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Abstract

Reinforcement learning systems improve behaviour
based on scalar rewards from a critic. In this work
vision based behaviours, servoing and wandering, are
learned through a Q-learning method which handles
continuous states and actions. There is no require-
ment for camera calibration, an actuator model, or a
knowledgeable teacher. Learning through observing the
actions of other behaviours improves learning speed.
Experiments were performed on a mobile robot using
a real-time vision system.

1 Introduction

Collision free wandering and visual servoing are
building blocks for purposeful robot behaviours such
as foraging, target pursuit and landmark based navi-
gation. Visual servoing consists of moving some part
of a robot to a desired position using visual feedback
[15]. Wandering is an environment exploration be-
haviour [6].

In this work we demonstrate real-time learning of
wandering and servoing on a real robot. Learning
eliminates the calibration process and leads to flexi-
ble behaviour.

Reinforcement learning systems improve behaviour
by learning to act in a way that brings rewards. A con-
tinuous state and action reinforcement learning system
can generate motor commands which vary smoothly
with the measured state. We also demonstrate that
the learning system can develop through observing
other behaviours—servoing is partly learned by ob-
serving the actions of the wandering behaviour, wan-
dering is partly learned by observing the actions of the
servoing behaviour.

Figure 1: A camera view during the wandering behaviour.
Large squares represent detected obstacles.

2 Robot System Architecture

Our platform for research is a Nomad 200 with a
Sony EVI-D30 colour camera. The camera points for-
ward and downward from the robot (figure 2). The
Nomad 200 is capable of forward-backward transla-
tion and rotation.

The camera signal is processed using a Fujitsu
colour tracking vision card on-board the Nomad. The
card is capable of performing around 200, eight by
eight Sum of Absolute Difference (SAD) correlations
per frame (at a frame rate of 30Hz).

The system architecture is based on the behaviour
based system reported by Cheng and Zelinsky [6]. For
these experiments the system has been simplified to
two behaviours: wandering and target pursuit. Fig-



ure 3 shows an augmented finite state machine [4] rep-
resentation of the behaviour based system.

The purpose of the wandering behaviour is to keep
the robot moving without colliding with obstacles. In
this system free space is detected by looking for car-
pet. A grid of 5×7 correlations are performed across
the image space against a pre-loaded image of the car-
pet. The result is a matrix indicating the likelihood
that regions ahead of the robot are carpet. The cam-
era view in figure 1 shows smaller squares for regions
which are likely to be carpet.

The target pursuit behaviour performs visual ser-
voing to move the robot toward an ‘interesting’ ob-
ject. Instead of using a pre-loaded template, an ob-
ject is identified as interesting if it is not carpet but
is surrounded by carpet. When an interesting object
is identified the target pursuit behaviour dominates
and servoing to the target begins. If the target is
lost wandering resumes. Target pursuit together with
wandering create a foraging behaviour.

In [6] both wandering and visual servoing employ a
trigonometric model and a PID controller to translate
the input 2d image coordinates into resultant trans-
lational and rotational velocities. Camera calibration
is required, attitude and position relative to the floor
must be measured.

In previous work the visual servoing behaviour was
learned through reinforcement learning [7]. In this
work both the wandering and visual servoing be-
haviours are learned. The camera calibration process
is not required.

Figure 2: The Nomad 200 with colour camera.
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Figure 3: System Behaviour Model. Target pursuit domi-
nates wandering when a target has been identified. Both
behaviours use visual and motor velocity data.

3 Reinforcement Learning

A learning system is required which can form a
mapping between state, including visual information,
and actuator commands. A supervised learning ap-
proach would require a model of ‘good behaviour’ from
a teacher—performance would be limited by the abil-
ity of this teacher. Reinforcement learning requires
only a critic, that gives scalar rewards (or punish-
ments) based on behaviour. An introduction to re-
inforcement learning methods is given in [20]. Provid-
ing a critic only requires that we have some measure
of whether a task is being achieved, we do not need
to know how to achieve the task. The reward signal
need not be given immediately when an action is per-
formed, as the true effect of an action can manifest
itself after some time. Behaviour improves based on
knowledge of which actions led to rewards and pun-
ishments. In this way, both good and bad experiences
are a valuable part of the learning process. One popu-
lar reinforcement learning method, Q-learning [24], is
particularly flexible in this sense because it can learn
from actions which it did not itself suggest, such as
those from another controller, or historical data. This
ability is often called exploration-insensitivity, we pre-
fer the term policy-insensitivity.
Q-learning works by incrementally updating the ex-

pected values of actions in states. For every possible
state, every possible action is assigned a value which
is a function of both the immediate reward for tak-
ing that action and the expected reward in the future
based on the new state that is the result of taking that
action. This is expressed by the one-step Q-update
equation:

