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INTRODUCTION

Biogeographic information, whether about taxa,
guilds, or groups of associated organisms, is funda-
mental to human use and understanding of the envi-
ronment. Electronic resources are rapidly enhancing
the volume and diversity of information that can be

brought to bear on problems such as the identification
and protection of biodiversity, actual or potential in-
vasive species, and diagnosis and prediction of the
effects of climate change (e.g. Soberón & Peterson
2004, and references cited therein). As distributed bio-
geographical and environmental datasets become
more available and better integrated, the need for
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ABSTRACT: We demonstrate the KGSMapper (Kansas Geological Survey Mapper), a straight-
forward, web-based biogeographic tool that uses environmental conditions of places where members
of a taxon are known to occur to find other places containing suitable habitat for them. Using occur-
rence data for anemonefishes or their host sea anemones, and data for environmental parameters, we
generated maps of suitable habitat for the organisms. The fact that the fishes are obligate symbionts
of the anemones allowed us to validate the KGSMapper output: we were able to compare the inferred
occurrence of the organism to that of the actual occurrence of its symbiont. Characterizing suitable
habitat for these organisms in the Indo-West Pacific, the region where they naturally occur, can be
used to guide conservation efforts, field work, etc.; defining suitable habitat for them in the Atlantic
and eastern Pacific is relevant to identifying areas vulnerable to biological invasions. We advocate
distinguishing between these 2 sorts of model output, terming the former maps of realized habitat
and the latter maps of potential habitat. Creation of a niche model requires adding biotic data to the
environmental data used for habitat maps: we included data on fish occurrences to infer anemone
distribution and vice versa. Altering the selection of environmental variables allowed us to investi-
gate which variables may exert the most influence on organism distribution. Adding variables does
not necessarily improve precision of the model output. KGSMapper output distinguishes areas that
fall within 1 standard deviation (SD) of the mean environmental variable values for places where
members of the taxon occur, within 2 SD, and within the entire range of values; eliminating outliers
or data known to be imprecise or inaccurate improved output precision mainly in the 2 SD range and
beyond. Thus, KGSMapper is robust in the face of questionable data, offering the user a way to rec-
ognize and clean such data. It also functions well with sparse datasets. These features make it useful
for biogeographic meta-analyses with the diverse, distributed datasets that are typical for marine
organisms lacking direct commercial value.
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simple but flexible tools to exploit them will grow, and
the outputs will be extended to more uses. It is vital to
understand the nature of the data and the uses to
which tools and their outputs can appropriately be put.
In this proof of concept study, we explore some charac-
teristics of mapping tools and their output.

The most fundamental biogeographic data concern
organism distribution. One convention for depicting
distribution is plotting known occurrences as dots
(points) on a map. With rare exceptions, these dots are
not intended to represent the entire distribution of the
taxon in question. A range map is commonly derived
from such a dot map, the outermost bounds of a poly-
gon which represents the taxon’s distribution connect-
ing the most peripheral dots of the taxon’s known
occurrence or the points at which organism density
falls below a particular threshold (e.g. MacArthur
1972). Such a polygon commonly overestimates the
taxon’s range. In the marine realm, the range of a
shallow-water species occurring throughout the tropi-
cal Pacific would cover the entire tropical Pacific
Ocean, including the deep water between islands (as
in e.g. Fautin & Allen 1992). A more ecologically
realistic approach is to correlate actual occurrences
with physical, chemical, or biological data (e.g. Mac-
Arthur 1972), so, for example, a shallow marine species
would be depicted as occurring only around land
masses or on banks and shoals.

Thus, more than a collection of geographic coordi-
nates, a range is a manifestation of characteristics of
the habitat (biotic and abiotic) that limit or support
the organism of interest. A range is inherently a
large-scale concept based on observed occurrences;
however, range analysis does not necessarily predict
organism presence at any specific point. We illustrate
some alternative approaches to modeling and under-
standing habitat distributions for marine organisms by
analyzing data from 3 databases with the KGSMapper
(Kansas Geological Survey Mapper), an application for
interactive analysis of georeferenced occurrence
records of marine organisms with gridded environ-
mental data. It is one of a class of electronic tools that,
by making it progressively easier to develop correla-
tive analyses from occurrence and environmental data,
are rapidly supplanting traditional approaches to inter-
pretive mapping, which tend to be tedious and difficult
to replicate. We discuss some issues in evaluating
these sorts of analyses. Computer tools and databases
cannot substitute completely for knowledge and judg-
ment, however, and the tool we discuss provides ways
in which the investigator can interact with and modify
the datasets used in order to explore or test hypotheses
and tune the nature of the output to the question of
interest, rather than simply generating a ‘hard-wired’
occurrence prediction.

Applications such as WhyWhere (http://biodi.sdsc.
edu/ww_home.html) and GARP (www.lifemapper.org/
desktopgarp/, http://biodi.sdsc.edu/Doc/GARP/Manual/
manual.html), which offer computationally sophisti-
cated approaches to associating environmental and
occurrence data (e.g. genetic algorithms), provide
the user limited control over datasets and particularly
data processing. Tools such as BIOCLIM (http://
cres.anu.edu.au/outputs/anuclim/doc/bioclim.html) are
confined to or work best in terrestrial habitats. No
single approach will be optimal for all questions, or for
the needs of all potential users (Fielding & Bell 1997;
compare assessments of GARP by Beauvais et al. 2004,
Drake & Bossenbroek 2004); in making a choice, con-
sideration must be given to types, scale, quality, and
quantity of data available, questions to be addressed,
and verifiability of the product (e.g. Fielding & Bell
1997, Manel et al. 2001, Beauvais et al. 2004, Drake
& Bossenbroek 2004).

We investigated the issues listed below by generat-
ing probabilistic maps of potential habitat occurrence,
depicting large-scale areas suitable for survival of these
organisms, not organism presence–absence inferences.
We used the KGSMapper to analyze the occurrence
of habitat suitable for anemonefishes (which may be
referred to as clownfishes) and their host sea ane-
mones. The fact that the fishes are obligate symbionts
of the anemones (although individual anemones may
be found without anemonefish) make this an ideal test
case for validating model output: we did not have to go
to the field to determine if the organism occurs where
we inferred it would, but could compare the inferred
occurrence of suitable habitat for the organism to that
of the actual occurrence of its symbiont. It is also ideal
as a test case in being typical of datasets available for
non-fisheries marine species. We discuss model out-
puts, often termed range, habitat, and niche predic-
tions. Such outputs are commonly used within the nat-
ural range of a taxon to guide field work, conservation
efforts, etc., and outside the natural range to identify
areas vulnerable to biological invasion.

1. Sampling issues. Datasets for a diversity of envi-
ronmental parameters may be available. The outcome
of occurrence predictions or range inferences will be
affected by which variables are selected, and how.
True niche models (e.g. Peterson 2001, Raxworthy et
al. 2003, Soberón & Peterson 2004) must include
parameters of the biotic environment beyond strictly
habitat characteristics.

2. Data quality. Models must be robust in the pres-
ence of questionable or erroneous data points. Particu-
larly for meta-analyses, which use datasets from a vari-
ety of sources, the data are likely to vary in accuracy,
precision, and resolution, making it unlikely that data
quality will uniformly meet the desired standards of
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any individual user or application. Therefore, tools are
needed for evaluating and/or cleaning datasets when
there is a basis for doing so, and the criteria for these
actions must be clear.

