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Abstract: - With the continuous development of the wireless devices technology, securing wireless sensor 
networks became more and more a significant but also a difficult task. In this paper we present our research 
for a robust and intelligent algorithm dedicated to the discovery of malfunctioning or attacked sensor nodes. 
Our strategy is focused on neural network predictors based on past and present values obtained from 
neighboring nodes. Limited resources in terms of computational power, energy, memory and bandwidth 
impose heavy constraints on functionality of an effective malfunction detection system. For this reason we 
consider that our algorithm is designed and suitable for execution on the base station level and, by this, it is 
appropriate even for large-scale sensor networks. 
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1 Introduction 
A sensor network is a group of small, lightweight 
and portable devices called sensor nodes, with a 
communication infrastructure intended to monitor 
and record specific parameters like temperature, 
humidity, pressure, wind direction and speed, 
illumination intensity, vibration intensity, sound 
intensity, power-line voltage, chemical 
concentrations and pollutant levels at diverse 
locations. Their deployment, sometimes in harsh 
environments, can be dangerously disturbed by any 
kind of sensor malfunction or, more damaging, by 
malicious attacks from an adversary. 

Sensor networks due to their restrictive 
constraints are vulnerable to some relevant types of 
attacks that cannot be avoided only by cryptography: 

eavesdropping, traffic analysis, spoofing, selective 
forwarding, sinkhole attack, wormhole attack, Sybil 
attack and Hello flood attack are the most important 
[1]. But, probably the biggest threat for a wireless 
sensor network is node-capturing attack [2] where 
an adversary gains full control over sensor nodes 
through direct physical access. This type of attack is 
fundamentally different from the attacks already 
mentioned because it doesn't rely on security holes 
in protocols, broadcasting, operating systems, etc. It 
is based on the geographic deployment of the sensor 
nodes in the field. Realistically, we cannot expect to 
control access to hundreds of nodes spread over 
several kilometers and, by this, we make a node 
capturing attack very possible. In addition, sensors 
are rarely tamper resistant, so an attacker can 
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damage or replace sensors and computation 
hardware or extract sensitive material such as 
cryptographic keys to gain unrestricted access to 
higher levels of communication. Moreover, all 
sensors are usually assumed to run the same 
software, in particular, the same operating system. 
Finding an appropriate bug in the sensor network, 
through reverse engineering techniques applied to 
the captured sensor, allows the adversary to control 
the entire sensor network. 

Our proposed countermeasure relies on the fact 
that a corrupted sensor node, even if it may still send 
authentic messages (e.g., it can use the 
cryptographic keys already stored in its memory), it 
may not work according to its original specifications 
sending erroneous readings to the base station. We 
will identify these sensors by using a neural network 
based predictor and will eliminate their malicious 
effect. 

2 Malicious Node Detection using 
Neural Networks 

In this paper, we propose a strategy for detecting 
malicious sensor nodes and eliminating their effects 
by using a neural network based predictor. This 
strategy employs the analytical redundancy to 
estimate the value provided by a sensor by 
considering the past/present values given by 
adjacent sensors. This estimate is compared with the 
actual value of the sensor to increase/decrease its 
trust factor. 

2.1 Sensor Network Model. Assumptions 
We make the following assumptions related to the 
sensor network: 
a) The sensor network is static, i.e., sensor nodes are 
not mobile; each sensor node knows its own location 
[3] even if they were deployed via aerial scattering 
or by physical installation. If not, the nodes can 
obtain their own location through the location 
process described in [4). Moreover, all the sensors 
passed a one-time authentication procedure done 
just after their deployment in the field. 
b) The sensor nodes are similar in their 
computational and communication capabilities and 
power resources to the current generation sensor 
nodes, e.g. the Berkeley MICA motes. We assume 
that every node has space for storing up to hundreds 
of bytes of keying materials in order to secure the 
transfer of information through symmetric 
cryptography. 

c) The base station, sometimes called access point, 
acting as a controller and as a key server, is assumed 
to be a laptop class device and supplied with long­
lasting power. We also assume that the base station 
will not be compromised. 
d) We rely on wireless cellular network (WCN) 
architecture [5). In this architecture, a number of 
base stations are already deployed within the field. 
Each base station forms a cell around itself that 
covers part of the area. Mobile wireless nodes and 
other appliances can communicate wirelessly, as 
long as they are within the area covered by one cell. 
Also, it is possible to extend our methodology to a 
SENMA (SEnsor Network with Mobile Access) 
architecture that was proposed in [6] for large-scale 
sensor networks. The main difference related to the 
cellular network architecture is that base stations are 
considered to be mobile, so each cell has varying 
boundaries which implies that mobile wireless nodes 
and other appliances can communicate wirelessly, as 
long as they are at least within the area covered by 
the range of the mobile access point. 

