Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice

Zhang, C., McFarlane, C., Lokireddy, S., Masuda, S., Ge, X., Gluckman, P.D., Sharma, M., and Kambadur, R. (2012) Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia, 55 (1). pp. 183-193.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://doi.org/10.1007/s00125-011-2304-4
 
1


Abstract

Aims/hypothesis: Although myostatin-null (Mstn −/−) mice fail to accumulate fat in adipose tissue when fed a high-fat diet (HFD), little is known about the molecular mechanism(s) behind this phenomenon. We therefore sought to identify the signalling pathways through which myostatin regulates accumulation and/or utilisation of fat.

Methods: Wild-type, Mstn −/− and wild-type mice treated with soluble activin type IIB receptor (sActRIIB) were fed a control chow diet or an HFD for 12 weeks. Changes in gene expression were measured by microarray and quantitative PCR. Histological changes in white adipose tissue were assessed together with peripheral tissue fatty acid oxidation and changes in circulating hormones following HFD feeding.

Results: Our results demonstrate that inactivation of myostatin results in reduced fat accumulation in mice on an HFD. Molecular analysis revealed that metabolic benefits, due to lack of myostatin, are mediated through at least two independent mechanisms. First, lack of myostatin increased fatty acid oxidation in peripheral tissues through induction of enzymes involved in lipolysis and in fatty acid oxidation in mitochondria. Second, inactivation of myostatin also enhanced brown adipose formation in white adipose tissue of Mstn −/− mice. Consistent with the above, treatment of HFD-fed wild-type mice with the myostatin antagonist, sActRIIB, reduced the obesity phenotype.

Conclusions/interpretation: We conclude that absence of myostatin results in enhanced peripheral tissue fatty acid oxidation and increased thermogenesis, culminating in increased fat utilisation and reduced adipose tissue mass. Taken together, our data suggest that anti-myostatin therapeutics could be beneficial in alleviating obesity.

Item ID: 52337
Item Type: Article (Research - C1)
ISSN: 1432-0428
Keywords: brown adipose tissue; COX-2; fatty acid oxidation; myostatin; PPARß; prostaglandin; sActRIIB-UCP1; white adipose tissue
Funders: Agency for Science, Technology and Research, Singapore
Date Deposited: 06 Feb 2018 04:27
FoR Codes: 06 BIOLOGICAL SCIENCES > 0601 Biochemistry and Cell Biology > 060104 Cell Metabolism @ 50%
06 BIOLOGICAL SCIENCES > 0601 Biochemistry and Cell Biology > 060111 Signal Transduction @ 50%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 60%
97 EXPANDING KNOWLEDGE > 970111 Expanding Knowledge in the Medical and Health Sciences @ 40%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page