3. Data quantity. The effect of the number of data on
inferences is vital to recognize (e.g. Stockwell & Peter-
son 2002). A common use of modeling is to infer the
biogeographic range of a taxon for which the docu-
mented occurrence records almost certainly fall far
short of encompassing the actual range. This situation
is extremely common for marine invertebrates, partic-
ularly for analyses at the species level, but is by no
means restricted to them (e.g. Beauvais et al. 2004).
Models can provide insight into the areas in which
data will be most economical or efficient to sample in
order to verify the true extent of the range.

4. Validating or testing results. Assessing predictions
or inferences is a desideratum (Fielding & Bell 1997)
in this, as in any hypothesis-testing. The end-
members on the predictive continuum are a broad-
brush approach that minimizes errors of omission and
a focused approach that minimizes errors of commis-
sion (Fielding & Bell 1997, Anderson et al. 2003). In
dealing with the continuum of quality and/or extent
inherent in habitat assessment at large spatial scales,
omission and commission are not binary no–yes
choices, as is typically the case in dealing with pres-
ence–absence of organisms; different tests and criteria
are called for.

5. Identifying controlling factors. Drake & Bossen-
broek (2004, p. 939–940) appealed to scientists to
‘develop methods to identify the factors that causally
determine species range, and not simply make predic-
tions based on correlations.’ Characteristics of a taxon’s
range or physiology may suggest that particular envi-
ronmental parameters control its occurrence.

DATA AND METHODS

Data sources and organisms. The organism distribu-
tion data for both taxa are georeferenced point occur-
rences; the third dataset includes gridded coverages
of environmental parameters. Having come from 3
proximate providers, all of which compiled data from
multiple ultimate sources, our data are unlikely to be
homogeneous in quality and scale.

Anemonefishes, which are widespread in the tropi-
cal and subtropical Indo–West Pacific but are absent
from the eastern Pacific and the Atlantic, occur in
nature only with sea anemones of 10 species belonging
to 5 genera in 3 families; the fish population is limited
by the number of suitable hosts (Fautin & Allen 1992).
Anemonefishes belong to 2 genera (Amphiprion, with
25 species, and Premnas, with 1) in a single subfamily,

and vary in host specificity, some associating with only
1 species of host, but most occurring with multiple
hosts (Fautin & Allen 1992). Because all host anemones
possess photosymbionts, they and their fish symbionts
occur only in shallow water (Dunn 1981), typically in
waters less than 100 m deep. The distribution of these
animals, therefore, is constrained both environmen-
tally and biologically.

In a first approximation, the 10 species of anemones
are ecologically similar, and the 26 species of fishes
are likewise similar; this allows us to use as our units
of taxonomic analysis all host anemones and all
anemonefishes. We extracted occurrence data for the
anemones from the online resource ‘Biogeoinformatics
of Hexacorals’ (www.kgs.ku.edu/Hexacoral; hereafter
referred to as ‘Hexacoral’). In the biological database
of Hexacoral, which was assembled from the published
literature, all names used to refer to a single species
are linked, and names that have been applied to more
than 1 species are distinguished. Anemonefish occur-
rence data were downloaded from FishBase (www.
fishbase.org), which has been assembled from pub-
lished records, museum catalogs, and other sources.

The environmental data, also served from Hexa-
coral, were assembled from public-domain datasets
(sources identified in the metadata associated with
each dataset) that are global in coverage. Data were
gridded in a register at 0.5° resolution (~55 km per side
at the equator), which is a typical resolution for global
environmental datasets. Datasets with native resolu-
tions other than 0.5° were sampled or aggregated to
conform to the grid; for a variable with a native resolu-
tion finer than 0.5° (such as the 2’ ETOPO2 bathy-
metry), within-cell variability and extremes were cal-
culated. Most values are annual or monthly averages.
Of the >200 datasets in Hexacoral, 13 especially rele-
vant to anemonefishes and their hosts are currently
available for use with KGSMapper; future versions will
make the other datasets accessible. In addition to limi-
tations imposed by the size of grid cells, a significant
caveat is that the marine datasets used to generate
many of the variables typically fail to represent much
of the temporal and spatial variability in nearshore
environments.

Tools and analytical procedures. KGSMapper is
an interactive web-based mapping tool that permits
a user to create maps of inferred distribution in a
straightforward manner. The basic calculations can be
done in a spreadsheet, although much of the power of
KGSMapper derives from its ability to display and
manipulate the data in a Geographical Information
System (GIS) environment. Its flexibility allows a user
to select approaches relevant to the goals of the study
and to apply expert judgment in editing datasets. It
currently uses a tightly integrated environmental data-
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base and front end (Oracle 9i RDBMS with Cold
Fusion) with, on the server side, ArcIMS web-mapping
software (www.esri.com/software/arcgis/arcims/index.
html). Occurrence records are plotted in real time on
a map through an XML-coded data structure based on
the Ocean Biogeographic Information System (OBIS)
schema, an extension of Darwin Core 2 (http://iobis.
org/obis/obis.xsd). KGSMapper and its associated
environmental data are freely available; it is opera-
tional through the Hexacoral website (above), the
OBIS website (www.iobis.org), and those of some OBIS
partners (e.g. CephBase: www.cephbase.org; Fish-
Base: above).

In our analyses, locality records are the 0.5° grid cells
containing organism occurrences. Thus, the number of
occurrences may not equal the number of locality
records in the dataset. Cells with 1 or multiple occur-
rences are indistinguishable in our analyses — a single
occurrence serves to qualify a cell and its environmen-
tal variable values as habitat. Conversely, for an occur-
rence falling on a cell boundary between 2 or among
4 cells, all cells are included in the analysis.

The version of KGSMapper used for this study
(http://hercules.kgs.ku.edu/website/specimen_mapper)
currently interacts only with the data discussed here.
Table 1 summarizes the features of the KGSMapper.
Fig. 1 shows the KGSMapper web page; its functions
and features are described below, and in the figure
caption. KGSMapper plots organism occurrences and
provides summary values of 52 environmental vari-
ables for all cells in which there is at least 1 occurrence
record. Our tests were constrained by the variables
available from the main database, and by inherent
resolution limitations of working at global scales
with primarily marine parameters. These are practical
matters—neither is constrained in theory.

Inferences of where suitable habitat occurs for
members of the taxon are based on the environment
of places where they are known to occur. The user
selects the variables by checking the relevant boxes
under ‘Use to Find Similar Areas’ (Fig. 1, Panel f).
When the user selects ‘Update Map,’ KGSMapper
builds and executes a query to find the 0.5° cells hav-
ing all values within 1 standard deviation (SD) of the
means of the environmental variables at the occur-
rence locations, those within 2 SD, and those within
the total value range for all selected variables. The
results, displayed as an interactive map (Fig. 1), are
also available as tabulated statistics (by clicking a
link in Fig. 1, Panel c). For 0.5° cells to be classed as
within 1 SD, depicted as dull red on the map, all the
selected variables must be within 1 SD of the mean of
the values of the same variable in cells containing
occurrence records. Orange signifies cells in which
the value for all selected variables falls within 2 SD of

the mean of the values for the selected variable(s), but
at least 1 falls beyond 1 SD, and yellow signifies cells
beyond 2 SD to the full range of the values known
(‘outliers’). This probabilistic approach is appropriate
in dealing with habitat, which is a continuum from
favorable to marginal. It also allows a user to focus
attention where habitat or data are optimal, by recal-
culating a map that eliminates those original cells that
have values in the outlier region or beyond 1 SD. This
is done by selecting, respectively, the ‘Remove All
Cells Outside 2 Std. Deviation ranges from cart’ or
‘Remove All Cells Outside 1 Std. Deviation ranges
from cart’ options that appear at the bottom of the
statistics pop-up page.
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Table 1. Features of the KGSMapper tool used for analyses
reported here. Last 3 points refer to features still under 