The two types of architectures presented bellow 
(WCN and SENMA) have important properties that 
will be considered for developing a secure sensor 
network: nodes talk directly to base stations; no 
node-to-node communications; no multi-hop data 
transfer; sensor synchronism is not necessary; sensor 
do not listen, only transmit and only when polled 
for; complicated protocols avoided; reliability of 
individual sensors much less critical; system 
reconfiguration for mobile nodes not necessary. 

2.2 Employing Redundancy in Sensor 
Networks 

One important natural feature of sensor networks 
that will be employed by our strategy is inherent 
redundancy. New approaches for ensuring security 
and power savings in sensor networks are based on 
this characteristic. It is known that redundancy in 
sensor networks can provide higher monitoring 
quality [7][8] by employing the adjacent nodes to 
discern the rightness of local data. These highly 
localized results can be aggregated [9] to provide 
higher data reliability to requesting applications 
such as event/target detection [9][10]. Here, we will 
take this approach one step further: we will use 
redundancy as a feature that can bring a higher level 
of information security to sensor networks. 

There are two possible approaches: using 
hardware redundancy and using analytical 
redundancy. Hardware redundancy implies the use 
of supplementary sensors (in normal circumstances 



40 WSEAS TRANSACTIONS ON COMPUTER RESEARCH Issue 1. Vol. 2. January 2007 ISSN: 1991-8755 

they are already deployed in the field due to the 
necessity of covering the area in case of 
malfunctioning of some sensor nodes) and selection 
of data that appears similarly on the majority of 
sensors. Analytical redundancy is done through a 
process of comparison between the actual sensor 
value and the expected/estimated sensor value. This 
approach is based on a mathematical model that can 
predict the value of one sensor by taking into 
consideration the past and present values of 
neighboring sensors. The computational cost of this 
approach can become prohibitive as the number of 
sensors and model complexity is increased, but it 
can be done in our methodology at base station level 
(laptop class device) where all requirements are 
satisfied. Furthermore, our approach is suitable even 
when hardware redundancy conditions are not met, 
for example when, due to malfunctions, some 
sensors had to be ejected from the network. 

2.3 Proposed Strategy 
In order to develop our strategy for anomaly 
detection, we started from the four principles 
presented in [11]: (1) anomaly detection is based on 
observations and probing by neighbor nodes; (2) 
there is no full trust between observer nodes, since 
they could be under attack themselves; (3) based on 
the assumed attack patterns, observed data has to be 
interpreted differently; (4) the specific application of 
the sensor network determines the modeling of 
"good" and "bad" behavior. 

We decided that our strategy has to use the 
analytical redundancy and has to rely on a 
knowledge-based system (KBS) placed in base 
stations (Fig.3). The plan is the following: a 
malicious sensor node that will try to enter false 
information into the sensor network will be 
identified by comparing its output value x with the 
value x predicted using past/present values 
provided by contiguous sensors. Taken into 
consideration a specific node denoted by A (Fig. 1), 
this process is done in the following steps: 
a) Associate a trust factor b with every sensor 
node. Initially all this factors have the same value. 
The specified sensor node A will have a trust factor 
denoted by b A . 

b) Estimate the future value x A (t) provided by 
sensor node A, using the past/present values of 
adjacent sensors and the trust factor of each sensor; 
For sensor A, we can write: 

x A (t) = f(X A,ad/t -1), ... ,X A,adj (t - n), B A) (1) 

where 

X A,ad} (t - i) = (x A,a<iji (t - i), ... , x A,ad/III (t - i)Y (2) 

is a vector that contains the values provided by all 
m adjacent sensors of sensor A at instant (t -i), 

