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Abstract. Plants contain a variety of chemical defenses that strongly affect feeding rates in
captive mammals, but their effects on the fitness of wild herbivores are largely unknown. This
is because the complexity of defensive compounds, and herbivores’ counteradaptations to
them, make their effects in the wild difficult to measure. We show how tannins interact with
protein to produce spatial variation in the nutritional quality of eucalypt foliage, which is
related to demography in a wild population of a marsupial folivore, the common brushtail
possum (Trichosurus vulpeculaKerr). Tannins reduced the digestibility of nitrogen (N) in vitro,
creating variation in available N concentrations among the home ranges of individual possums
in an otherwise homogeneous habitat. This was strongly correlated with reproductive success:
females with better quality trees in their home range reproduced more often and had faster-
growing offspring. These results demonstrate a powerful mechanism by which spatial
variation in plant chemistry may control herbivore population dynamics in nature.
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INTRODUCTION

The nutritional value of browse to herbivores is often

compromised by the presence of plant secondary

metabolites (PSMs). These compounds may act as

toxins or feeding deterrents that reduce the palatability

of plants, or as digestibility-reducers that decrease the

availability of nutrients (Iason 2005). Experiments with

captive animals have shown that PSMs limit feeding in a

range of mammal species (e.g., Villalba et al. 2002,

Moore et al. 2005, Sorensen et al. 2005); however, their

effects have never previously been linked to variation in

fitness and demography in wild populations of mam-

malian herbivores. This is because the complexity of

defensive compounds, and herbivores’ counteradapta-

tions to them, make their effects in the wild difficult to

measure. Also, natural concentrations of these com-

pounds are normally distributed and spatially correlated

within plant species (Lawler et al. 2000, Brenes-Aguedas

and Coley 2005, Andrew et al. 2007), so animals rarely

encounter the extreme concentrations that characterize

captive studies.

Studies in forests worldwide have suggested that links

between soil fertility and plant defense can result in

patchy distributions of animals across landscapes

(McKey et al. 1978, Oates et al. 1990, Cork 1992,

Ganzhorn 1992, Bryant 2003). Thus, it is often assumed

that PSMs have fitness consequences for herbivorous

mammals, an assumption that is fundamental to ideas

about evolutionary ‘‘arms races’’ between plants and

herbivores. However, evidence for this is lacking.

Demonstrating effects of plant defensive chemicals on

the fitness of individual browsers has important

implications for understanding herbivore population

dynamics and plant–herbivore coevolution. We carried

out a study over five breeding seasons to investigate how

defensive chemistry in eucalypts impacted reproductive

success in a wild population of a marsupial folivore, the

common brushtail possum (Trichosurus vulpecula Kerr).

Common brushtail possums are small (1.5–4.5 kg),

generalist herbivores that have the widest distribution of

any of the arboreal marsupials. They inhabit a broad

range of habitat types, from tropical savannas, to the

wet sclerophyll forests of southeastern Australia, as well

as urban areas (Kerle 2001). Brushtail possums are a

solitary, nocturnally active species and their biology and

life history has been well documented, particularly with

respect to populations in northern Australia (e.g., Isaac

and Johnson 2003, Isaac 2005). Most populations

exhibit a breeding peak in the autumn, with females

producing a single young that remains in her pouch for

about five months. A second, smaller breeding peak may

occur in the spring in some populations, but not all

females breed twice per year (Kerle 2001). Common

brushtail possums incorporate varying amounts of

Eucalyptus into their diet. In the northern savannas,

eucalypt foliage is the primary dietary component,
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whereas in other habitats, possums consume a mixed

diet consisting of leaves from many plants, fruits,

flowers, and grasses (Kerle 2001).

Diet selection in captive brushtail possums is strongly

influenced by concentrations of a class of phenolic PSMs

found in many eucalypts, the formylated phloroglucinol

compounds, or FPCs (Wallis et al. 2002), but they are

also very sensitive to tannins (Marsh et al. 2003).

