Copper Electrodeposition in the Presence of Guar or Activated Polyacrylamide

Thesis submitted by CESIMIRO P FABIAN In August 2005

for the degree of Doctor of Philosophy in the Chemical Engineering Department, School of Engineering James Cook University

STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright act and;

I wish this work to be embargoed until 25 July 2006.

Signature

Date

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Signature

Date

ABSTRACT

In the copper electrodeposition industry, it is essential to dose very small concentrations of additives including chloride ions to control the physical and chemical properties of the copper deposit. It is also widely recognized in the industry that the adsorption of these additives at electrode surfaces significantly influences the current-potential relationships. This thesis presents the development of a new organic additive for copper electrowinning and electrorefining. This thesis also presents the comparison between the new organic additive 'activated polyacrylamide' and Guartec (Guar), the industry-standard organic additive for electrowinning under industrial conditions.

The first half of the thesis presents the results of bulk electrolysis experiments using either a rotating cylinder electrode (RCE) or parallel plate electrodes. The RCE was selected since it yields an uniform current distribution. In these experiments, the effectiveness of both organic additives in the presence of chloride ions was determined by directly measuring the surface roughness of the copper deposit. The second half presents Cyclic Voltammetry and Electrochemical Impedance Spectroscopy data using a rotating cylinder electrode to measure and quantify the behaviour of Guar and APAM at the electrolyte/electrode interface also in the presence of chloride ions.

It has been found from the literature review that polyacrylamide hydrolysis in weakly acidic solutions produces block copolymers. The diffusion layer thickness was determined from experimental limiting current density data. In this thesis/work, a 15million Dalton molecular weight polyacrylamide was dissolved in full-strength electrolyte (Cu, 36g/L; H₂SO₄, 160 g/L and chloride ions, 25mg/L) and in solutions with systematically halved concentrations, and in water and alkaline solutions at 50°C for two hours under stirring. The effect of the preparation media of polyacrylamide was tested by measuring the surface roughness of the copper deposits obtained after 6-hours electrowinning at 50°C using a rotating cylinder electrode. The statistically significant lowest surface roughness (6.59μ m \pm 0.49) was obtained when polyacrylamide was prepared in 16-fold diluted electrolyte (10g/L sulfuric acid and 2.25g/L cupric ions and 1.56mg/L chloride ions). The chemical structure of the polyacrylamide was examined after the preparation in 16-fold electrolyte using NMR. The NMR indicated that less than 10% of the non-ionic polyacrylamide was hydrolysed and it appears to consist of a block copolymer of polyacrylamide and polyacrylic acid. The new organic additive was named activated polyacrylamide (APAM)¹.

A comprehensive study on the effect of Guarfloc66 (Guar), the 40-year-old industry-standard organic additive, on copper electrowinning was lacking prior to this thesis. Guar was used as a basis against which to compare the effectiveness of APAM.

This study provides an industrial-relevant baseline against which the new additive was compared. Therefore, the fundamental processes occurring at the stainless steel/copper metal-electrolyte interface in the presence and absence of Guar and APAM were investigated. Fractional factorial experimental designs for copper electrowinning (EW) were conducted in which the effect of current density, temperature, diffusion layer thickness, Guar and APAM on surface roughness was studied. The evolution of dendrite formation was evaluated using Peaks-per-Centimeter and surface roughness. These above tests were verified by experimental design tests up to 12-hours EW time. The overall results indicated that a more uniform surface and lower roughness was obtained using APAM than Guar.

Cyclic voltammetry (CV) was used to understand the polarization behaviour of Guar and APAM at the interface of the copper electrolyte/copper cathode. Cyclic

¹ A property rights application (PCT/AU2005/001262) for this material has been filed with Intellectual Property, Australia.

voltammetry tests on the ageing of 2mg/L Guar in the electrolyte at 45°C indicated that Guar *depolarized* the electrode. At 300A/m² current density about 14mV maximum depolarization was obtained at 2-3 hours residence time whether the working electrode was stainless steel or freshly pre-plated copper metal. In contrast, CV tests showed that the presence of 2mg/L APAM *polarized* the electrode at 45°C and 65°C. At 300A/m² current density and 45°C the presence of APAM resulted in a significant polarization of the electrode on pre-plated copper over a 5-hour period, i.e., 13 mV at 5-hours residence time. This polarization value at 65°C was achieved after 1-hour residence time and the electrode remains significantly polarized over a 7-hour period.

