Robust feature extraction and reduction of mass spectrometry data for cancer classification

Pham, Tuan D., Chandramohan, Vikram, Zhou, Xiaobo, and Wong, Stephen T.C. (2006) Robust feature extraction and reduction of mass spectrometry data for cancer classification. In: Proceedings of the Sixth IEEE International Conference on Data Mining - Workshops, pp. 202-206. From: ICDMW'06 Sixth IEEE International Conference on Data Mining - Workshops, 18-22 December 2006, Hong Kong.

[img] PDF (Published Version)
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1109/ICDMW.2006.143

Abstract

Application of proteomics coupled with pattern classification techniques to discover novel biomarkers that can be used for the predictive diagnoses of several cancer diseases. However, for effective classification, the extraction of good features that can represent the identities of different classes plays the frontal critical factor for any classification problems. In addition, another major problem associated with pattern recognition is how to effectively handle a large number of features. This paper address these two frontal issues for mass spectrometry (MS) classification. We apply the theory of linear predictive coding to extract features and vector quantization to reduce the storage of the large feature space of MS data. The proposed methodology was tested using two MS-based cancer datasets and the results are promising.

Item ID: 4307
Item Type: Conference Item (Refereed Research Paper - E1)
Keywords: classification; proteomics; pattern recognition
ISBN: 0-7695-2702-7
Date Deposited: 19 Nov 2009 04:55
SEO Codes: 92 HEALTH > 9202 Health and Support Services > 920203 Diagnostic Methods @ 100%
Citation Count from Web of Science Web of Science 2
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page