development

Features

01. Dynamic mapping of selected 
occurrences

02. Selectable map background
03. Data point identification with link

to source database
04. Short list of selectable environmental 

variables
05. Viewable environmental variable 

metadata
06. Viewable distribution histogram of 

individual environmental variables 
for selected occurrences

07. Correlation matrix of environmental 
variables for selected occurrences

08. Pairwise scatterplots of environmental 
variables for selected occurrences

09. Map zoom controls region of 
analysis, occurrences selected

10. Environmental data table reflects 
selected locations

11. Range localities classified within 
1 SD, 2 SD, and total range of 
selected environmental variables

12. Downloadable file of occurrences
13. Downloadable shape file of inferred areas
14. Downloadable table of relationships 

among occurrences, sample cells, 
and inferred areas

15. Downloadable table of cell IDs for 
all areas in analysis

16. Eliminating individual records from 
working dataset

17. Limiting maximum and/or minimum 
values for environmental variables

18. Comparing or combining 2 datasets
19. Ability to use a random 50% of 

locations, tested with others
20. User can save and return to a 

modified dataset
21. User can upload an independent 

dataset for analysis



Fig. 1. KGSMapper page: the inferred range displayed is based on anemone distributions, maximum monthly sea-surface temper-
ature (SST), and minimum depth value for the grid cells containing anemone occurrences (checked in boxes below map). (a) Zoom
and pan controls on top line select region and scale. Clicking a point with ‘Specimen data’ activated produces a pop-up window
containing species name(s) and coordinates, values for environmental variables in each cell in the selected area, summary of envi-
ronmental statistics for all cells containing an occurrence record, and the option of removing the point from the analysis. Second
line selects sample points displayed. Third line selects sample set of cells used. Fourth line randomly selects ~50% of one or both
datasets to make a range inference to be tested with the remaining cells. (b) Map shows both datasets with localities distinguished
by color of points (purple: sea anemones; green: anemonefishes) and inferred distribution of suitable habitat based on the selected
environmental variables (below). Cells in areas colored dull red have values for all variables used for the inference within 1 SD of
their means in the record-containing cells, orange is for cells between 1 and 2 SD, and yellow is for the rest of the total range. (c)
Links below map provide a download of shapefiles for the areas, a table of statistics of occurrences in both datasets relative to the
cells in each range class, or a set of tables of the grid cell identifiers for the cells in each SD category by record contents. (d) Link
from the variable name brings up a histogram showing distribution of values and statistics for variable values from the selected lo-
cations. Environmental parameters are SST (monthly mean, maximum, minimum, and range), salinity (annual averages, and
monthly minimum and maximum), average windspeed, depth (based on ETOPO2 bathymetry: minimum, maximum, and mean),
average chlorophyll a concentration, and average tidal amplitude. (e) Statistics for each variable reflect the dataset selected by the
map display (Panel b). (f) Check boxes for selecting variables with which to ‘update map’ and infer ranges. (g) Check boxes for en-
tering minimum and/or maximum values to restrict the locations selected. Bottom line: link displays a correlation matrix (Table 2)
showing linear regression coefficients for each pair of environmental variables, based on values selected in the map display. 
Values for the correlation coefficients in the matrix cells are linked dynamically to scatterplots of the selected values of each pair

of variables. Quality of Figs. 1 to 4 corresponds to that of the images on the computer screen
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The menu bar at the top of the page (Fig. 1) provides
links to other parts of the site and 2 editing functions.
‘Add Specimen’ permits a user to augment the occur-
rence dataset; the ‘Edit Cart’ link allows a user to elim-
inate entries from the list of occurrences. The user can
also review and edit individual location records with
‘Specimen Data’ (Fig. 1, Area a). The link ‘Next Step’
takes the user to the menu of all 200+ environmental
datasets in Hexacoral — these currently do not other-
wise interact with KGSMapper, but a later version will
allow a user to select from all datasets. The 2 right-hand
columns (Fig. 1, Area g) allow the user to select upper
and lower limits for environmental data, eliminating
cells with values outside a specified interval from the
analysis. Statistical analyses of both the variables and
the inferred ranges can be viewed and downloaded, as
can lists of cell IDs and ESRI shapefiles (Fig. 1, Area c).
The KGSMapper, which can show 2 groups of taxa con-
currently, provides the option to choose which taxa will
be displayed (fish, anemones, or both) and/or used as
the basis for the range inference (Fig. 1, Area a). In ad-
dition, the user can withhold a random selection of
~50% of the records for either dataset or for both
datasets, infer a range with the remaining half, and test
the product using the withheld records (Fig. 1, Area a).

Because organism occurrences are points (which de-
fine the 0.5° cells of analysis), not coverages, inferring
the distribution of the habitat suitable for 1 taxon based
on distribution records for another differs from in-
ferences using environmental data. Only qualitative
matches are possible using maps. A quantitative assess-
ment can be made by determining the number of cells
inferred to contain suitable habitat for 1 taxon, based
on occurrence records for that taxon, then determining
the proportion of known occurrences for the other
taxon falling within those cells.

Analyses. We considered the effects of various
aspects of the data on model outcome, addressing the
issues we raised in the ‘Introduction’.

Selection and effects of environmental variables
(Issues 1 and 5, see ‘Introduction’). We investigated
which variables can explain occurrence of the subjects
and, if a selection is to be made among them, the basis
for choice. We tested 5 variables individually and com-
bined into 4 groups (below). Some of these are known
to affect occurrence of anemonefishes and their sea
anemone hosts (sea-surface temperature [SST], depth,
salinity); others (tidal amplitude and productivity, for
which chlorophyll a concentration is a proxy) were
tested to determine if they might have an effect.
We also examined alternative parameters (maximum,
minimum, and mean) of some variables (results not
reported); minimum SST was chosen because the
restriction of the animals to the tropics makes it likely
that minimum temperature limits their distribution
more than mean or maximum. The correlation matrix
(Table 2) assesses the degree to which environmental
variables covary within the region selected; this tool
permits the investigator to explore the effects of spatial
auto-correlation and covariance between variables, in
order to help guide variable selection for the question
being addressed. The strongest correlations among
variables used in this study are within the variants of
SST, salinity, and depth; only 1 from each category was
used. For example, as might be expected, maximum
and mean SST are highly correlated (but minimum
SST is less so).