∆Q (~x, ~u) = α

[
R+ γmax

~ut+1

Q (~xt+1, ~ut+1)−Q (~x, ~u)
]

(1)



where Q is the expected value of performing action
~u in state ~x, R is the reward, α is a learning rate
which controls convergence and γ is the discount fac-
tor. The discount factor makes rewards earned ear-
lier more valuable than those received later. The Q-
values implicitly describe a controller—measure the
state, then choose the action with the highest Q.

3.1 Continuous States and Actions

Q-learning methods are best understood in the dis-
crete case in which the state and the actions are sym-
bolic rather than numerical (or continuous). Where
real sensors, and commands to motors are concerned
this leads to several problems: state aliasing, poor
scaling with the number of states and actions, poor
generalisation and coarse control. Several continuous
state and action Q-learning methods are briefly de-
scribed in our earlier work [8]. Other methods are
described in [21, 16, 3].

We use a continuous state, continuous action re-
inforcement learning algorithm based on an artificial
neural network combined with an interpolator. This
approach was investigated in simulation [9].

The combination of neural network and interpola-
tor holds the Q-values for all actions in all states. The
input to the neural network is the state (~x), the output
is a set of real valued actions (~u) and their values (~q)
which is a sample of the Q-function. The interpolator
generalises between these actions.

Baird and Klopf describe a suitable interpolation
scheme called ‘wire-fitting’ [2]. In their work they
combine the wire-fitter with a memory based rein-
forcement learning scheme, rather than a neural net-
work. The wire-fitting function is a moving least
squares interpolator, closely related to Shepard’s func-
tion [17]. Each ‘wire’ is a combination of an action
vector, ~u, and its expected value, q, which is a sample
of the Q-function. The wire-fitting function is:

Q (~x, ~u) = lim
ε→0+

∑n
i=0

qi(~x)

‖~u−~̂ui(~x)‖2+c[maxj(qj(~x))−qi(~x)]+ε∑n
i=0

1

‖~u−~̂ui(~x)‖2+c[maxj(qj(~x))−qi(~x)]+ε

(2)

where i is the wire number, n is the total number of
wires, ~x is the state vector, ~ui (~x) is the ith action vec-
tor, qi (~x) is the value of the ith action vector, ~u is the
action vector to be evaluated, c is a small smoothing
factor and ε avoids division by zero. The dimension-
ality of the action vectors ~u and ~ui is the number of
continuous variables in the action.

The wire-fitting function has several properties
which make it a useful interpolator for implement-

1. In real time, feed the state into the neural network.
Carry out the action with the highest q. Store the
resulting change in state.
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2. Calculate a new estimate of Q from the current
value, the reward and the value of the next state. This
can be done when convenient.
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3. Calculate new values of ~u and ~q to produce the new
value of Q. Train the neural network to output the new
~u and ~q. This can be done when convenient.
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Figure 4: The training procedure. Step one is done in real
time, the second and third can be done opportunistically.

ing Q-learning. Updates to the Q-value (1) require
max~uQ (~x, ~u) which can be calculated quickly with
the wire-fitting function. argmax~uQ (~x, ~u) can also
be calculated quickly. This is needed when choosing
an action to carry out. A property of this interpolator
is that the highest interpolated value always coincides
with the highest valued interpolation point, so the ac-
tion with the highest value is always one of the the in-
put actions. When choosing an action it is sufficient to
propagate the state through the neural network, then
compare the output q to find the best action. The



wire-fitter is not required at this stage, the only calcu-
lation is a forward pass through the neural network.
Wire-fitting also works with many dimensional scat-
tered data while remaining computationally tractable;
no inversion of matrices is required. Interpolation is
local, only near wires influence the value of Q. Areas
far from all wires have a value which is the average of
~q, wild extrapolations do not occur. It does not suffer
from oscillations, unlike most polynomial schemes.

Importantly, partial derivatives in terms of each
q and ~u of each point can be quickly calculated [8].
These partial derivatives allow error in the output of
theQ-function to be propagated to the neural network
according to the chain rule.

The training procedure is shown in figure 4. Train-
ing of the single hidden layer, feedforward neural net-
work is done through incremental backpropagation.
The learning rate is kept constant throughout. As sug-
gested in [24], experiences are buffered and replayed
repeatedly as if they are re-experienced.

