Effects of sample size on the performance of species distribution models

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A., Elith, J., Dudik, M., Ferrier, S., Huettman, F., Leathwick, J.R., Lehmann, A., Lohamnn, L., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. Overton, J., Phillips, S.J., Richardson, K.S., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S.E., and Zimmermann, N.E. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14 (5). pp. 763-773.

[img] PDF (Published Version)
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1111/j.1472-4642.20...

Abstract

A wide range of modelling algorithms is used by ecologists, conservation practitioners, and others to predict species ranges from point locality data. Unfortunately, the amount of data available is limited for many taxa and regions, making it essential to quantify the sensitivity of these algorithms to sample size. This is the first study to address this need by rigorously evaluating a broad suite of algorithms with independent presence–absence data from multiple species and regions. We evaluated predictions from 12 algorithms for 46 species (from six different regions of the world) at three sample sizes (100, 30, and 10 records). We used data from natural history collections to run the models, and evaluated the quality of model predictions with area under the receiver operating characteristic curve (AUC). With decreasing sample size, model accuracy decreased and variability increased across species and between models. Novel modelling methods that incorporate both interactions between predictor variables and complex response shapes (i.e. GBM, MARS-INT, BRUTO) performed better than most methods at large sample sizes but not at the smallest sample sizes. Other algorithms were much less sensitive to sample size, including an algorithm based on maximum entropy (MAXENT) that had among the best predictive power across all sample sizes. Relative to other algorithms, a distance metric algorithm (DOMAIN) and a genetic algorithm (OM-GARP) had intermediate performance at the largest sample size and among the best performance at the lowest sample size. No algorithm predicted consistently well with small sample size (n < 30) and this should encourage highly conservative use of predictions based on small sample size and restrict their use to exploratory modelling.

Item ID: 5191
Item Type: Article (Refereed Research - C1)
Keywords: ecological niche model; MAXENT; model comparison; OM-GARP; sample size; species distribution model
ISSN: 1472-4642
Date Deposited: 08 Sep 2009 05:29
FoR Codes: 01 MATHEMATICAL SCIENCES > 0102 Applied Mathematics > 010202 Biological Mathematics @ 100%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 100%
Citation Count from Scopus Scopus 304
Downloads: Total: 5
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page