The following groups were selected to determine the
effect on output of a number of variables: (1) minimum
SST and minimum depth, (2) as Group 1 plus minimum
salinity, (3) as Group 2 plus average chlorophyll a con-
centration, and (4) as Group 3 plus tidal amplitude.
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Table 2. Correlation matrix of variables for the datapoints associated with fishes and anemones as it appears on screen.
1A: SST_mean_monthly; 1B: SST_min_max_range; 1C: SST_max_month; 1D: SST_min_month; 2A: Salinity_ann_avg; 2B: Salinity_
max_month; 2C: Salinity_min_month; 3: Windspeed_avg; 4A: ETOPO2_bathy_min; 4B: ETOPO2_bathy_max; 4C: ETOPO2_bathy_mean; 

5: CHLORA_avg_spatial (CHLORA: chlorophyll a concentration); 6: Tides_AVG.MA (Tides, Average Maximum Amplitude)

1A 1B 1C 1D 2A 2B 2C 3 4A 4B 4C 5 6

1A 1 –0.7148 0.791 –0.9466 –0.4480 –0.3571 –0.2782 –0.7030 –0.1105 –0.0228 –0.0329 –0.0153 –0.0916
1B –0.7148 1 –0.1629 –0.8921 –0.4939 0.486 –0.1148 0.560 –0.0222 –0.2255 –0.1698 –0.2258 0.1446
1C –0.7910 –0.1629 1 –0.5912 –0.2069 –0.0804 –0.3012 –0.4896 –0.1770 –0.1759 –0.1977 –0.2008 –0.0183
1D –0.9466 –0.8921 –0.5912 1 –0.4985 –0.4341 –0.2317 –0.6907 –0.0629 –0.1038 –0.0482 –0.0905 –0.1266
2A –0.4480 –0.4939 –0.2069 –0.4985 1 –0.9494 –0.4293 0.3026 –0.0345 –0.0938 –0.0872 –0.2220 –0.1283
2B –0.3571 –0.4860 –0.0804 –0.4341 –0.9494 1 –0.1772 0.1744 –0.0178 –0.0235 –0.0157 –0.0775 –0.1416
2C –0.2782 –0.1148 –0.3012 –0.2317 –0.4293 –0.1772 1 0.3792 –0.1102 –0.2677 –0.2382 –0.3460 0.0042
3 –0.7030 –0.5600 –0.4896 –0.6907 –0.3026 –0.1744 –0.3792 1 –0.1233 –0.1369 –0.1718 –0.2946 –0.0884
4A –0.1105 –0.0222 –0.1770 –0.0629 –0.0345 –0.0178 –0.1102 0.1233 1 –0.5028 –0.7361 –0.2887 –0.1417
4B –0.0228 –0.2255 –0.1759 –0.1038 –0.0938 –0.0235 –0.2677 0.1369 –0.5028 1 –0.9033 –0.6949 –0.2789
4C –0.0329 –0.1698 –0.1977 –0.0482 –0.0872 –0.0157 –0.2382 0.1718 –0.7361 –0.9033 1 –0.6195 –0.2404
5 –0.0153 –0.2258 –0.2008 –0.0905 –0.2220 –0.0775 –0.3460 –0.2946 –0.2887 –0.6949 –0.6195 1 0.3395
6 –0.0916 –0.1446 –0.0183 –0.1266 –0.1283 –0.1416 –0.0042 –0.0884 –0.1417 –0.2789 –0.2404 –0.3395 1



Guinotte et al.: Modeling habitat distribution

Uncertain data quality (Issue 2). Both organism
datasets contain locations known to be inaccurate (of
course, we cannot know if there are additional inaccu-
rate locations). Inaccurate locations can sometimes be
identified by their associated depth; because the ane-
monefishes are constrained to live within the photic
zone (operationally to ~100 m) by the photosymbionts of
the host anemones, depths greater than 100 m strongly
suggest an erroneous location. We inferred potential
habitats of both fish and anemones, with and without
eliminating cells, at minimum depths of >100 m.

Validating or testing range inferences (Issue 4),
including making inferences about the effects of data
quantity (Issue 3). We compared the outcomes of infer-
ring habitat of each taxon based on records of another,
and inferring the habitat of each taxon based on ~50%
of the records for a taxon selected randomly by the
KGSMapper tool. We also demonstrated the effects of
eliminating from the initial dataset points in cells with
values for environmental parameters >1 SD and >2 SD.

In this case study dealing with the continuum of qual-
ity and/or extent inherent in habitat assessment,
KGSMapper output ranks probability of matching habi-
tat characteristics rather than a dichotomous occurrence
or not of organisms; for this reason and because assess-
ment of known absences at the scales used (global ex-
tents and ~2500 km2 grid cells) are impractical, output
cannot be evaluated by confusion matrix measures
(Fielding & Bell 1997, Manel et al. 2001). We evaluated
output by what we term ‘effectiveness’ and ‘efficiency,’
assessing the distribution of cells among the intervals 0
to 1 SD, >1 to 2 SD, and >2 SD. The assumption, as in
most habitat models, is that the distribution of cells in-
ferred to contain suitable habitat will reflect that of oc-
currence-containing cells. For each interval i, the num-
ber of cells containing an occurrence is ai, and the
number of cells within the range is ni. aT is the total num-
ber of cells containing an occurrence record over nT

(the total of cells over all ni). ‘Effectiveness’ is the ratio
ai/aT—for each interval, the fraction of occurrences con-
tained within the cells of that interval; a high value indi-

cates inclusiveness or relative lack of false negatives.
‘Efficiency’ is the fraction of total occurrences per area
(number of cells) inferred; we use the ratio (ai/aT)/ni. This
represents the density of positive occurrences; increas-
ing values indicate a decrease in false positives. Effec-
tiveness and efficiency, which are related but not identi-
cal to the confusion matrix measures of predictive power,
sensitivity and prevalence, function within a run of the
model; effectiveness minimizes errors of omission, and
efficiency minimizes errors of commission. The data se-
lection and editing tools permit the ratio of efficiency to
effectiveness to be adjusted according to the questions
and data of interest; like the output itself, evaluation of
the results will necessarily be application specific.

RESULTS

Environmental variables

For each set of environmental variables, we did 3
analyses, 1 for each group of organisms individually and
1 for the 2 together. We illustrate examples of inferring
the distribution of suitable habitat for each combination.
Of datasets in the KGSMapper, the parameters of
chlorophyll a concentration (Fig. 2a), minimum salinity
(Fig. 2b), and tidal amplitude and wind speed (not
shown) did not discriminate suitable habitat at the geo-
graphic scale of this analysis. Combinations of 2 or more
of these variables provided no more resolution than any
single variable analyzed individually. SST discriminated
best for the habitat of these organisms latitudinally, with
results differing somewhat depending on the parameter
used (compare Fig. 2c,d for maximum and minimum
monthly SST, respectively). Two approaches were tried
to consider depth, which also restricts distribution of these
animals: Fig. 2e resulted from using occurrence data
alone, whereas Fig. 2f excluded the cells with minimum
depths of >100 m. The number of cells inferred to contain
suitable habitat (total range) was reduced by >85% as a
result of editing for depth (Table 3, Fig. 2e,f). The outlier
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Table 3. Inferences of suitable habitat using minimum SST and minimum depth as environmental variables, and occurrence data.
Edited inferences (right-hand column for each taxon) used only records in cells in which minimum depth was <100 m. The line
‘0–2 SD’ is the total of the preceding 2 lines. Ctot: total number of cells inferred to contain suitable habitat; Crec: number of 

record-containing cells; Rec: number of occurrence records; n = 641 for anemones; n = 1937 for fish

Anemones Fish
Unedited Minimum depth <100 m Unedited Minimum depth <100 m

Ctot Crec Rec Ctot Crec Rec Ctot Crec Rec Ctot Crec Rec

0–1 SD 6187 261 385 5331 244 385 7661 250 1281 4791 221 1211
1–2 SD 3450 103 207 1853 90 188 9150 119 538 1719 88 492
0–2 SD 9637 364 592 7184 334 573 16811 369 1819 6510 309 1703
>2 SD 49142 63 35 915 6 30 39379 58 107 731 27 20

Total range 58779 427 627 8099 340 603 56190 427 1926 7241 336 1723
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category (>2 SD) was most heavily affected for ane-
mones; editing reduced the number of 0 to 1 SD cells
by 14% and of 0 to 2 SD cells by 25% in the case of
anemones. The figures for fishes were 37 and 61%,
respectively.