Electrochemical Impedance Spectroscopy (EIS) tests were also conducted to characterize the electrode processes in the presence and absence of Guar and APAM. The electrochemical kinetics of the process was evaluated in terms of the charge-transfer resistance (or polarization resistance) and the double-layer capacitance. The electrochemical system of copper deposition in the presence and absence of Guar and APAM is described theoretically in terms of an equivalent circuit. The EIS experimental data was fitted to the equivalent circuit using complex nonlinear least-squares (CNLS) technique with LEVM and ZSimpWin[™] software packages. The electrode process in the presence of Guar or APAM was quantitatively characterized using the high frequency loop only since it represents the kinetic control of the process. The low frequency loop that represents the mass-transfer control was used qualitatively only.

EIS tests indicate that Guar *decreased* the charge-transfer resistance values obtained from equivalent circuit modelling from about $0.830hm.cm^2$ in its absence to $0.740hm.cm^2$ at 2mg/L, -490mV versus the Hg/Hg₂SO₄ saturated in K₂SO₄, (MSE) for about 5-hours therefore *increasing* the electrochemical kinetics. The maximum reduction was determined to be $0.0860hm.cm^2$ at 2-3hours residence time of Guar in the electrolyte. Therefore, electrowinning using the RCE, CV and EIS indicated that the role of Guar during the deposition process is to act as a *depolarizer*.

The presence of APAM in the electrolyte, in contrast, indicated that the chargetransfer resistance *increased* from about 0.79-ohm.cm² to 1-ohm.cm² for over 7-hours at 45°C and -490mV vs. MSE. The maximum increase in the charge-transfer resistance value was 0.23-ohm.cm² at 3-5hours residence time. These set of tests with APAM were also repeated at -470mV vs. MSE and 45°C, the results also indicated that APAM *increased* the charge-transfer resistance under these conditions. At this potential, a maximum increase of 0.42-ohm.cm² was determined at 3-5hours. When these tests were also repeated at electrorefining temperature (65°C) and -445mV vs. MSE, the presence of APAM in the electrolyte also *increased* the charge-transfer resistance from about 0.39 up to 0.69-ohm.cm² for over 5-hours. The maximum increase of 0.34-ohm.cm² was at 2-hours for 65°C. Electrowinning tests using the RCE, CV and EIS overall results with APAM were found to be consistent. In summary, APAM was found to *decrease* the electrochemical kinetics and that the role of APAM is as a levelling agent during the deposition process.

Guar and APAM decreased the double-layer capacitance but the equivalent circuit simulation data indicated that while the maximum reduction for Guar was 0.46 x $10^{-5} \,\mu\text{F/cm}^2$, the maximum reduction for APAM was $1.2 \times 10^{-5} \,\mu\text{F/cm}^2$ at 45°C and 6.8 x $10^{-5} \,\mu\text{F/cm}^2$ at 65°C. The overall EIS results may indicate that APAM is adsorbed more specifically than Guar.

It was also shown that the effect of temperature on the ageing sequence of APAM is consistent with reaction kinetics, i.e., it is faster at 65°C than at 45°C as would be expected. Results were presented for the rotating disc electrode (RDE) also. The EIS data at 65°C and 45°C are consistent with the CV data whether the RCE or RDE was used. However, the EIS data with the RDE was not amenable to being modelled using the most commonly referred equivalent circuit for electrochemical systems.

Bench-scale *continuous* electrowinning tests using parallel plate electrodes where APAM and Guar were also dosed continuously and independently also indicated that APAM produces smoother deposits than Guar. The cross sections of the copper deposits were examined using scanning electron microscopy (SEM) and showed that Guar produced *porous* deposits and APAM produced *slightly columnar* deposits.

It is therefore concluded that the results of electrowinning, CV and EIS tests correlate: Guar *depolarizes* the electrode enhancing *depolarization* of the electrode by chloride ions and therefore increasing the growth rate with simultaneous formation of

voids and porosity. APAM *polarizes* the electrode or decreases the rate of the deposition process and therefore assists the nucleation rate and produces purer copper deposits. Voids and porosity are probably reduced by the continuous formation of crystallites and their coalescence as indicated by x-ray diffraction data. The overall results indicate that APAM is more specifically *adsorbed* than Guar at the electrolyte/copper-metal interface and APAM acts as a levelling agent.