Eucalypts also contain terpenoids, but captive studies

have shown that they impose few detoxification costs to

brushtail possums and do not primarily influence diet

selection (McLean and Foley 1997, Lawler et al. 1999).

Tannins can bind to proteins, thereby reducing the

availability of N to herbivores (Robbins et al. 1987).

Tannins are most likely to affect the nutritional status of

animals foraging in the wild, because they are ubiqui-

tous in eucalypts (Fox and Macauley 1977). In contrast,

FPCs primarily act as feeding deterrents, influencing tree

choice by marsupial folivores (Scrivener et al. 2004,

Moore and Foley 2005). We lack studies that recognize

the impact of PSMs on nutrient availability, even

though this is the mechanism by which they are most

likely to influence herbivore fitness.

Ecologists often attempt to relate herbivore perfor-

mance to concentrations of leaf N, which is used as a

proxy for protein content (White 1993). However, the

negative effect of tannins on N availability, via protein-

binding, means that this approach greatly overestimates

the availability of N to animals. Previously, we

developed a new in vitro method that integrates

measures of the negative effects of tannins and plant

fiber to estimate the amount of N that is available to

possums, i.e., digestible N (DeGabriel et al. 2008). In

that study, we showed that concentrations of digestible

N in natural eucalypt woodlands in northern Australia

were significantly lower than total N concentrations,

and that the two measures were not correlated at a

landscape scale. However, reductions in N digestibility

were correlated with tannin concentration (DeGabriel et

al. 2008). Studies with captive animals have demon-

strated that tannins significantly reduced the digestion of

N in Eucalyptus melliodora leaves by brushtail possums

by 25.9–40.5% (Marsh et al. 2003), so we would expect

tannins to affect their performance in the wild. Similarly,

the apparent N digestibility of E. punctata (D.C.) foliage

by a eucalypt specialist, the koala, was only 45% (Cork

et al. 1983), so measuring total N is not accurately

indicative of the nutritional benefit of foliage to animals.

To test how variation in the quality of trees available

to individual female possums affected their reproductive

success, we applied our in vitro measure of digestible N

together with three other measures of foliar chemistry,

described in DeGabriel et al. (2008): polyethylene glycol

binding capacity (PEG-BC, which provides an indica-

tion of tannin activity), in vitro dry matter (DM)

digestibility, and total leaf N. We used near-infrared

reflectance spectroscopy (NIRS) to predict values of

these traits in a large number of trees within each

possum’s home range, enabling us to more accurately

describe the foraging environment encountered by wild
possums (Foley et al. 1998). We then investigated

whether variation in home range quality between
females influenced the number of offspring that they

produced and the growth rates of their offspring.

MATERIALS AND METHODS

Study site and vegetation composition

We conducted this study between October 2004 and
December 2006 at Tabletop Station, near Townsville in

the dry tropics of north Queensland (198230 S, 1468270 E;
400 m above sea level). The vegetation structure at the site

was relatively simple, consisting of open eucalypt (species
of the genera Eucalyptus and Corymbia) woodland with a

grassy understory. The dominant tree species was the
narrow-leaved red ironbark (Eucalyptus drepanophylla (F.

Muell.)), with Corymbia tessellaris (F. Muell.), E.
platyphylla (F. Muell.), E. tereticornis (Smith), C.
dallachyana (Benth.), C. erythrophloia (Blakely), and C.

intermedia (R. T. Baker) also common. Amixture of other
plant species includingMelaleuca spp., Lophostemon spp.,

Ficus rubiginosa, and Euroschinus falcata were also
present, but at relatively low abundance.

To describe the vegetation composition, we performed
four band transects, each 500 m long and 4 m wide. Along

the length of each of these, we recorded the diameter at
breast height (130 cm) and species of all woody plants and

standing dead trees greater than 5 cm dbh if their center
point fell within the bounds of the band.