B A = (b A,adji ,"" b A,adjm r (3) 
is a vector that contains the trust factor of each of 
the m adjacent nodes of A, and n is the estimator's 
order. In our approach, an on-line neural network 
predictor performs this step. 
c) Compare the present value x A (t) of the 

sensor node with its estimated value x A (t) by 

computing the error eA (t) = x A (t) - X A (t) (4); 

d) Increase/decrease the trust factor b A by 
using a function g that can be either linear or non­
linear: bA(t)=g(bA(t-I),eJt)) (5) 

The structure of such a KBS is depicted in Fig. 1 and 
contains two important blocks: 
• Neural Network Prediction Block: this block 
provides the estimate x A following equation (1) 

and is able to memorize the past values provided by 
adjacent sensors and the related trust factors. The 
neural network which implements this block is a 
feedforward one, with continuous values, trained 
using Levenberg-Marquardt method. The neural 
network has two hidden layers, one input layer and 
one output layer. On the input layer we are using 
2· m neurons, by the consideration that we rely on 
the values provided by the neighboring sensors at 
the instants t and t-I. The neuron numbers from the 
hidden layers result after iterative trainings of the 
neural network. On the output layer we have only 
one neuron, that will provide the estimate value of 
sensor A. Hyperbolic tangent is used as activation 
functions for the hidden layers and the linear 
function of first degree is used as activation 
function for the output layer. 

• Decision Block: here, based on a pnon 
information (statistics, attack's model), the trust 
factor b A is modified using (5), and, in particular 

circumstances, alarm signals can be transmitted to a 
higher hierarchical level. A . possible 
implementation of the decision block can be done 
considering the following relation: 

o if (eA(t) ~ E) and (bA(t-l) -~:>; oJ 

bA (t-l)-;- if (eA (t) ~ E)and (bA (t-l)-;-> 0) 
b A (t) = () 

bA(t-l)+} if (eA(t)<E)and bA(t-l)+;-<1 

1 if (eA(t)<f.:)and(bA(t-l)+~~I) (6) 
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where p E X* is a constant (a reasonable value can 

be p E {2,3,4}) and f: is a threshold considered for 
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Fig. 1. Knowledge Based System Structure 

3 Case Study 
In this paragraph we will present how our strategy 
works in the case of a temperature sensor network. 
The following presumptions are made according to 
the considerations mentioned above. Let us consider 
the propagation of a temperature wave in a 
homogenous planar field where several temperature 
sensors, part of a sensor network, have been 
deployed. For malicious sensors detection we 
developed and trained a neural network that 
estimates the value provided by the sensor by taking 
into consideration the present and the previous 
values of neighboring sensors. 

We presume the time t distribution of the 
temperature 8 through the homogenous medium in 
space to be: 

8 = 8(z,t) (7) 

were 8 (z, t) is the temperature at the moment t, at 

distance z from the heat source. 
The heat conduction, when neglecting the heat 

loses in the environment, is described by the heat 
equation [12]: 

a2 a 
ce a/ 8(z,t) = at 8(z,t) (8) 

where Ce is the heat conductivity coefficient of the 
medium. 

The input in the system is the power of the heat 
source P, which at a certain point of the field is: 

a 
p(t) = a az 8(z, t) 1==0 (9) 

where a is a constant depending on the heat transfer 
from the source to the medium. 

The above description requires the function 
8(z, t) in order to determine the temperature 

variation in every point of the space. The function is 
the medium state at time t, so we have to measure 
and store many temperature values, one for each 
value of x, to know the state. The medium is an 
infinite dimensional system and it is described by 
partial differential equations. 

To get a more approximate model that is more 
manageable for practical purposes we can use 
discretization of the medium. Let us make a nine­
order model for the heat distribution in a two 
dimensions xOy plane, presented in Fig. 2. 

y 
85 84 86 

0 0 0 

820 
8A • o 87 

0 0 0 
83 

81 88 

x 

Fig. 2. Sensor Distribution 
We make a discretization of the homogenous 

medium into 9 parts, where the temperature values 
at time t are denoted by 8j, i=A, 1,,,,, 8, respectively. 
This means that we work with 9 state variables 8 i 

for each point i at a distance Zi from the origin of the 
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heat source. The detected sensor's value is 8A • 

For this model we may write the conservation of 
energy relationship for each point: 

d 
- W = P . - P . (10) dt ' m,' Out,J 

were Wi is the energy stored in point i, Pin,i is the 
input power to point i and P out,j is the output power 
ofpointj. 