Acknowledgments

I would like to express my deep gratitude to my supervisors Dr. Michael Ridd, Dr. Gregory Griffin and Dr. Madoc Sheehan for their support, trust and enthusiasm during the duration of this project. I am especially grateful to Dr. M. Ridd for his patient guidance throughout the duration of this endeavour.

I would also like to thank Dr. Sherryl Robertson, with whom I spent great moments discussing hydrometallurgy and in particular electrodeposition for her friendliness and advice.

I would like to thank my parents Buenaventura and Emilia who I came to fully appreciate after leaving my country of birth. Their belief in the value of education for their children as well as their thoughts and love guides me through life. To my wife Ana Luz and my children Irma, Fiorella and Joshua for their support.

Finally, I would like to thank Mount Gordon Operations of Western Metals Copper Ltd. for their financial support for the duration of this project.

TABLE OF CONTENTS

STATEMEN	T OF ACCESS II
STATEMEN	T OF SOURCES III
DECLARAT	ION III
ABSTRACT	IV
TABLE OF	CONTENTSX
LIST OF TA	BLESXIV
LIST OF FIG	GURESXVI
CHAPTER 1	
INTRODUC	ΓΙΟΝ1
1.1 1.2	Problem Statement4Thesis Objectives5
CHAPTER 2	
LITERATU	RE REVIEW7
2.1 2.2 2.3 2.4 2.5 2.6	Electrodeposition Process Fundamentals7Transport Processes in Electrolytic Solutions82.2.1 Mass Transfer8Rotating Cylinder Electrodes10Electrochemical Kinetics Fundamentals14Effect of Additives on Copper Electrocrystallization172.5.1 Introduction172.5.2 Effect of Chloride Ions on Nucleation and Growth192.5.3 Effect of Organic Additives on Nucleation and Growth202.5.4 Copper Electrowinning in the Presence of Organic Additives2223Polyacrylamide Hydrolysis and Adsorption24
2.6.1	Introduction242.6.2Polyacrylamide Hydrolysis Mechanisms262.6.2.1 Polyacrylamide Hydrolysis in Neutral and Alkaline Solutions272.6.2.2 Polyacrylamide Hydrolysis in Acid Solutions282.6.3Polyacrylamide Adsorption Mechanisms312.6.3.1 Polyacrylamide Adsorption onto Metals and Metal Alloy 32342.6.3.3 Cleavage of Polyacrylamide342.6.3.4 Adsorption Mechanism of Polyacrylamide34

2.7 2.8	Summary References	36 38
CHAPTER 3		44
EFFECT OF	PREPARATION MEDIA OF POLYACRYLAMIDE ON SURFAC	CE 44
Roodin(Es		
3.1 3.2	Introduction Experimental 3.2.1 Design and Construction of Rotating Cylinder Electrode for	44 46
	Copper Electrowinning3.2.3 Determination of Limiting Current Density and Diffusion Layer Thickness	46 r 50
	3.2.4 Effect of Fluid Flow on Surface Roughness of Electrowon Copp3.2.5 Experimental Results	per57 57
3.3	 Effect of Polyacrylamide Preparation Media on Surface Roughness of Electrowon Copper 3.3.1 Introduction 3.3.2 Experimental Conditions 	59 59 59
3.4	Experimental Results on the Effect of Polyacrylamide Preparatio Media on Surface Roughness of Electrowon Copper 3.4.1 NMR Analysis of Activated Polyacrylamide	n 60 64
3.5 3.6	 Effect of Activated Polyacrylamide Ageing on Surface Roughness Comparison of Polyacrylic Acid and Activated Polyacrylamide 3.6.1 Introduction 3.6.2 Comparison of Polyacrylic Acid and Activated Polyacrylamide 4 Hour Electrowinning Test 3.6.3. Comparison of Polyacrylic Acid and Activated Polyacrylamide 12 Hours Continuous Electroming 	 s65 67 67 in 68 in (0)
3.7 3.8	Discussion and Conclusions References	09 70 73
CHAPTER 4		76
EXPERIMEN	NTAL DESIGNS FOR COPPER ELECTROWINNING	76
4.1. 4.2	Introduction Experimental Conditions 4.2.1 Copper Electrowinning and the Effect of its Main Operating Variables	76 77 79
4.3	 Experimental Results 4.3.1 2⁵⁻² Experimental Design Results at 45°C - 55°C 4.3.2 2⁵⁻² Experimental Design Results at 45°C - 65°C 4.3.3 Scanning Electron Microscopy of Electrowon Copper Deposits 4.3.4 Summary from Fractional Factorial Experimental Design 4.3.5 2² Experimental Design – APAM <i>to</i> Guar Ratio at 50°C and 6-Hours EW Time 4.3.6 2² Experimental Design APAM or Guar at 50°C and 4.6 Hours EW Time 	80 80 85 87 92 93 98

