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Abstract 
 

The settling velocity of suspended particulate matter (SPM) is a key parameter controlling 

deposition processes and its accurate determination has been regarded as a top priority in 

improving numerical models of cohesive sediment transport. Because SPM occurs 

predominantly as aggregates of organic and inorganic particles in cohesive coastal systems, 

an in situ quantification of settling velocity is essential. The available techniques to measure 

the settling velocity of aggregates in the field include: Owen tubes and similar, settling 

columns equipped with optical sensors, laser systems or video cameras as well as acoustics 

and holographic systems. None of these techniques is able to directly measure the mass-

concentration of SPM or its settling velocity mass distribution in situ. 

 

In this work, a new instrument (SEDVEL – Sedimentation Velocity) was developed to 

directly and automatically measure SPM mass of cohesive sediments in situ, from which the 

mass/concentration distribution of settling velocities can be determined. This instrument 

consists of an underwater balance (resolution of 0.01 g) placed inside a settling tube, which 

directly measures the variation in time of the immersed weight of particulate matter (PM) as 

it settles on a plate located at the tube bottom under quiescent conditions. SEDVEL operates 

underwater and automatically withdraws water samples ― deployment periods of a few 

days. The design of SEDVEL and its components are described as well as the procedure 

adopted in its calibration and data analysis. Results of the assessment of the instrument 

performance in the laboratory and in the field are analysed. 

 

SEDVEL presented consistent and reproducible results when tested in the laboratory. It was 

able to reproduce the initial particles concentrations ranging from 7 to 200 mg l-1 (r2 = 0.9, p 

< 0.01) in 13 laboratory experiments. Results also suggested that some particle reflocculation 

induced by the settling column can take place for concentrations higher than 50 mg l-1. Field 

trials, carried out in Cleveland Bay at Berth 11 (Townsville Harbour, Australia) and at the 

Pier (Strand Beach, Townsville, Australia), showed that SEDVEL reproduced the general 

tendency of the measured SPM concentrations in 42 cycles of measurement (r2 = 0.65, p < 

0.01).  
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At the Pier, settling velocities presented a main mode of relatively slow-settling 

particles/flocs within 0.09 ≤ Ws < 0.5 mm s-1, and usually a second mode of 1.5 ≤ Ws < 3.0 

mm s-1. The settling dynamics at this location were mainly determined by erosion and 

deposition of sediment particles from and to the bottom close to the headland as well as by 

advection of offshore floc populations during the rising tide. At Berth 11, aggregates were 

composed mainly of microflocs of low-density and slow settling velocities (0.09 ≤ Ws < 0.12 

mm s-1). The estimated mean density of flocs, 40% smaller than the density of inorganic 

particles, represented better the settling mode measured at this site. 

 

SEDVEL constituted a novel idea for measuring settling velocities in situ, and therefore, a 

considerable amount of development, prototyping and testing was required. Compared with 

other automated instruments for measuring settling velocities in situ, SEDVEL has a 

relatively simple working principle, calibration and data analysis procedure. It is also unique 

in furnishing direct and automated in situ measurements of immersed mass and mass-

concentration of SPM. The main problems associated with the current SEDVEL version are: 

zero position drifting among the different cycles of the measurement and from its initial set-

up, possible floc break-up due to the pumping system used in the water replacement, errors 

associated with a non-homogeneous distribution of particles on the balance plate and with the 

definition of the zero position. A general assessment of SEDVEL potential limitations, and 

improvements to be achieved in future versions of the instrument, are described.   
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