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Preface 

Many areas of basic physics research depend upon a good physical 
understanding of charged particle motion in gases, a statement which 
is as true now as it was in the early part of the last century, when 
modern phYBicB w OS t,o.king Gha.pc seo, for example, the Introduc~ 

tion to The diffusion and drift of electrons in gases (Wiley, 1974), 
by L.G.H. Huxley and R.W. Crompton for comments on the seminal 
experiments of J.J. Thomson, J .S.Townsend , and others. T he same 
goes for technological applications , perhaps even more so. Thus, 
for example, there has been a huge investment of resources in tech­
nologies associated with low temperature plasmas, in the microchip 
industry in part icular , and t he contribut ion to the world economy 
:>m ounts to m a ny billions of dolla rs a nnua lly. Importantly, it is gen­
erally acknowledged that the full potential of such technology can be 
realised only when the basic physics associated with charged parti­
cle t ransport theory has been mastered, and inevitably tWs means 
solving Boltzmann's partial differential-integral kinetic equation, or 
carrying out an equivalent computational simulation. 

Although Boltzmann had already presented his famous equation 
for the velocity distribution function in 1872, it took some time for 
its s ig nificance in the de5cription of charged. particle in gMe8 to be­
come fully appreciated, and unfort unately misunderstandings persist 
to the present day. For example, the famous Franck-Hertz experi­
ment of 1914, which confirmed the Bohr quantization postul ates, is 
still often discussed crudely in terms of single electrons traversing a 
gas, all with the same velocity, using the same language as one would 
describe a single-scattering, monoenergetic beam experiment. T he 
actual physical picture is quite different: electrons in fact undergo 
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many scatterings, and have a wide distribution of velocities. In gen­
eral, a currecL IJhy~it;al ue:c;criJJLiuJI uf Lhe real, luctcru::scupic wodu, 

requires the microscopic, single-scattering quantities to be averaged 
over a distribution function, which is to be ealCltlated from solution 
of Boltzmann's equation. This is the realm of the kinetic theory of 
gases, and is the theme of this book. 

A It.hollgh ma.inly simple, irlealizerl syst.ems of electrons and ions 
in gases are considered here, it is important to realize that much of 
the analysis carries over more or less directly to a much wider range of 
JJllj't;lcal vhellull1eua; [Ut exal11v1e, Lv jJu::siLIULl auuihilaLjull in ga5e.s, 

muon catalyzed fusion in hydrogen and its isotopes, plasma process­
ing technology, multiwire drift. tube chambers used in high energy 
partide detectors, hot atom chemistry, spectral line broadening by 
perturbers in a foreign gas, and neutron transport. There is a one-to­
one correspondence with charge carrier transport in semiconductors, 
where phonons arising from lattice vibrations play the role of a gas, 
and with the dispersion of pollutants in the turbulent atmospheric 
boundary layer. The range of applications i5 truly enormous. 

This book derives (rom a graduate course given by the author 
at the Homer L. Dodge Department of Physics, the University of 
Oklahoma, in the Fall semester of 2005. Rather than writing a com­
prehensi ve treatise, the aim has been to provide an introduction to 
and overview of some of the theoretical methods used to investigate 
transport properties, all based on the premise that physical under­
standing, rather than unsparing rigour, is paramount. 

l\1y sincere thanks go Lo Michn.cl Morrison for many utimulu.ting 
discussions and for his constant encouragement and interest. To 
departmental Chair Ryan Doezema, and indeed to all Faculty and 
Staff, thank you for your help and friendship, and for making my 
sta.y in Norman so enjoyable and productive. 
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