Fig. 3 illustrates the way datasets can be cleaned or
edited based on either specific knowledge or statistical
evaluation; to allow details to be seen clearly, they
show only the part of the world where most species of
these animals occur, but the analyses which led to these
results made use of global data. Fig. 3a,b shows infer-
ences of anemone and fish habitat, respectively, based
on minimum depth and minimum SST, which individu-
ally provided reasonable first approximations to defin-
ing appropriate habitat (above). Fig. 3c,d shows the im-
provements in both inferred ranges generated by
eliminating cells with a minimum depths of >100 m.
Fig. 3e,f has been remapped after elimination of all
cells >2 SD in Fig. 2a,b. Fig. 3g,h shows the effects of
removing all cells >1 SD from the datasets used in
Fig. 3a,b. This rigorous cleaning shrinks the geographic
range noticeably, but the 0 to 1 and 0 to 2 SD intervals
remain relatively similar throughout.

Occurrence data quantity and quality

After removal of 2 anemone localities in the Mediter-
ranean Sea that were clearly due to misidentification of
specimens, misapplication of a name, or misstatement
of provenance, the datasets contained 641 anemone
and 1937 fish records. They included some suspect
data points and some of low precision; we retained all
to provide a realistic test of habitat inference using the
sort of data likely to be available for analysis of non-
fisheries species.

Four anemone and 9 fish records fell on land out-
side a coastal cell; because marine variables are not
associated with inland cells, these points were
ignored in the analyses. Points on land in a coastal
cell were analyzed using the marine variables associ-
ated with that cell. Some records on land do not
reflect errors: the anemone dataset (for which a preci-
sion value is assigned to each georeferenced point)
contains low-precision records assigned by a conven-
tion that plots the locality in the center of a country
or region given as the only location information in
the original publication. This results in points on land
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Fig. 2. Suitable habitat inferred on the basis of single variables and organism distributions. Habitat suitable for anemones in-
ferred from anemone occurrences is based on values from the cells containing occurrence records: (a) chlorophyll a concentration
and (b) minimum monthly salinity. Habitat suitable for fish inferred from fish occurrences: (c) maximum monthly SST and (d) min-
imum monthly SST. Combined fish and anemone habitat inferences: (e) minimum depth and (f) minimum depth excluding cells
with values >100 m. Chlorophyll and salinity do not account for habitat, individually or in combination; similar results were
obtained with tidal amplitude and wind speed (not shown). The depth constraints and the latitudinal controls imposed by SST 

provide a powerful combination (see Figs. 3 & 4)

a  mean chlorophyll a b  minimum monthly salinity

d  minimum monthly SSTc  maximum monthly SST

e  minimum depth f  minimum depth: edited <100 m
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Fig. 3. Dataset clean-up and editing features displaying zoomed views of the Australasian region after inferring ranges based on
the global dataset. (a) Habitat suitable for host anemones based on anemone occurrences and (b) anemonefish habitat based
on fish occurrence records using unedited datasets, with minimum monthly SST and minimum depth. (c), (d) as (a) and (b),
respectively, but with datasets edited to eliminate cells having minimum depths of >100 m (see Fig. 1g). (e), (f) as (a) and (b), re-
spectively, but recalculated after eliminating cells in the >2 SD category in the initial analysis. (g), (h) as (a) and (b), respectively,
but recalculated after eliminating cells >1 SD in the original analysis. The datasets can also be edited point by point, if 

desired (Fig. 1, Area a)

a  min. SST, min. depth - Anemones b  min. SST, min. depth - Fish

c  Fig. 3a minus depth >100 m d  Fig. 3b minus depth >100 m

e  Fig. 3a minus cells >2 SD f  Fig. 3b minus cells >2 SD

g  Fig. 3a minus cells >1 SD h  Fig. 3b minus cells >1 SD
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(e.g. the centroid of Australia for localities given as
‘Australia’), and over water far deeper than that in
which these anemones live (e.g. the center point of
Fiji for localities given as ‘Fiji’).

Editing to eliminate occurrence-containing cells with
minimum depths of >100 m reduced anemone records
by ~4% (24) and fish records by ~11% (203), but, be-
cause one 0.5° cell may contain >1 occurrence record of
a fish or anemone, the number of record-containing cells
was reduced by ~20 and ~21%, respectively (Table 3).

Cross-comparison and validation

Areas of suitable habitat for anemones,
as inferred using 50% of anemone-con-
taining cells, included between 93.7 and
100% of the remaining known occur-
rences (Table 4)—as well as many places
where the anemones are not recorded as
living. Clearly, the best test of our model
output would be to seek the animals in
places where suitable habitat is inferred
to exist and the animals are not known to
occur. That being impractical, we ran
an analysis using KGSMapper, appro-
priate environmental parameters, and
the native distribution (from FishBase) of
anemonefishes.

On a map, known fish occurrences fell largely within
areas of inferred habitat suitable for anemones and
vice versa. In a quantitative assessment, using mini-
mum SST and minimum depth (see Table 5), areas
inferred by anemone occurrences included virtually all
places fish are known to occur, a result somewhat
improved by editing both datasets for depth. Fish
occurrences were less effective in identifying areas
suitable for anemones, and editing had little effect
(Fig. 3). Thus, at the scale of this analysis, suitable
habitat is inferred not to occur where it does not occur
(at high latitude and at depth).

To explore the effects of number of environmental
variables on inferred ranges, we used the 4 groups of
environmental variables listed in ‘Data and methods.’
Fig. 4a,b shows the number of cells within each inter-
val (the former for raw data, the latter for data edited to
exclude cells with minimum depths of >100 m), Fig. 4c,
d shows effectiveness, and Fig. 4e,f shows efficiency.
As single variables were added, effectiveness of the
output in the 0 to 1 SD interval declined. However, effi-
ciency increased because the inferred number of cells
(n0–1) decreased more rapidly than the number of
occurrence-containing cells (a0–1). We found the same
pattern within groups of related variables—inferences
using maximum or minimum SST plus minimum depth
and maximum or minimum SST plus the 4 variables
used to generate Fig. 4d indicate that the use of maxi-
mum SST is more effective than minimum SST, which
is somewhat more efficient than maximum SST.

DISCUSSION

Environmental variables

Individually, the variables of minimum salinity,
chlorophyll a concentration, tidal amplitude, and wind
speed do not identify the occurrence of habitat suitable
for anemonefishes and sea anemones (Fig. 2a,b): much
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Table 4. Data using 50% of anemone-containing cells and
minimum SST and minimum depth to infer habitat suitable for
the remaining anemones. After editing to exclude cells with 

depths >100 m, 136 cells were used in this analysis

Trial No./% cells No./% remaining 
used for inference records inferred

1 57/41.91 76/96.20
2 63/46.32 73/100
3 74/54.41 61/98.39
4 64/47.06 69/95.83
5 65/47.79 71/100
6 69/50.74 67/100
7 63/46.32 72/98.63
8 67/49.26 68/98.55
9 62/45.59 71/95.95
10 65/47.79 71/100
11 57/41.91 74/93.67
12 66/48.53 70/100
13 65/47.79 71/100
14 68/50.00 68/100
15 73/53.68 63/100
16 71/52.21 65/100
17 75/55.15 61/100
18 62/45.59 74/100
19 66/48.53 69/98.57
20 71/52.21 62/95.38