Trapping protocol and determination
of female reproductive success

Common brushtail possums can breed a maximum of

twice per year, (Kerle 2001), so our study spanned five
potential breeding events. We established a trapping grid

over ;50 ha, with traps placed 50 m apart. We trapped
possums over 4–5 nights at approximately 6-week

intervals using wire cage traps, baited with a mixture of
peanut butter, oats, and flavoring essence. Upon first
capture, we permanently tagged all possums with a

subcutaneous passive integrated transponder (PIT) tag
(Trovan, Melbourne, Australia) and estimated their age

using the tooth-wear index developed for T. vulpecula by
Winter (1980). During every trapping session, we

measured the head length of each possum to the nearest
0.1 mm and recorded their body mass to the nearest 25 g.

In each trapping session we assessed the reproductive
status of females and recorded the sex and stage of

development of un-weaned juveniles. We measured the
head lengths of pouch young (PY) to the nearest 0.1 mm

and assigned them dates of birth using growth equations
developed by Isaac and Johnson (2003) for north

Queensland possum populations. As PY head growth
was linear until pouch emergence, we calculated growth

rates for PY that we had measured at least twice while in
the pouch, by dividing the change in head length by the

time interval between each measurement and averaging
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across all measurements. We scored the breeding success

of each female as the percentage of observed breeding

seasons that she successfully reared a PY to pouch

emergence. Offspring known to have died before pouch

emergence were not counted as a successful breeding

attempt. We developed an index of body condition for

populations of female brushtail possums in north

Queensland using the residuals from a semiparametric

local polynomial regression (LOESS regression) model

of body mass on head length with the software package

R (base package; R Core Development Team 2004). We

used this index to determine the body condition of

females at every capture and then averaged all predic-

tions for each female over the duration of the study.

Home range analysis

We fitted collar-mounted single-stage radio transmit-

ters (Sirtrack Wildlife Tracking Solutions, Havelock

North, New Zealand; 6 g mass) to all adult female

possums caught between November 2004 and August

2005 (n ¼ 20; mean body mass ¼ 1820 g). We radio-

tracked possums over 51 nights, divided across three

sessions (January–April 2005, October 2005, and Feb-

ruary–April 2006), to determine the trees used by

individual possums and to calculate their home ranges.

We located each collared possum at least once per night,

spacing our fixes over many hours and tracking the

possums in a different order each night to minimize bias.

We pooled the fixes from each session in order to amass

data of possum habitat use over at least one year for

each individual, collecting between 8 and 49 fixes per

female (mean ¼ 31; total ¼ 594). Upon locating each

possum, we assigned to the tree a unique number,

recorded the tree species, its diameter at 130 cm, and

whether the animal was feeding. We recorded the

locations of radio-tracking fixes to within 5 m using a

hand-held differential GPS (Garmin, GPS 72) and

averaged multiple GPS coordinates taken at each point.

We then mapped the fixes using OziExplorer GPS

mapping software (Brisbane, Australia) and ArcView

3.3 (ESRI, Redlands, California, USA). We used

minimum convex polygons to determine the 90% home

range of all females with �20 fixes after discarding the

10% of observations farthest from the harmonic mean of

locations for each individual, using the Animal Move-

ment Extension (Hooge and Eichenlaub 1997) in Arc-

View 3.3 (n ¼ 16 female possums). The aim of these

analyses was to determine the core area used for

foraging by each possum, to allow us to partition the

trees that were potentially available for it to use. This

approach allowed us to obtain a more representative

description of the foraging environment of individual

females than focusing only on trees that we had

observed possums using.

Analyses of leaf chemistry

We collected fresh leaves from all eucalypts used by

possums and the nearest paired tree of the same species

to each. We freeze-dried and ground all samples and

then analyzed PEG-BC, total leaf N concentration, and

in vitro DM and N digestibility for a subset (see the

Appendix for sample sizes), following DeGabriel et al.

(2008), to enable us to develop NIRS calibrations.