xi

		4.3.7 2^2 Experimental Design – APAM or Guar at 50°C and 6 Hours	3
		EW Time 4.2.9 ADAM or Cuor at 50°C for 12 Hours EW Time	102
	11	4.5.8 APAM of Gual at 50 C for 12 Hours EW Time	108
	4.4.	References	113
СПАТ	TED 5		115
CHAI	TER 5	,	115
KINE	TICS (OF COPPER DEPOSITION IN THE PRESENCE OF GUAR A	ND
ACTI	VATEI	D POLYACRYLAMIDE USING CYCLIC VOLTAMMETRY A	ND
ELEC	TROC	HEMICAL IMPEDANCE SPECTROSCOPY	115
	5.1	Introduction	115
		5.1.1 Equivalent Circuit for Electrochemical Systems – Copper	
		Deposition	118
		5.1.2 Measurement Modelling of Electrochemical Impedance	100
	50	Spectroscopy Data	122
	5.Z	Experimental Cyclic Voltammetry in the Presence of Guar at 45° C	120
	5.4	Cyclic Voltammetry in the Presence of Activated Polyacrylamid	123 e
	0.1	at 45°C	132
	5.5	Cyclic Voltammetry in the Presence of Activated Polyacrylamid	e
		at 65°C	134
	5.6	Electrochemical Impedance Spectroscopy Results in the Abser	nce
		of Additives	138
	5.7	Electrochemical Impedance Spectroscopy Results in the	
		Presence of Activated Polyacrylamide at -470mv vs. MSE and	1 1 1
	5 8	45 C Electrochemical Impedance Spectroscopy Posults in the	141
	5.0	Presence of Guar at -490mV vs. MSE and 45°C	147
	5.9	Electrochemical Impedance Spectroscopy Results in the	
	0.0	Presence of Activated Polyacrylamide at -490mV vs. MSE and	
		45°C	150
	5.10	Electrochemical Impedance Spectroscopy Results in the	
		Presence of Activated Polyacrylamide at -445mV vs. MSE at 6	5°C156
	5.11	Discussion and Conclusions	159
	5.12	References	162
CHAF	PTER 6		169
BENC	CH SCA	LE COPPER ELECTROWINNING TESTS	169
	6.1	Introduction	169
	6.2	Experimental	170
	6.3	Experimental Results	173
	6.4	Scanning Electron Microscopy of Copper Cathode Cross-Section	ons179
	6.5	Determination of Crystallite Size	180
	6.6	Conclusions	183
	6.7	References	184
CHAF	PTER 7	,	186

SUMMARY	AND CONCLUSIONS	186
7.1	Introduction	186
7.2	Hydrolysis and Adsorption of Polyacrylamide	187
7.3	Rotating Cylinder Electrodes	189
7.4	Effect of Polyacrylamide Preparation Media on Surface	
	Roughness	190
7.5	Comparison of Activated Polyacrylamide with Guar	192
	7.5.1 Effect of Guar and APAM on Surface Roughness of Coppe	r
	Deposits	193
	7.5.2 Physical Appearance, Scanning Electron Microscopy and G	eneral
	Area Detection Diffraction Solutions (GADDS) Results	195
	7.5.3 Cyclic Voltammetry and Electrochemical Impedance	
	Spectroscopy Results	196
7.6	References	201