Average 66.15/48.64 68.80/98.56
SD 5.01/3.68 4.44/2.01

Table 5. Using minimum SST and minimum depth plus occurrence of a sym-
biotic partner to infer occurrence of habitat suitable for another symbiotic
partner, as evaluated by the percentage of target organism occurrences in
the various categories of inferred habitat cells (anemones were used to infer
fish habitat and vice versa). Unedited inferences used all data; edited in-
ferences eliminated records in cells in which minimum depth was >100 m

Category Fish habitat inferred Anemone habitat inferred
from anemones (%) from fish (%)

Unedited Edited Unedited Edited

0–1 SD 69.4 74.0 53.4 52.4
1–2 SD 24.4 25.9 27.6 28.0
>2 SD 5.9 0.1 14.2 14.6

Total range 99.7 100.00 94.2 95.0
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of the ocean has values equal to those of waters in
which these animals occur. Although low salinity is
negatively associated with anemone occurrence (most
sea anemones, including the species that host ane-
monefishes, are stenohaline; Shick 1991), the resolu-
tion of our datasets both temporally (monthly aver-
ages) and spatially (0.5° cells based mainly on oceanic
measurements) is too coarse to capture its effect. Simi-
lar arguments can be made for chlorophyll a and for
the energy- and exchange-related tide and wind vari-
ables. Further, tidal amplitude is unlikely to exert sys-
tematic control because it is the relative, rather than
absolute, position to low tide that affects anemone
survival.

Even highly correlated parameters (Table 2) may not
have the same effect. For single variables, maximum
and minimum SST (Fig. 2c,d, respectively) infer some-
what different distributions of suitable habitat overall,
and in the intervals 0 to 1, 1 to 2, and >2 SD. This is also
true in combination with other parameters.

Adding parameters sequentially to minimum tem-
perature and depth (Fig. 4) did not provide increas-
ingly good inferences, from which we conclude that
more variables are not necessarily better (cf. Stockwell
& Peterson 2002). Quality of the variables, as judged
by relevance to occurrence of the taxon in question
(Fielding & Bell 1997), seems more important than the
number of variables. Quality can be improved by bas-
ing the output on values that do not include the outliers
(>2 SD) or >1 SD (Fig. 3).

Even with the limited number of environmental vari-
ables available in the KGSMapper, choosing variables
expected to be relevant to the distribution of any taxon
requires some expert judgment, as does determining
which relevant variables to use for a given purpose.
For example, although maximum SST is quantitatively
more effective than minimum SST, it identifies a larger
range overall and overextends the northern extent of
the fish distribution (Fig. 1, map result). KGSMapper
can help to reveal which parameters are most closely
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Fig. 4. Distribution of cells, effectiveness, and efficiency of habitat inference for sea anemones as functions of kind and number of
variables. (a,c,e) Use values from all data. (b,d,f) Use data edited to exclude cells having minimum depths of >100 m. Numbers
on abscissa are variable groups listed in the ‘Data and methods’ section. (a) and (b) show number of cells; (c) and (d) show

effectiveness; (e) and (f) show efficiency

Cells per SD interval: unedited Cells per SD interval: edited

Effectiveness (fraction of occurrences): unedited Effectiveness (fraction of occurrences): edited

Efficiency (effectiveness per cell): unedited Efficiency (effectiveness per cell): edited
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correlated with occurrence, and thus may be important
in controlling, or describing, distribution.

Occurrence data quality and quantity

The linkage of taxonomic synonyms allows Hexa-
coral to map occurrences for the species rather than for
the name; this also helps to increase the number of
records for a species. Thus, rather than synonymous
names being viewed as a problem (Soberón & Peterson
2004), if handled appropriately, they can serve to
enhance data quantity and taxonomic quality.

The 2 Mediterranean records we removed illustrate
the need for expert judgment in selecting both occur-
rence and environmental data. Machine algorithms
that cleanse datasets by purging records from areas
well beyond known occurrences risk removing in-
formation on range extensions or invasions. An
expert may be able to differentiate among potential
sources of error by considering date, similar species,
taxonomic history of a name, etc., to make suspect
records useful, and thereby improve data quality and
quantity.

Using only cells with minimum depth values <100 m
resulted in a more precisely defined range (Fig. 2f)
than merely selecting minimum depth as a variable
(Fig. 2e), presumably because some actual occurrences
fall in cells with minimum depths of >100 m, due to
either error or convention (such as using the center
point of the Fiji Islands for all localities given only as
‘Fiji’ in the anemone dataset).

Such editing for a feature relevant to organism distri-
bution provides a crude assay of data quality. Editing
produced a less dramatic change for anemones than
for fishes; compare Fig. 3a,c,e,g with Fig. 3b,d,f,h,
respectively. This finding is concordant with what is
known of the data sources: the anemone records were
assembled as a single project (by D. G. Fautin) and
have been extensively checked, whereas the fish
records are from multiple sources with unknown and
diverse authentication procedures. Thus, KGSMapper
deals with suspected, inferred, or known erroneous
data to provide a justifiable way to limit consideration
to reasonable habitat possibilities. By doing so, it infer-
entially takes absences into account.

It is commonly thought that more environmental
variables will improve the sensitivity or precision of a
prediction. Fielding & Bell (1997) call this into question
in their discussion of the issues of inappropriate vari-
ables, the ‘costs’ of misclassification, and the contexts
in which predictive models are evaluated. Fig. 4 illus-
trates how choice and number of environmental vari-
ables affect output in our study system. As we added
single variables to the analysis, the number of cells

identified as containing suitable habitat declined by
~10%, but it would be a mistake to interpret this as
increasing precision; the fraction within 1 SD declined
by ~40% in both edited and unedited analyses.
KGSMapper statistics are calculated in a univariate
manner; as variables are added, the probability de-
clines that any cell will contain values within 1 SD for
all of them. Thus, adding a variable that would be
expected, based on biology and analysis, to have little
control over organism occurrence can eliminate cells
that contain suitable habitat—a high price to pay for
minimal return in terms of genuinely improved results.

Others have also found that quality of prediction is
not necessarily improved by quantity of data. ‘Accu-
racy’ of 4 modeling methods, including GARP, used by
Stockwell & Peterson (2002) did not increase beyond
about 20 data points, 10 producing 59 to 64% ‘accu-
racy’ (90% of potential achievement rate using with
their methods). Beauvais et al. (2004) achieved ‘valida-
tion success’ rates of 40.0 to 88.2%, the lowest with a
dataset of 18 records, another dataset of 20 records had
a rate of 80.0%. The effects of geographic scale and
habitat heterogeneity on quality of model output have
not been addressed formally, but, based on what is
now known, this is an issue which should be
addressed. The methods of Stockwell & Peterson
(2002, p 11) modeled ‘widespread species … less accu-
rately’; Raxworthy et al. (2003) achieved a similar
result using GARP. Attention must be paid to this sub-
ject for marine species, many of which have larger geo-
graphic ranges than is typical of terrestrial species for
which predictive algorithms were developed (the ani-
mals we studied range through about 180° of longitude
and 50° of latitude) and occur in 3 dimensions. In one of
the few published modeling studies for the distribution
of marine species (fish living in the central western
Atlantic), Wiley et al. (2003, p 124) also found that,
using GARP, results for widespread species were
‘weak.’

In addition to large numbers of points, a desideratum
for this sort of analysis is independence of data (Field-
ing & Bell 1997). However, many of the anemone
records we used came from a small number of areas
and/or investigators; we have found that records for
other poorly studied marine organisms may not be
truly independent.