Briefly, we used radio-labeled PEG to measure the

affinity of foliage samples for PEG (PEG-binding

capacity), which provides a measure of tannin activity

(DeGabriel et al. 2008). We then carried out a two-stage

in vitro digestion of foliage using pepsin and cellulase to

mimic digestion in the animal’s gut. E. drepanophylla

samples were digested in centrifuge tubes, in both the

presence and absence of PEG, to allow us to quantify

the effects of tannins on N digestibility. The difference in

digestibility of samples digested with and without PEG

was determined to be the effect of tannins. Samples of

species from the eucalypt genus Corymbia were digested

in bulk in ANKOM filter bags without the addition of

PEG, using the simplified method described in DeGab-

riel et al. (2008). We determined the N concentration of

both the original leaf sample and the digested residue

using the Kjeldahl method and subtracted the value for

the residue from the N concentration of the leaf to

calculate what percentage of N was digested (N

digestibility). We calculated digestible N concentration

(%) by multiplying the N digestibility of leaf samples by

their total N concentration. We calculated DM digest-

ibility by subtracting the mass of the digested residue

from the initial sample mass and dividing this by the

initial mass (DeGabriel et al. 2008). Analysis of FPCs

followed the HPLC method described by Wallis and

Foley (2005).

We recorded the reflectance spectrum of each sample

between 400 and 2498 nm using an NIRSystems 6500

scanning spectrophotometer with spinning cup attach-

ment (Foss, Silver Spring, Maryland, USA), according

to Moore et al. (2004). We developed NIRS calibrations

to predict leaf N concentration, PEG-BC, N digestibil-

ity, digestible N concentration, and DM digestibility

using the software WinISI 3, version 1.50E (Infrasoft

International, Port Matilda, Pennsylvania, USA), as

described in DeGabriel et al. (2008). Summary statistics

for the final NIRS models are given in the Appendix. We

determined the average values for each of the nutritional

variables in all trees sampled within each female’s 90%

range, including both used and unused trees of all

eucalypt species. We predicted concentrations of these

traits in 598 trees, representing 23–68 trees (mean¼ 40)

across each female’s home range. We only considered

possums for which we had data for more than 20 trees (n

¼ 15). Table 1 provides details of the home ranges of

each of the female possums included in the study.

Statistical analyses

We used one-way ANOVA to test for differences

between the values of PEG-BC, digestible N, total N,

and DM digestibility in the trees sampled in each

female’s home range. We then used ordinary least
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squares (OLS) regression to test the effects of PEG-BC

and total leaf N on digestible N concentrations in the

dominant tree species, E. drepanophylla. We also used

OLS regression to test the relationship between home

range size and home range quality.

We used univariate and multivariate analyses to test

the effects of the four nutritional variables, body

condition, and maternal age and size (head length) on

breeding success. Because our data were binomial, we

used logistic regression models, incorporating a logit-

link function, with breeding success as the response

variate. Test statistics were considered significant at P �
0.05. For multivariate analyses, we used Akaike’s

information criterion, AIC (Akaike 1973), to select the

model that best described variation in breeding success.

In order to test the effects of nutritional variables and

maternal age, body condition, and size on offspring

growth rates, we used linear mixed models with PY head

growth rate as the dependent variable. Because we had

measured multiple offspring for each female, and thus

our data points were not independent, we included

mother’s identity as a random term in the models,

because we had insufficient data to perform repeated-

measures analyses. We used one-way ANOVA to

determine the effects of offspring sex on growth rates
of 14 male and 13 female PY. All analyses were

performed in GenStat, ninth edition (VSN International

2006).

RESULTS

Vegetation structure and variation in home range quality

Our vegetation transects confirmed that E. drepano-

phylla was the dominant tree species at the site,

accounting for 42.9% of the basal area measured,

followed by E. tereticornis (24.9%), Corymbia spp.

(11.8%), E. platyphylla (10.9%), and unidentified euca-

lypts and other plant species (9.5%). However, reporting

the vegetation structure in this way may greatly

overestimate the importance of E. tereticornis, as we

only recorded the presence of a single, very large tree on

our transects. Counting the number of stems of each

species per hectare indicated that E. drepanophylla was

the dominant species (55.2% of all trees), followed by

Corymbia spp. (27.6%), non-eucalypts and unidentified

species (13.6%), E. platyphylla (2.8%), and E. tereticornis

(0.8%).