LIST OF TABLES

Table 1-1: Industry-Standard Additives Used in Copper Electrodeposition	5
Table 2-2: Effect of Hydrolysis Media on the Population of Various Structure	res Starting
from Non-hydrolysed Polyacrylamide ⁵⁴	29
Table 2-3: Hydrolysis Level and Triad Mole Fractions ^{56, 58}	
Table 3-4: Electrolyte Composition and Other Variables	51
Table 3-5: Effect of RPM and Temperature on Diffusion Layer Thickness	
Table 3-6: Electrolyte Composition and Other Variables	
Table 3-7: Effect of Diffusion Layer Thickness on Surface Roughness	58
Table 3-8: Effect of Polyacrylamide Preparation Media on Surface Roughness	ss 61
Table 3-9: Effect of APAM Degradation in 16-fold DE and Full-Strength Ele	ectrolyte. 66
Table 3-10: Surface Roughness Using Polyacrylic Acid and Activated Polya	crylamide
	69
Table 3-11: Comparison of PAA and APAM in 12 Hours Continuous EW	70
Table 4-12: Electrolyte Composition and Additives Preparation Media	78
Table 4-13: Two 2 ⁵⁻² Fractional Factorial Experimental Designs	
Table 4-14: 2 ⁵⁻² Fractional Factorial Experimental Results-Temperature Leve	els 45°C-
55°C	
Table 4-15: 2 ⁵⁻² Fractional Factorial Experimental Results–Temperature Leve	els 45°C-
65°C	
Table 4-16: Electrowinning Conditions for APAM-to-Guar Ratio	
Table 4-17: 2 ² Experimental Design and Results for APAM-to-Guar Ratio	94
Table 4-18: Electrowinning Conditions for APAM or Guar	
Table 4-19: 2 ² Guar-or-APAM Experimental Design and Results	
Table 4-20: 2 ² Experimental Design APAM-or-Guar at 10 RPM - 50°C - 6 H	ours EW
Table 4-21: Effectiveness of Guar and APAM to Control Dendrite Growth	
Table 5-22: Experimental Conditions for CV and EIS Experiments	
Table 5-23: De-polarization Behaviour of Guar at 45°C	
Table 5-24: Kinetic Parameters for Copper Deposition in the Presence of Gua	ar at 45°C
Table 5-25: Polarization in the Presence of APAM at 45°C	

Table 5-26: Polarization in the Presence of APAM at 65°C	. 136
Table 5-27: Results for APAM at 45°C and -470mV CD versus MSE	. 144
Table 5-28: Simulation Results for Guar at 45°C and -490 mV DC versus MSE	. 148
Table 5-29: Results for APAM at -490mV CD versus MSE and 45°C	. 151
Table 5-30: Results for APAM at 65°C and -445mV CD versus MSE	. 157
Table 5-31: Maximum Change in Charge-Transfer Resistance and Double-Layer	
Capacitance Relative to the Presence and Absence of Guar and APAM.	. 161
Table 6-32: Experimental Conditions	. 172
Table 6-33: GADDS Diffractometer Parameters	. 181
Table 6-34: Kruskal-Wallis Test Results for APAM Crystallite Size	. 182
Table 6-35: Kruskal-Wallis Test Results for APAM and Guar Crystallite Size	. 183
Table 7-36: Industry-Standard Additives Used in Copper Electrodeposition	. 187
Table 7-37: Two 2 ⁵⁻² Fractional Factorial Experimental Designs	. 193
Table 7-38: Charge-Transfer Resistance and Double-Layer Capacitance Differences	due
to the Presence of Guar and APAM	. 199