Validating or testing results

Use of training data for assessing quality of model
output is a common practice (e.g. Anderson et al.
2003). Such data may constitute a portion of known
occurrences (e.g. 50% in Peterson et al. 2002, 75% in
Beauvais et al. 2004) or areas of occurrence (e.g.
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states in Peterson 2001). KGSMapper has a tool that
randomly selects ~50% of reported occurrences and
uses the associated locality records (grid cells) to infer
the remainder of the localities and their associated
occurrences (Fig. 1, Area a). If grid cells are the basis
for analysis when using a gridded environmental
database and a one-to-one relationship between cells
and occurrence records does not exist, the use of
occurrence records will not be reliable. A random
sample of (e.g. 50%) of the locality cells may contain
far more than the stated proportion of the sample
occurrences (up to 75–80% in 50% of the tests we
conducted with anemone data). This greatly increases
the apparent quality of the results and is misleading
if that level of performance is ascribed to 50% of the
occurrences.

A drawback involved in withholding some records as
training data is that ‘the algorithm cannot take advan-
tage of all known locality records’ (Anderson et al.
2003, p 213). The symbiosis allowed us both to use all
data and to implement the desideratum of incorporat-
ing interspecific information into the model (Fielding &
Bell 1997); we used records of 1 organism to infer areas
of suitable habitat for another. We ascribe the asymme-
try in our results (Table 5) to that in the relationship—
although an anemonefish never occurs without an
anemone in nature, individual anemones may occur
without fish in some areas. Thus, anemone data will
somewhat overestimate suitable habitat for fish. This
result is consistent with the potential problem in
modeling pointed out by Fielding & Bell (1997) of
undersaturation of habitat. Accordingly, saturated
symbiotic systems such as this case should be particu-
larly favorable as tests of habitat models.

As an indirect assessment of KGSMapper, we used
environmental variables from Hexacoral with occur-
rence data from FishBase for the tropical Indo-Pacific
lionfish Pterois volitans. The inferred distribution of
suitable habitat resembles that of anemonefishes, and
includes the coast of the southeastern United States,
where it has recently established viable populations
(e.g. Semmens et al. 2004).

The addition of environmental variables that do not,
and are not expected to, have any real explanatory
power has the effect of increasing the apparent effi-
ciency of the range inference. This is an artifact of con-
straining the basis on which cells are selected, whether
or not that constraint has anything to do with organism
occurrence. For a group of organisms that has been
extensively sampled over most of its range, this will
have little effect other than to distort the apparent
quality of the range inference. However, for sparsely
sampled organisms, such as most marine organisms,
inclusion of gratuitous variables could significantly
alter the inferred range.

Although we can readily envision application of
KGSMapper to dichotomous problems, the analyses
presented here cannot be usefully evaluated by confu-
sion matrix methods (Manel et al. 2001), because of the
unavailability of useful absence data at the scale of
interest. A half-degree grid cell can be as large as
3000 km2 in area; the organisms of interest range from
a few cm2 to about 1 m2 in area, and habitat patches
may be <100 m2. The grid cell is best treated as a
mosaic of potential habitats, ranging from favorable to
stressful to impossible. To provide some assessment of
the quality and characteristics of the inferences, we
use efficiency and effectiveness, which allow a user to
tune the results for a particular purpose based on the
relative importance or cost (Fielding & Bell 1997)
assigned to errors of commission and omission. For
example, a user planning an expedition to sample par-
ticular taxa or to devise a scheme for protected areas
would probably want to emphasize efficiency (i.e.
maximize the probability of finding organisms per unit
area covered), while a study concerned with invasion
potential, marginal habitats, or range limits would
need the most effective (complete) inventory of poten-
tial habitat. Moreover, such analysis allows a user to
allocate effort where it will most enhance a product of
prediction—adding occurrences would improve the
product more than adding environmental features.
Similarly, Graybeal (1998) found that adding taxa
improved resolution of phylogenetic trees more than
adding characters.

Maps and model outputs

An occurrence (or dot) map plots localities where
members of the taxon have been documented (for
example, Fig. 1, Area b, without the inferred areas of
occurrence); subdividing occurrences temporally allows
comparing distributions through time. An inference
about where members of the taxon may occur beyond
the known occurrences constitutes a range map. This,
too, may be temporally defined, showing, for example,
where organisms formerly occurred, but do not occur
currently. It may consist of discontinuous patches, as
for the anemonefish and their host anemones around
land masses. When drawn up the ‘old-fashioned way,’
a range map is a simple abstraction of occurrences, an
inference of where members of the taxon may occur
within the same geographical region. A map gener-
ated electronically by a tool such as KGSMapper, by
correlating environmental parameters with known dis-
tributions, is essentially a habitat map, plotting places
compatible with the life of the organism of interest.

A habitat map may contain areas of 2 types, and we
advocate that these be distinguished from one
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another. Areas on a habitat map that fall within the
broad ambit of the taxon constitute, as defined above,
a range map. Such maps are useful for planning, e.g.
field research and conservation strategies in that, by
depicting realized habitat, they provide reasonable
precise inferences about where members of a taxon
may actually live. Some habitat maps include areas
that fall well outside the known distribution of the
taxon, as illustrated in Fig. 1: anemonefishes and their
hosts only occur naturally in the Indo–West Pacific,
but ostensibly suitable habitat for them occurs in some
areas of the Atlantic (especially the Caribbean) and
the eastern Pacific. Such a map depicts potential habi-
tat, which is ideal for identifying places vulnerable to
invasion. Because the word ‘prediction’ literally refers
to the future, it is appropriately used for areas outside
the natural range—that is for areas subject to inva-
sion. Within the general geographical area in which
members of a taxon are known to occur, where direct
evidence of their occurrence may currently be absent,
a model actually infers—rather than predicts—appro-
priate habitat.

Some model outputs are said to be niche maps;
whereas a habitat is defined on the basis of abiotic
parameters, a niche also includes biotic parameters
(e.g. Peterson 2001, Anderson et al. 2003). Including
explicit biotic information in automated tools such as
KGSMapper is difficult, because such information is
rarely in the form of coverages. The 1 biotic para-
meter common in oceanographic data is chlorophyll a
concentration, but this lacks discriminatory value for
the occurrence of most organisms such as those we
studied (Fig. 2a). We found that, although appropriate
habitat for anemonefishes exists outside the Indo–
West Pacific, when we included a vital component
of the animal’s biotic environment, a host anemone,
those areas were no longer identified as habitable.
We therefore advocate that such relevant biotic fac-
tors be explicitly incorporated into models if they
are to be considered niche models. In this case we
used symbionts, some pairs of which are mutualistic,
precisely because this provided a clearly relevant
biotic factor with which to test model output. The
relevant biotic factors in other analyses may be less
obvious.

Thus, anemonefishes are less likely than lionfish to
establish viable populations in the coastal southern
United States: although abiotic attributes of the habi-
tat, such as temperature and depth, appear suitable for
anemonefish existence, anemones that naturally host
anemonefishes do not occur there (Fautin & Allen
1992). One way to infer absence is to eliminate deep
water cells (cells in which minimum depth is >100 m).
A second way to infer absence is to eliminate all fish
habitat cells outside the Indo–West Pacific. This is jus-

tifiable based on the absence of an obligate symbiont.
By contrast, the potential for Hawaii to be invaded
by anemonefish is real, because 1 species of host ane-
mone occurs in Hawaiian waters (Fautin & Allen 1992).
On the other hand, for species of these anemones that
can live in nature without fish symbionts (most of
them), we infer that the suitable habitat outside the
Indo–West Pacific is vulnerable to invasion. Once
individuals of a host anemone are present in a non-
native place, they might be follwed by the species of
fish able to live with this particular species of host
anemone.