Tree use by possums reflected species abundance at

the site. We observed female possums most frequently in

E. drepanophylla (61.5% of observations), followed by

Corymbia spp. (14.7%), non-eucalypts (11.4%), E.

platyphylla (7.8%), and E. tereticornis (4.6%). Of our

583 arboreal records of possums, we observed them

feeding on 48% of occasions. Similar to our observations

of tree use, we found that E. drepanophylla was the most

important dietary component (63.6%), followed by

Corymbia spp. (16.1%), E. platyphylla (8.2%), non-

eucalypts (6.4%), and E. tereticornis (5.7%).

Because 76.1% of all arboreal observations of

possums and 86% of observations of possums in

eucalypts were in E. drepanophylla and the four

Corymbia species, we restricted our analyses to these

species. These species contained no FPCs, but varied in

their PEG-BC. In addition, the two most common tree

species, E. drepanophylla and C. tessellaris, contain only

trace amounts of terpenoids (Bignell et al. 1997a, b), so

we were able to attribute any negative effects to the

activity of a single class of PSM. These tree species were

also present in the home ranges of all females. We

excluded E. tereticornis and E. platyphylla from our

analyses, as they comprised a relatively small proportion

of possums’ diets and contained varying concentrations

of FPCs, which may have confounded our results.

Furthermore, E. platyphylla is deciduous, so it was not

available as a food source year-round. Testing for

differences between home ranges of individual females

confirmed significant variation in the mean concentra-

tions of our four leaf chemistry measures (for N

digestibility, F14, 583 ¼ 4.53, P , 0.001; for DM

TABLE 1. Summary of the home ranges of the female possums (Trichosurus vulpecula) included in the study.

Possum
Home range
size (ha)

No. radio-tracking
locations

No. trees
sampled

Mean digestible
N concentration

(% DM)

Mean total
N concentration

(% DM)
Mean PEG-BC
(g/100 g DM)

Mean
DMD (%)

834F 0.83 20 23 0.390 1.021 13.723 51.511
12O4 0.51 21 25 0.372 1.203 11.318 40.232
68D1 1.96 35 29 0.420 1.033 12.406 48.033
E91A 2.32 31 31 0.413 1.135 12.034 46.375
80FC 3.49 37 35 0.348 1.058 11.928 43.887
2092 1.43 37 32 0.402 1.120 12.165 45.723
9A50 1.99 47 33 0.293 1.274 11.816 35.833
A177 0.81 37 39 0.364 1.140 11.074 41.806
D189 2.95 43 39 0.418 1.079 12.077 45.772
34F6 1.66 37 41 0.479 1.081 11.339 48.159
5B0E 3.67 34 42 0.327 1.096 12.120 41.115
7923 4.70 26 43 0.374 1.073 12.835 48.889
DD34 2.81 48 67 0.395 1.053 12.447 47.517
AA9A 2.28 45 68 0.439 1.079 12.225 48.618
7159 2.66 26 45 0.385 1.033 12.90 50.420

Note: Abbreviations are: PEG-BC, polyethylene glycol-binding capacity; DM, dry matter; DMD, dry matter digestibility.
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digestibility, F14, 583 ¼ 9.62, P , 0.001; for PEG-BC,

F14, 583¼ 4.15, P , 0.001; for total N, F14, 583¼4.67, P ,

0.001). There was no relationship between possum home

range size and any of these measures of nutritional

quality.

