. P. Rao and D. H. Ballard, “Learning saccadic eye move-
ments using multiscale spatial filters,” inProc. of Advances in
Neural Information Processing Systems 7 (NIPS94), 1994.

[31] M. Marjanovíc, B. Scassellati, and M. Williamson, “Self-
taught visually guided pointing for a humanoid robot,” in
Proc. of the Fourth International Conference on Simulation of
Adaptive Behavior, MA, 1996.

[32] M. Pagel, E. Mäel, and C. von der Malsburg, “Self calibration
of the fixation movement of a stereo camera head,”Machine
Learning, vol. 31(1-3):pp. 169–186, 1998.

[33] G. Metta, F. Panerai, R. Manzotti, and G. Sandini, “Babybot:
an artificial developing robotic agent,” inProc. of From Ani-
mals to Animats: Sixth International Conference on the Simu-
lation of Adaptive Behavior (SAB 2000), Paris, 2000.

[34] F. Panerai, G. Metta, and G.Sandini, “Learning VOR-like sta-
bilization reflexes in robots,” inProc. of the 8th European Sym-
posium on Artificial Neural Networks (ESANN 2000), Bruges,
Belgium, 2000.

[35] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike
adaptive elements that can solve difficult learning control prob-
lems,” IEEE Transactions on systems, man and cybernetics,
vol. SMC-13:pp. 834–846, 1983.

[36] J. H. Piater, R. A. Grupen, and K. Ramamritham, “Learning
real-time stereo vergence control,” inProc. of the 14th Inter-
national Symposium on Intelligent Control (ISIC ’99), 1999.

[37] S. J. Judge, “Vergence,” in [23].