Let the heat capacity of each point be denoted by 
C and the heat transfer coefficient between the 
points by Ki,J' We can write the following equation: 

d 
dt C8 j (t) = K kj [8 k (t) - 8 j (t)] + K j j [8 j (t) - 8 /t)] + 

+ K 1,i[81 (t) -8 jet)] - Kj,m [8 j (t) - 8m (t)]-

- Kj,n [8 j (t) - 8n (t)] - Kj,p [8 j (t) - 8 p (t)], 

i, j, k, m, n, p = A,I, ... ,8 (11) 
The heat source of power P is positioned in the 

origin of the coordinate systems. We can apply a 
coordinate transformation and move the source to 
point (h. In this case, for unity coefficients, we may 
consider the following state space equations for the 
model: 

SA - 5,41 0,7 0 1 0,7 0 8A 0 

8, 1 - 3,7 0 0 0 0 0,7 1 8, 0 

82 0,7 1 1 0 0 0 0 0 1 82 

8., 1 0 -2,7 -3,7 1 0.7 0 0 0 8, 0 

84 0 0 1 -2 1 0 0 0 8, + 0 P 

8, 1 0 0,7 1 - 3,7 1 0 0 8, 0 

86 0.7 0 0 0 1 -2 1 0 86 0 

87 0,7 0 0 0 1 - 5,4 1 8, 0 

8. 0 1 0 0 0 0 0 1 - 2 8. 0 
(12) 

The unit step response (P= 1) of the above system is 
presented in Fig. 3. 

5 10 15 20 25 30 35 

Fig. 3. Time propagation oftemperature for all 
nine sensors 

Using the above presumptions we can develop a 
feedforward neural network with continuous values 

to obtain an estimate 8A of the state 8A based on 
the adjacent measured states 8i, i=I, ... ,8. The neural 

network used for this purpose has the structure 
presented in Fig. 4. 
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Fig. 4. Neural Network Structure 
According to Kolmogorov's theorem [13] we are 

using two hidden layers of neurons with biases to 
obtain a reduced error of approximation of the 
estimate. The input layer has 16 neurons each for 
the present and previous values of the measured 
temperatures. The output layer has one neuron for 
the estimated temperature. The first and the second 
hidden layers have a reduced number of neurons, 32 
and 16 neurons, respectively. These numbers 
resulted after some iterative trainings of the neural 
network using Levenberg-Marquardt method. The 
training set was obtained using present and anterior 
values of the sensors, (81(t), 82(t), 83(t), 84(t), 8s(t), 
86(t), 87(t), 8g(t), 81(t-l), 82(t-1), 83(t-l), 84(t-l), 85(t-
1), 86(t-I), 8?(t-l), 88(t-l); 8A(t» taken from the 
transient responses of the model (11) and (12). 

The activation functions of the neural network 
are the hyperbolic tangent function for the hidden 
layers and the first-order linear function for the 
output layer. The sum square error after 300 training 
epochs is presented in Fig. 5. 

Sum·Squared Network Error for 300 Epochs 
10' r----,---~-----,-~-~------, 

10' 

10" ~---;:;;---=----;-;::::---:-:-.:-_::-:-:---~ o 50 100 150 200 250 300 
Epoch 

Fig. 5. Training sum squared error 
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Fig. 6. Estimated SA and corrupted SAc values for 
sensor A 

The neural network was tested with other different 
test sets. The output error was less then 0.2%. 

We assumed that sensor node A was attacked at 
t= 18 and as a result its output value e Ac has the 
shape depicted in Fig.6. On the other hand, the 

A 

sensor's estimated output value 8A , predicted by the 
above-mentioned neural network differs from the 
actual value of the malicious sensor A showing that 
something wrong happened to sensor A (Fig. 6). In 
these circumstances, the decision block will 
decrease the corresponding trust factor b A ' 

according to equation (6). 

4 Conclusion 
The goal of our research was to design a node 
capture resilient scheme that eliminates the effect of 
corrupted data provided by malicious sensors. 
Considering the detection of anomalies and intruders 
in sensor networks to be a very important issue, we 
relied on neural predictors based on past/present 
values of neighboring sensors to solve this problem. 
After detection, the sensor network can take 
decisions to investigate, find and remove malicious 
nodes if possible, computing a trust factor for each 
sensor. 
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