Univariate models showed that the digestible N

concentration of E. drepanophylla was significantly

negatively correlated with PEG-BC (r2 ¼ 0.078, F1, 544

¼ 47.0, P , 0.001) and positively correlated with total

leaf N (r2 ¼ 0.422, F1, 544 ¼ 398.3, P , 0.001). A

multivariate model containing both explanatory vari-

ables revealed that they both had a significant effect on

digestible N concentration (r2¼ 0.441, F2, 543¼ 216.28, P

, 0.001). Total N explained a greater proportion of the

variation in the model than did PEG-BC (coefficient of

multiple determination ¼ 0.402 þ 0.042 ¼ 0.444) (Sokal

and Rohlf 1995). However, concentrations of digestible

N were far more variable than were concentrations of

total N (coefficient of variation for total N ¼ 10.16%;

digestible N ¼ 30.75%) in E. drepanophylla, indicating

that total N alone does not capture the full extent of

nutritional variation that animals face. Our NIRS

predictions for N digestibility in the presence and

absence of PEG revealed that tannins reduced the N

digestibility of E. drepanophylla foliage by 7–76% (mean

¼ 36.25%).

Effects of plant chemistry on breeding success

Having demonstrated variation in the nutritional

quality of individual home ranges, we tested whether

these differences were reflected in the reproductive

performance of females. Univariate logistic regression

models showed that the likelihood of breeding increased

with increasing mean digestible N concentrations

(deviance¼ 17.82, P , 0.001, n¼ 14; Fig. 1a) and mean

DM digestibility (deviance ¼ 11.25, P , 0.001, n ¼ 14;

Fig. 1b) in the trees available to each female, but mean

total N and mean PEG-BC had no effect. Females in

better condition produced more offspring than did those

in poorer condition (deviance¼ 5.86, P¼ 0.016, n¼ 17;

Fig. 1c), but there was no effect of maternal age or size.

In multivariate analyses, the best performing model was

the one that included mean digestible N concentration

and body condition (AIC¼ 13.2). However, the models

including digestible N concentration and DM digestibil-

ity (DAIC¼ 1.9) and a combination of digestible N, DM

digestibility, and body condition (DAIC ¼ 1.5) also

received substantial support. The model including

digestible N alone was the only univariate model to

receive substantial support (DAIC ¼ 0.1).

Effects of plant chemistry on offspring growth rates

We found a significant positive relationship between

the mean digestible N concentration in trees available to

each female and the growth rates of her offspring (Wald

¼ 6.02, P ¼ 0.014, n ¼ 27; Fig. 2), although none of the

other nutritional variables had an effect. We also found

a positive relationship between mother’s head length and

FIG. 1. Relationship between breeding success of female
common brushtail possums (Trichosurus vulpecula) and (a)
mean in vitro digestible nitrogen (N) concentrations in the trees
available (P , 0.001, n¼14 breeding females), (b) mean in vitro
dry matter (DM) digestibility of foliage in trees available (P ,
0.001, n¼14 breeding females), and (c) body condition index (P
¼ 0.016, n ¼ 17 breeding females). The solid lines show the
logistic regression models. Overlapping points have been offset
for clarity. The body condition index is based on the residuals
from a semiparametric local polynomial regression (LOESS
regression) model of body mass on head length with the
software package R (base package; R Core Development Team
2004).
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PY growth (Wald ¼ 5.84, P ¼ 0.016, n ¼ 27), but no

effect of maternal age, body condition, or offspring sex.

In a multivariate model, both digestible N concentration

and maternal size were highly significant (P , 0.001).

DISCUSSION

Our study describes a new approach to measuring the

nutritional value of forests to herbivores and its

implications for animal fitness. The central finding was

that availability of in vitro digestible N, mediated by the

interaction between tannin and N concentrations, is

correlated with reproductive success in a population of

folivores. We found that seemingly subtle differences in

the availability of N between the home ranges of

individual possums predicted very large differences in

reproductive success. Our results indicate that female

possums with home ranges containing trees with greater

N availability invest more in reproduction, most likely

as a result of improved nutritional status. Furthermore,

those with access to higher concentrations of digestible

N are likely to provide more nutrition to their young,

resulting in faster growth, which translates to increased

offspring fitness. Our results suggest a link between the

combined effects of plant nutrient concentration and

chemical defense, and reproductive fitness, which is

important for explaining patterns of distribution and

abundance in a range of plant–mammal systems.