LIST OF FIGURES

Figure 1-1: Mount Gordon Operations Flowsheet ^{4, 5}
Figure 2-2: Schematic representation of the structure of the double-layer in electrolyte
solution during electrochemical reactions where anions are specifically
adsorbed18
Figure 2-3: Schematic Representation of Different Growth Modes in Metal Deposition
on Foreign Substrates
Figure 2-4: The chemical structure of Guar ⁴⁴
Figure 2-5: Nonionic polyacrylamide
Figure 2-6: Anionic or Hydrolysed polyacrylamide
Figure 2-7: Polyacrylimide Molecule
Figure 2-8: Hydrogen Bonding of Non-ionic Polyacrylamide
Figure 2-9: Blocky polyacrylamide may exhibit covalent bonding with divalent ions
Calcium and Iron ⁶⁴
Figure 2-10: Postulated Structure of Adsorbed Partially Hydrolysed Polyacrylamide
Layer at the Copper-Electrolyte Interface
Figure 3-11: Rotating Cylinder Electrode – Top Section
Figure 3-12: Rotating Cylinder Electrode – Bottom Section
Figure 3-13: M1 Mahr Perthometer Measuring the Surface Roughness of Electrowon
Copper
Figure 3-14: Current-Potential Curve – First Cycle Starting on pre-plated copper at
1mV/sec with the RCE at 0rpm (Free Convection) and 45°C and 65°C in the
Absence of Additives to determine the Limiting Current Density (1037 and
1432 A/m ²)
Figure 3-15: Current-Potential Curve – Initial Cycle Starting on Bare Stainless Steel at
1mV/sec with the RCE at 10rpm and 45 and 65°C in the Absence of
Additives to determine the Limiting Current Density (1118 and 1497 A/m^2).
Figure 3-16: Current-Potential Curve – First Cycle Starting on Bare Stainless Steel at
1mV/sec with the RCE at 25rpm and 65°C in the Absence of Additives to
determine the Limiting Current Density (1155 and 1666 A/m ²)53
Figure 3-17: Schematic Presentation of the Concentration Profile of Cupric Ions at the
Electrode/ electrolyte Interface and the Diffusion Layer Thickness

Figure 3-18:	Variation in Kinematic Viscosity with Temperature	55
Figure 3-19:	Dependence of Diffusion Coefficient of Cupric Ions as a Function of	
r	Temperature	55
Figure 3-20:	Effect of RPM on Calculated and Experimental Diffusion Layer	
-	Thickness at 45°C and 65°C	56
Figure 3-21:	Error bar plot of the effect of preparation media on surface roughness of	•
t	the copper deposits	62
Figure 3-22:	¹³ C NMR signal intensity of activated polyacrylamide prepared in 10g/L	,
S	sulfuric acid and deuterium oxide (D_2O) solutions at 50°C for 2 hours	65
Figure 3-23:	Degradation of Polyacrylamide in 16-fold Diluted Electrolyte and Full-	
S	Strength Electrolyte	67
Figure 4-24:	Rotating Cylinder Electrode Equipment	79
Figure 4-25:	Effect of Diffusion Layer Thickness and Current Density on Surface	
]	Roughness	82
Figure 4-26:	Effect of Current Density and Guar on Surface Roughness	83
Figure 4- 27	': Studentized Residuals Plot	83
Figure 4-28:	Residuals vs. Predicted Plot	84
Figure 4-29:	Outlier T Diagnostic Plot	84
Figure 4-30:	Significant Effect of APAM Concentration on Surface Roughness	87
Figure 4-31:	Run 1- Cross section of copper cathode obtained at 45°C, 28mA/cm2,	
(0.5mg/L Guar, 1mg/L APAM and 110 μ m δ . Surface Roughness, Ra =	
1	5.95±0.47 microns.	88
Figure 4-32:	Run2 - Cross section of copper cathode obtained at 65°C, 28mA/cm2,	
(0.5mg/L Guar, 0.5mg/L APAM and 87 μ m δ . Surface Roughness, Ra =	
(6.36±0.64 microns.	88
Figure 4-33:	Run 3 - Cross section of copper cathode obtained at 45°C, 32mA/cm2,	
(0.5mg/L Guar, 0.5mg/L APAM and 110 μ m δ . Surface Roughness, Ra =	
	7.08±1.38 microns.	89
Figure 4-34:	Run 4 – Cross section of copper cathode obtained at 65°C, 32mA/cm2,	
(0.5mg/L Guar, 1mg/L APAM and $87\mu m \delta$. Surface Roughness, Ra =	
4	5.56±0.67 microns.	89
Figure 4-35:	: Run 5- Cross section of copper cathode obtained at 45°C, 28mA/cm2,	
-	1mg/L Guar, 1mg/L APAM and 87 μ m δ . Surface Roughness, Ra =	
4	5.83±0.72 microns	90
	Х	vii

