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Preface

Many areas of basic physics research depend upon a good physical
understanding of charged particle motion in gases, a statement which
is as true now as it was in the early part of the last century, when
modern physics was taking shape sce, for example, the Introduc
tion to The diffusion and drift of electrons in gases (Wiley, 1974),
by L.G.H. Huxley and R.W. Crompton for comments on the seminal
experiments of J.J. Thomson, J.S. Townsend, and others. The same
goes for technological applications, perhaps even more so. Thus,
for example, there has been a huge investment of resources in tech-
nologies associated with low temperature plasmas, in the microchip
industry in particular, and the contribution to the world economy
amounts to many billions of dollars annually. Importantly, it is gen-
erally acknowledged that the full potential of such technology can be
realised only when the basic physics associated with charged parti-
cle transport theory has been mastered, and inevitably this means
solving Boltzmann’s partial differential-integral kinetic equation, or
carrying out an equivalent computational simulation.

Although Boltzmann had already presented his famous equation
for the velocity distribution function in 1872, it took some time for
its significance in the description of charged particle in gases to be-
come fully appreciated, and unfortunately misunderstandings persist
to the present day. For example, the famous Franck-Hertz experi-
ment of 1914, which confirmed the Bohr quantization postulates, is
still often discussed crudely in terms of single electrons traversing a
gas, all with the same velocity, using the same language as one would
describe a single-scattering, monoenergetic beam experiment. The
actual physical picture is quite different: electrons in fact undergo
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many scatterings, and have a wide distribution of velocities. In gen-
eral, a correct physical description of Lhe real, wacroscopic world,
requires the microscopic, single-scattering quantities to be averaged
over a distribution function, which is to be calculated from solution
of Boltzmann’s equation. This is the realm of the kinetic theory of
gases, and is the theme of this book.

Althongh mainly simple, idealized systems of electrons and ions
in gases are considered here, it is important to realize that much of
the analysis carries over more or less directly to a much wider range of
pliysical plhenoweny; fu example, Lo position anniliilation in gases,
muon catalyzed fusion in hydrogen and its isotopes, plasma process-
ing technology, multiwire drift tube chambers used in high energy
particle detectors, hot atom chemistry, spectral line broadening by
perturbers in a foreign gas, and neutron transport. There is a one-to-
one correspondence with charge carrier transport in semiconductors,
where phonons arising from lattice vibrations play the role of a gas,
and with the dispersion of pollutants in the turbulent atmospheric
boundary layer. The range of applications is truly enormous.

This book derives from a graduate course given by the author
at the Homer L. Dodge Department of Physics, the University of
Oklahoma, in the Fall semester of 2005. Rather than writing a com-
prehensive treatise, the aim has been to provide an introduction to
and overview of some of the theoretical methods used to investigate
transport properties, all based on the premise that physical under-
standing, rather than unsparing rigour, is paramount.

My sincere thanks go to Michacl Morrison for many stimulating
discussions and for his constant encouragement and interest. To
departmental Chair Ryan Doezema, and indeed to all Faculty and
Staff, thank you for your help and [riendship, and for making my
stay in Norman so enjoyable and productive.

Robert Robson,

Canberra,

June, 2006