The effect of home range quality on offspring growth

rates in our model was very large, amounting to about a

40% increase in head growth over the measured range of

digestible N concentrations. Early growth of mammals

is implicated in traits such as size at maturity and future

breeding potential (Kerr et al. 2007), so these differences

could be expected to create wide variation in phenotypes

and fitness among adults, even for animals coexisting in

the same habitat, under the same environmental

conditions. In many mammal species, faster-growing

offspring are weaned earlier than others in their cohort,

conferring a lifelong advantage to these individuals

(Smith et al. 1997, Festa-Bianchet et al. 2000, Kerr et al.

2007). Not surprisingly, we also found that larger

mothers produced faster-growing young, which suggests

that the benefits that females derive from better quality

ranges are passed on to their young. Because female

possums inherit home ranges from their mothers

(Johnson et al. 2001), our results suggest that these

effects may be persistent across generations. However,

longer-term studies are necessary to reveal the precise

mechanisms by which nutritionally mediated differences

in offspring fitness impact on population dynamics over

many years.

The effect of maternal range quality on fecundity in

our model was greater still, with a fivefold difference

observed. Our models revealed that although DM

digestibility was important, digestible N concentration

was the most powerful predictor of breeding success.

Body condition was also weakly, but significantly,

correlated with breeding success, although we found

no relationship with other life history traits, such as age

or size, which further emphasizes the importance of

maternal nutrition. The result is a large skew in

reproductive output, which at the scale of foraging

ranges creates a mosaic of highly productive patches

close to unproductive ones. This suggests that some

home ranges are effectively demographic sources, where

surplus individuals can be produced. In contrast,

although there is sufficient food for possums to exist in

other areas of the site, it appears that they provide

suboptimal conditions for reproduction, which may

have important consequences for population dynamics

at a larger scale.

Ecologists recognize that foliar nutrition is likely to be

involved in regulating the distribution and abundance of

folivores, but studies that convincingly demonstrate an

effect of specific nutritional parameters are exceedingly

rare. Many have emphasized the importance of N to

animal populations (White 1993, Pettorelli et al. 2001),

but we found no effect of total N on animal

performance, despite the fact that significant variation

in N concentrations was apparent between individual

possum home ranges. Similarly, there was no relation-

ship between reproductive success and tannin concen-

trations (PEG-BC) per se. Rather, our approach

integrating the effects of tannins on N availability was

the key to unraveling the relationship between nutrition

and reproduction. We found that the digestible N

concentrations in the dominant tree species were

negatively correlated with PEG-BC and positively

correlated with total leaf N. Although total N was a

stronger predictor of digestible N than was PEG-BC,

this variable alone could not explain the observed

variation in reproductive success. This suggests that

both tannins and N do contribute to food quality, but it

is only by considering them in combination that their

effects on animal performance are revealed. Further-

more, we demonstrated that tannins were responsible for

FIG. 2. Linear mixed model of the relationship between the
head growth rates of pouch young (PY) of 13 female possums
and mean in vitro digestible nitrogen (N) concentrations in each
female’s home range (P¼ 0.014, n ¼ 27 pouch young).
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substantially reducing N availability in the dominant

tree species (up to 76%), which suggests a role for

tannins in determining overall nutritional quality. The

advantage of our approach is that by quantifying the

concentration of N that is actually available for the

animal to use, we can consider the nutritional quality of

foliage from the perspective of the animal and interpret

our results in a more ecologically meaningful way.

Using this approach, we were able to demonstrate a

strong correlation between the nutritional value of

plants and the demographic response of wild herbivores,

which until now has remained elusive. Studies of

folivorous primates have shown that protein : fiber ratios

in leaves are positively correlated with animal abun-

dance at a number of scales (Chapman et al. 2002, 2004,

Wasserman and Chapman 2003). However, the prob-

lems of measuring fiber in tannin-rich plants and the

potential biases introduced by ratios suggest that

caution should be used with this approach. Further-

more, these studies have focused on population density,

without consideration of how aspects of plant chemistry

impact on the causal mechanisms underlying population

dynamics, i.e., the reproductive rate. Many factors,

including foliar nutrition, may interact to determine

herbivore abundance (Oates et al. 1990), but we have

shown how plant chemistry affects fecundity, which is a

key determinant of population density. By considering

variation in food quality at an intermediate spatial scale,

we were able to measure the relevant demographic

parameters to reveal such effects. At a larger scale these

effects may not be clearly apparent, as they may be

obscured by predation and other density-dependent

factors.