Figure 4-36: Run 6 – Cross section of copper cathode obtained at 65°C, 28mA/cm2,
1 mg/L Guar, 0.5mg/L APAM and 110μ m δ . Surface Roughness, Ra =
6.86±2.28 microns
Figure 4-37: Run 7 – Cross section of copper cathode obtained at 45°C, 32mA/cm2,
1mg/L Guar, 0.5mg/L APAM and 87 μ m δ . Surface Roughness, Ra, =
5.99±0.66 microns
Figure 4-38: Run 8 – Cross section of copper cathode obtained at 65°C, 32mA/cm2,
1 mg/L Guar, 1mg/L APAM and 110 μ m δ . Surface Roughness, Ra, =
5.66±069 microns
Figure 4-39: Error Box Plot of the Effect of APAM-to-Guar Ratio on Surface
Roughness. Run 1 – Guar 0.25mg/L and APAM 0.125mg/L, Run 2 – Guar
0.25mg/L and APAM 0.375mg/L, Run 3 – Guar 1mg/L and APAM
0.5mg/L and Run 4 – Guar 1mg/L and APAM 1.5mg/L94
Figure 4-40: Significant Effect of APAM/Guar Ratio and Guar on Surface Roughness
Figure 4-41: Error Box Plot of the Effect of APAM-to-Guar Ratio on PPC. Run 1 –
Guar 0.25mg/L and APAM 0.125mg/L, Run 2 – Guar 0.25mg/L and APAM
0.375mg/L, Run 3 – Guar 1mg/L and APAM 0.5mg/L and Run 4 – Guar
1mg/L and APAM 1.5mg/L96
Figure 4-42: Studentized Residuals Plot
Figure 4-43: Residuals vs. Predicted Plot
Figure 4-44: Outlier T Diagnostic Plot
Figure 4-45: Error Bar Plot of Surface Roughness, Ra, µm after 4.64-Hours EW Time.
Run 1 - Center Point, 0.5mg/L APAM and 0.5mg/L Guar; Run 2 - Nil
additives; Run 3 – 1mg/L APAM; Run 4 – 1mg/L Guar and Run 5 – 1mg/L
both APAM and Guar99
Figure 4-46: Error Bar Plot of PPC after 4.64-Hours EW Time. Run 1 - Center Point,
0.5mg/L APAM and 0.5mg/L Guar; Run 2 – Nil additives; Run 3 – 1mg/L
APAM; Run 4 – 1mg/L Guar and Run 5 – 1mg/L both APAM and Guar.100
Figure 4-47: Effect of Guar or APAM on PPC after 6-Hours. EW Time 103
Figure 4-48: The Significant Effect of Guar and APAM on PPC after 6-Hours EW
Time
Figure 4-49: Run 1 - No Additives
Figure 4-50: Run 2 – Guar Only
xviii

Figure 4-51: Run 2R – Guar Only 10	7
Figure 4-52: Run 3 – APAM Only	7
Figure 4-53: Run 4 – APAM and Guar	8
Figure 4-54: SEM Micrograph of the Copper Cathode obtained using APAM after 12	
Hours EW time (75X Mag)110	0
Figure 4-55: Photograph Comparing Guar and APAM after 12 Hours EW Time 110	0
Figure 5-56: Parameters Definition in LEVM Equivalent Circuit B ²⁸ 120	0
Figure 5-57: Complex-Plane Plot for an Electrochemical System 12	1
Figure 5-58: Rotating Cylinder Electrode Configuration used for CV and EIS 12:	5
Figure 5-59: Fluid Flow Produced by the RCE at 25rpm and 25°C in Water 127	7
Figure 5-60: Effect of Guar Residence Time on Depolarization at 45°C 129	9
Figure 5-61: Effect of Time on the De-polarization Behaviour of Guar at 45°C at	
300A/m ² Current Density	1
Figure 5-62: Effect APAM Residence Time on Polarization at 45°C	3
Figure 5-63: Effect of APAM Ageing on Polarization on Pre-plated Copper at 45°C. 134	4
Figure 5-64: Effect of APAM Residence Time on Polarization at 65°C and 10rpm13	5
Figure 5-65: Polarization of APAM on Pre-plated Copper at 65°C 130	6
Figure 5-66: Effect of Temperature on APAM Polarization at 300 A/m^2 and 45°C and	
65°C13′	7
Figure 5-67: Complex-Plane Plot of Experimental and Simulated EIS data at -470	
$(30 \text{mA/cm}^2 \text{ - red})$ and -490mV $(34.2 \text{mA/cm}^2 \text{ - blue})$ vs. MSE and 45° C in	
the Absence of Organic Additives	8
Figure 5-68: Complex-Plane Plots of Experimental EIS in the Presence and Absence of	•
APAM at -470mV vs. MSE and 45°C 142	2
Figure 5-69: Complex-Plane Plot of Experimental and Simulated Impedance Spectra in	1
the Presence and Absence of APAM at -470mV versus MSE and 45°C.	
Overpotential: 93mV vs. SHE	3
Figure 5-70: Effect of Time on Simulated Charge-Transfer Resistance (P4) in the	
Presence of APAM at -470mV DC versus MSE at 45°C	5
Figure 5-71: Effect of Time on the Simulated Double-Layer Capacitance (P5) in the	
Presence of APAM at -470mV DC vs. MSE and 45°C 143	5
Figure 5-72: Complex-Plane Plot of Experimental and Simulated Impedance Spectra at	
45°C in the Presence and Absence of Guar. Overpotential: 113mV vs. SHE	,
	7
xi	х