3.2 Advantage Learning

A problem in Q-learning is that a single subopti-
mal action may not prevent a high value action from
being carried out at the next time step—the value of
actions in a particular state can be very similar, as
the value of the action in the next time step will be
carried back. As the Q-value is only approximated for
continuous states and actions it is likely that most of
the approximation power will be used representing the
values of the states rather than actions in states. The
relative values of actions will be poorly represented,
resulting in an unsatisfactory controller. This is com-
pounded as the time intervals between control actions
get smaller. The ‘state action deviation problem’ is
closely related to this problem [1].

Advantage Learning [10] addresses the issue of ac-
tion similarity by emphasising the differences in value
between the actions. In advantage learning the value
of the optimal action is the same as for Q-learning,
but the lesser value of non-optimal actions is empha-
sised by a scaling factor (k ∝ ∆t). This makes a more
efficient use of the approximation resources available.
Equation 3 is the advantage learning update. The
quantity A is analogous to Q in (1).

∆A (~x, ~u) = α[ 1
k

(
R+ γmax

~ut+1

A (~xt+1, ~ut+1)
)

+
(
1− 1

k

)
max
~ut+1

A (~xt, ~ut)−A (~x, ~u)] (3)

In our simulation experiments Advantage Learning
improved convergence speed and reliability [8].

4 Learning to Wander

The purpose of the wandering behaviour is to ex-
plore an environment without colliding with obstacles.
The hardwired algorithm uses a matrix of correlations
with a carpet template to guide the movement of the
robot: The robot moves in the direction of the longest
uninterrupted strip of carpet or rotates if no carpet is
detected [6].

We conjectured that successful wandering involves
maximising the amount of carpet in view while max-
imising forward velocity. Table 1 shows the state, ac-
tions and reward for the reinforcement learning algo-
rithm. The reward is a weighted sum of the compo-
nents shown. Carpet nearer to the robot is weighted
more heavily. Rewarding for forward movement also
punishes backward motions, this makes blind revers-
ing less desirable. The last component of the reward
signal punishes for non-smooth motion which could be
unpredictable to bystanders and eventually harm the
robot.

Wandering:

State C: carpet match matrix
t, r: translational and rotational velocity of
robot (measured by encoders)
ts, rs: smoothed trace of previous actions

Action T , R: target translational and rotational ve-
locity of robot

Reward −
∑
C · row: maximise visible carpet

+t: move forward
−{(T − t)2 + (R− r)2}: smooth motion

Table 1: Reinforcement learning specification for wander-
ing.

It is important that the state representation be as
accurate and complete as possible. Early in testing,
the velocity of the robot (measured with encoders) was
not provided as state information. Learning failed in
this case. Analysis of the data showed that because
of the restricted acceleration available, the difference
between the current and next state was negligible, be-
ing of the same order as the noise in the system. As a
result the state information was simply filtered out—
there was effectively no correlation between the com-
mand and the change in state.

It is difficult to obtain accurate data from the car-
pet matching process. Lighting varies throughout the
corridors in the test area. The walls are a similar
colour to the carpet. To increase reliability we add



the constraint that if a non-carpet region is detected
the region above it cannot be carpet (see figure 1). We
also smooth the carpet correlations with their neigh-
bours horizontally and smooth between frames. These
processing steps raise the quality of the state data to
a standard at which learning is possible.

We found that it is necessary to provide a safety
buffer during learning to prevent damage to the robot.
The infra-red ring on the the Nomad is used to veto
actions which would cause immediate collision. When
a veto occurs there is an audible warning so that we
are aware of intervention by the hardwired behaviour.
The infra-red readings are not part of the state for
the learning algorithm as this would make it unclear
whether the vision system is being used.

At the beginning of the trial the robot’s behaviour
is random, but the initialisation of the neural network
with small weights produces only slow movement. Un-
less the robot starts directly facing a wall, it quickly
learns that forward velocity brings rewards. When it
reaches a wall the robot finds that moving forward is
not always good and adapts its behaviour accordingly.
As learning continues the number of action vetoes is
reduced, they still occur when the robot encounters
an obstacle it cannot detect.

Figure 5 shows a path recorded while wandering.
At the point marked ‘start’ learning begins. Move-
ment becomes smoother and more consistent through-
out the trial.
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Figure 5: A path from a wandering experiment in an open
plan office. Several pillars and a plant pot were avoided.
Total trial time was 25 minutes, or 15637 actions. The
trial ended when the robot clipped a pillar that was not
within view and not detected by the infra-red ‘bumper’.