Modeling tools

It is difficult and/or impractical to control quality
when using merged, distributed datasets. Therefore,
analytical and predictive tools must have features that
ensure robust output in the presence of questionable
data and that offer the user ways to modify the datasets
and to assess the results—by improving data quality,
by testing hypotheses derived from them, or both. We
have shown that the number and distribution of outlier
points is an indicator of both the quality of occurrence
data and the relevance of the environmental variables
selected. Thus, an output that segregates results into
categories of diminishing accuracy allows a user to
select appropriate subsets of the output. User decisions
can be based on the level of data confidence and
the purposes for which the output is to be used. With
KGSMapper, for example, we found the 1 SD range
to be a robust initial estimate of range, even in noisy
datasets.

Beyond this passive evaluative approach, KGS-
Mapper has data-editing features that are broadly use-
ful in assessment and research. A user can edit occur-
rence data: (1) point by point on the map or data list,
(2) by geographic area (using the zoom control), (3) by
taxon, and/or (4) by editing environmental variables.
Future versions of the KGSMapper will have more ver-
satile means of selecting geographic extent and will
include explicit absence as well as presence data. In
addition to selecting geographic extent, the ability to
edit variables provides a means of exercising expert
judgment by cleaning the datasets of points that do not
conform to relevant environmental controls and of
refining the geographic limits of potential ranges;
these are ways to incorporate knowledge of absence.
An important means of improving the precision of the
habitat inferences is provided by allowing a user to
remove records that fall beyond a predetermined sta-
tistical limit. The user can then recalculate the model
with the remaining cells. KGSMapper allows applica-
tion of expert judgment at both input and output ends
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of the process; algorithms such as GARP apply it only
at the output end (e.g. Anderson et al. 2003, Drake &
Bossenbroek 2004).

KGSMapper outputs go beyond simple map visual-
izations, providing statistical analyses of the individual
variables, of the relationships among the variables,
and of the occurrence–environment relationships. In
addition to allowing analyses in a manipulative GIS
environment, KGSMapper has options that permit
dynamic data assessment, which enables the user
to identify covarying parameters, variables to be
edited, and specific ranges of values to be included or
excluded.

Models of organism occurrence may contain 2
types of errors: predicting the organism will occur
where it does not (false positive, commission, or
overprediction) and not predicting the organism to
occur where it does (false negative, omission, or
underprediction) (e.g. Fielding & Bell 1997, Anderson
et al. 2003). Unlike many algorithms, the objective of
KGSMapper is to infer the locations of habitat suit-
able for occurrence of organisms, not organism
occurrence itself. Finding the organisms in the habi-
tat clearly demonstrates it is suitable; not finding
them, termed by Anderson et al. (2003) ‘apparent
commission error,’ is due to well-known contingen-
cies in occurrence. To regard prediction of habitat in
a place that has not been searched as a false positive
is to imply perfect knowledge of organism occur-
rence. Selecting areas for fieldwork is a potential use
of the output of such modeling, particularly for
poorly sampled taxa; overestimation of habitat occur-
rence is therefore neither unexpected nor necessarily
undesirable. Moreover, a model that identifies all,
but only, the places of known occurrence would be
tautologous.

Acknowledgements. Financial support was provided by US
National Science Foundation Grants OCE 00-03970 (through
the National Oceanographic Partnership Program), DEB 99-
78106 (in the PEET program: Partnerships for Enhancing
Expertise in Taxonomy), and DEB 95-21819 (PEET). Collabo-
rations with LOICZ (Land–Ocean Interactions in the Coastal
Zone, an IGBP project) and FishBase (www.fishbase.org), an
element of OBIS (the Ocean Biogeographic Information Sys-
tem), were central to this effort. Additional gratitude is due to
the US Fish and Wildlife Service; the US National Biological
Information Infrastructure (NBII), especially T. D. Beard and
M. Fornwall; K. Look and K. Nelson of the Kansas Geological
Survey; A. Ardelean, and G. P. Beauvais, University of
Wyoming, USA.

LITERATURE CITED

Anderson RP, Lew D, Peterson AT (2003) Evaluating predic-
tive models of species’ distributions: criteria for selecting
optimal models. Ecol Model 162:211–232

Beauvais GP, Keinath D, Thurston R (2004) Predictive
range maps for 5 species of management concern
in southwestern Wyoming. Report prepared for Ad-
vanced Resources International by the Wyoming Nat-
ural Diversity Database, University of Wyoming, La-
ramie. Available from http://uwadmnweb.uwyo.edu/
WYNDD/Reports/pdf_beauvais/sw_wyo_predictive_rm_
04.pdf

Drake JM, Bossenbroek JM (2004) The potential distribution
of zebra mussels in the United States. Bioscience 54:
931–941

Dunn DF (1981) The clownfish sea anemones: Stichodactyli-
dae (Coelenterata: Actiniaria) and other sea anemones
symbiotic with pomacentrid fishes. Trans Am Phil Soc
71(1):1–115

Fautin DG, Allen GR (1992) Field guide to anemonefishes and
their host sea anemones. Western Australian Museum,
Perth. Available from www.nhm.ku.edu/inverts/ebooks/
intro.html

Fielding AH, Bell JF (1997) A review of methods for the
assessment of prediction errors in conservation pres-
ence/absence models. Environ Conserv 24:38–49

Graybeal A (1998) Is it better to add taxa or characters to a
difficult phylogenetics problem? Syst Biol 47:9–17

MacArthur RH (1972) Geographical ecology: patterns in the
distribution of species. Harper & Row, New York

Manel S, Williams HC, Ormerod SJ (2001) Evaluating pres-
ence–absence models in ecology: the need to account for
prevalence. J Appl Ecol 38:921–931

Peterson AT (2001) Predicting species’ geographic distribu-
tions based on ecological niche modeling. Condor 103:
599–605

Peterson AT, Ball LG, Cohoon KP (2002) Predicting distribu-
tions of Mexican birds using ecological niche modeling
methods. Ibis (online) 144:E27–E32

Raxworthy CJ, Martinez-Meyer E, Horning N, Nussbaum RA,
Schneider GE, Ortega-Huerta MA, Peterson AT (2003)
Predicting distributions of known and unknown reptile
species in Madagascar. Nature 426:837–841

Semmens BX, Buhle ER, Salomon AK, Pattengill-Semmens
CV (2004) A hotspot of non-native marine fishes: evidence
for the aquarium trade as an invasion pathway. Mar Ecol
Prog Ser 266:239–244

Shick JM (1991) A functional biology of sea anemones. Chap-
man & Hall, London

Soberón J, Peterson AT (2004) Biodiversity informatics: man-
aging and applying primary biodiversity data. Phil Trans
R Soc Lond Ser B Biol Sci 359:689–698

Stockwell DRB, Peterson AT (2002) Effects of sample size on
accuracy of species distribution models. Ecol Model 148:
1–13

Wiley EO, McNyset KM, Peterson AT, Robins CR, Stewart
AM (2003) Niche modeling and geographic range predic-
tions in the marine environment using a machine-learn-
ing algorithm. Oceanography 16:120–127

283

Editorial responsibility: Howard I. Browman (Associate
Editor-in-Chief), Storebø, Norway

Submitted: December 27, 2004; Accepted: December 12, 2005
Proofs received from author(s): June 14, 2006