Figure 5-73: Effect of Time on Charge-Transfer Resistance in the Presence of Guar at
45°C149
Figure 5-74: Effect of Time on the Double-Layer Capacitance in the Presence of Guar
Figure 5-75: Complex-Plane Plot of Experimental and CNLS Simulated Impedance
Spectra in the Presence and Absence of APAM at -490mV versus MSE and
45°C. Overpotential: 113 vs. SHE
Figure 5-76: Effect of Time on the Simulated Charge-Transfer Resistance in the
Presence of APAM at -490mV DC versus MSE and 45°C 152
Figure 5-77: Simulated Double-Layer Capacitance versus Time in the Presence of
APAM at -490mV DC versus MSE and 45°C
Figure 5-78: Comparison of Complex-Plane Plot of Experimental and Simulated
Impedance Spectra in the Presence of both APAM and Guar at -490mV DC
and at 45°C154
Figure 5-79: Complex-Plane Plot using RDE at -490mV vs. MSE, 25rpm and 45°C
(50 ³ Hz-0.2Hz)
Figure 5-80: Complex-Plane Plot of Experimental and CNLS Simulated Impedance
Spectra in the Presence and Absence of APAM at -445mV versus MSE and
65°C. Overpotential: 90mV vs. SHE
Figure 5-81: Effect of Time on the Simulated Charge-Transfer Resistance (P4) in the
Presence of 2mg/L APAM at 65°C and -445mV DC vs. MSE 157
Figure 5-82: Effect of Time of the Simulated Double-Layer Capacitance (P5) in the
Presence of 2mg/L APAM at 65°C and -445mV DC vs. MSE 158
Figure 5-83: Complex-Plane Plot using RDE at -445mV vs. MSE, 25 rpm and 65°C
(50 ³ Hz-0.2Hz)
Figure 6-84: EW cell design – parallel plate electrodes
Figure 6-85: Bench Scale Process
Figure 6-86: Photograph of Bench Scale Equipment
Figure 6-87: Copper Deposit Obtained with Guar at 340A/m ² and 44 hours - 35minutes
Figure 6-88: Copper Deposit Obtained with Guar at 340A/m ² and 44 hours - 35minutes
Figure 6-89: Copper Deposit Obtained with APAM at 340A/m ² and 44hours-35minutes
XX

Figure 6-90: Copper Deposit Obtained with APAM at 340A/m ² and 44hours-35minut	es
	78
Figure 6-91: SEM micrograph of the copper deposit obtained using 0.68mg/L APAM	
(200 g/tonne Copper Cathode) at 340 A/m ² current density. Note the	
slightly fibrous or columnar structure1	79
Figure 6-92: SEM micrograph of the copper deposit obtained using 0.68mg/L Guar (20	00
g/tonne Copper Cathode) at 340 A/m ² current density. Note a porous	
copper cathode18	30
Figure 6-93: Median of Crystallite Size	32
Figure 7-94: Hydrogen Bonding of Non-ionic Polyacrylamide	38
Figure 7-95: Blocky polyacrylamide may exhibit covalent bonding with divalent ions	
such as calcium and iron ⁶⁴	39
Figure 7-96: Effect of Time on the De-polarization Behaviour of Guar at 45°C at	
300A/m ² Current Density) 7
Figure 7-97: Effect of Temperature on APAM Polarization at 300 A/m ² and 45°C and	
65°C	€7
Figure 7-98: Parameters Definition in Equivalent Circuit B ³³) 8