Although our study was essentially correlative, the

strength of our results inspires confidence that the

digestible N concentrations of the tree species considered

are important determinants of reproductive success in

this possum population. The plant community structure

across the site was homogenous, with the six species

studied dominating the foraging environment of pos-

sums, and consequently comprising the majority of their

diets. We consider it unlikely that the other tree species at

the site would be critical to determining reproductive

success, as they were low in abundance and constituted a

relatively small proportion of possums’ diets. Similarly,

we are convinced that nutritional parameters are

primarily responsible for the patterns observed, because

factors such as predation risk and availability of shelter

sites were uniform across the site. The response in

maternal condition and pouch-young growth rates that

we observed suggests that it is the transfer of nutrients

from mother to offspring that determines variation in

reproductive success in this species. There remains the

possibility that fecundity and offspring growth are

simply the result of increased female fitness, which may

be genetically predetermined. However, the subtle

variation in home range quality that we observed was a

far more powerful predictor of reproductive success than

any of the life history traits measured, including size and

condition. It is also unlikely that fitter females select the

best quality home ranges and therefore gain the
nutritional benefits, as home ranges are maternally

inherited (Johnson et al. 2001).

Previous studies of captive and domesticated animals

have found that manipulating the nutritional quality of

foods significantly influences their reproductive success

(e.g., Batzli 1986, Min et al. 1999). Similarly, food
supplementation experiments have demonstrated effects

of maternal nutrient intake on life history traits and

demography in mammal species, such as squirrels

(Boutin 1990, Kerr et al. 2007). However, we have
demonstrated a relationship consistent with a strong

role for maternal nutrition in a wild population, where

animals must make complex foraging decisions among a

large number of trees that are available to them. These
findings provide a strong basis for future studies, not

only of marsupials and eucalypts, but in a wide range of

plant–mammal systems, including primates. Our ap-

proach to quantifying nutritional quality is also
appealing as it is applicable in ecosystems where other

PSMs prevail. This is because rather than simply

measuring tannin concentrations, our method incorpo-

rates the effects of other factors that may limit N

digestibility, such as cell wall constituents or other
digestibility-reducing PSMs. Our approach may explain

why mammal populations persist in some areas and not

others.

Furthermore, foliar tannin concentrations increase

and N concentrations decrease under conditions of
elevated CO2 in many plants (Lawler et al. 1997,

Kanowski 2001, Mattson et al. 2004), resulting in large

changes in digestible N. This may have strong detri-

mental effects on populations of folivorous marsupials
in the wet tropics bioregion of Australia as atmospheric

CO2 concentrations rise (Williams et al. 2003). There-

fore, our demonstration of how interactions between

tannins and N influence the population processes of
folivores may enable us to predict future patterns of

herbivore distribution.

The variation in reproductive success that we ob-

served is highly correlated with the availability of

nutritional components in plants. There is ample

evidence from this and other systems that levels of
PSMs with a defensive function vary widely both within

and between plant species, but the implications for

herbivore populations are not understood. Our results

show that the scale of this variation in eucalypts creates
ecologically significant differences between feeding

ranges of animals, which could impose strong effects

on variation in individual reproduction and survival and

ultimately determine distribution and abundance of
herbivores at a landscape scale.
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APPENDIX

A table showing near-infrared reflectance spectroscopy (NIRS) modified partial least squares regression models for predicting
foliar concentrations of polyethylene glycol (PEG)-binding component (PEG-BC), nitrogen (N), dry matter digestibility (DMD), N
digestibility, and digestible N (Ecological Archives E090-050-A1).
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