5 Learned Visual Servoing

Visual servoing [15] is a useful capability for ma-
nipulators and mobile robots. Visual servoing requires
the ability to track the position of some object using
vision, and to control some effector based on feedback
from the tracking.

Area correlation-based tracking is a process that
locates objects between successive frames and hence
can be used to gauge the effect of the robot’s motion
in image space. An image (template) is captured from
a particular region of the image space and stored in
a buffer. The template is then compared in the next
video frame in the neighbourhood of its location in the
previous frame. Various methods are used to measure
the degree of similarity between the images [15, 6].
The difference in location between the template in the
current frame and the best match of the template in
the next frame forms a vector which indicates the mo-
tion of the target. To track an object, a template is
captured, then starting from the original location, the
motion vectors from each successive frame are added.
Tracking failure is indicated when the measure of dif-
ference between the template and the closest match in
the current image is too great [15].

There are two basic approaches to the control part
of visual servoing: position based and image based.
Both generally require some form of calibration.

In position based systems an error signal is defined
in the robot’s coordinate system. A model describ-
ing the relationship between visual coordinates and
the robot’s coordinate system is required. It is some-
times possible to learn this model [11, 19, 18, 5]. Such
systems are suitable for servoing manipulator arms,
where joint angles define the position of an effector.

In image based systems the error signal is defined
in image space. The inverse of the image Jacobian is
used to relate desired incremental change to the im-
age to changes in actuator settings. It is possible to
learn an approximation of this Jacobian [14] but this
is complicated since it can vary with the state [25].

Our approach is to learn a direct mapping from
image space and other state information to actuator
command using reinforcement learning [7]. The same
approach has been developed independently in [21].
Our method may not be able to achieve the perfor-
mance of well calibrated systems but we certainly gain
flexibility; if the camera is bumped or moved or the ac-
tuator configuration is changed the system still works.

Table 2 shows the state, actions and reward for
the reinforcement learning algorithm for learned vi-
sual servoing. The reward function includes a term
which punishes for energy use. This helps to reduce



Visual Servoing:

State x, y: pixels error to target
∆x, ∆y: pixels velocity of target
t, r: translational and rotational velocity of
robot (measured by encoders)

Action T , R: target translational and rotational ve-
locity of robot

Reward −x2 − y2: movement to target
−T 2 −R2: saving energy
−{(T − t)2 + (R− r)2}: smooth motion

Table 2: Reinforcement learning specification for visual
servoing.

the robot’s reaction to minor changes in the target po-
sition due to tracking noise. There is no punishment
term for target velocity due to excessive noise in the
target velocity estimation process.

The robot successfully learns to servo to the tar-
get, even when the camera is misaligned. When the
camera is mounted facing straight ahead the learned
behaviour is to turn toward the target while driving
forward until the target is at the goal position. The
robot slows down as it gets closer to the target. The
robot also learns to reverse if the target is closer than
the goal location. For the misaligned camera position
the robot is often unable to turn the wheels in the di-
rection of the target without moving the target into
a worse location or losing the target completely. The
learning system instead develops a zig-zagging method
to move toward the target.

Learning from already working behaviours reduces
the period of random behaviour which would require
close supervision. In this experiment data gathered
while wandering is provided to the learning to servo
system. The wandering behaviour learns from the
actions of the servoing behaviour in the same way.
The Q-learning system’s policy-insensitivity allows it
to learn from this data.

Visual servoing performance is adequate after 15
minutes of real time, or about 1500 tracking frames.
Performance continues to improve over an hour of ex-
perimentation. The robot learns to servo to objects
placed in any position in its visual field.

6 Relation to Other Work

A non-learning vision based physically grounded
obstacle avoidance algorithm was presented in [13].

Visual servoing through reinforcement learning was
demonstrated in [23]. Learned wall avoidance in a
constructed environment with discrete actions is de-
scribed in [22]. Asada has developed several vision
based reinforcement learning systems, for example [1].
These systems have used discrete actions and adap-
tively discretised the state space. More recently a vi-
sual servoing system using reinforcement learning with
continuous states and actions was presented in [21].

7 Conclusion

We have demonstrated wandering and servoing be-
haviours on a real mobile robot that are learned
through trial and error using reinforcement learning.
A continuous state and action Q-learning system gen-
erated actions which varied smoothly with the mea-
sured state. Learning time is decreased through learn-
ing from other behaviours.

In future work we will move toward an active stereo
vision system and development of more sophisticated
behaviours.
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