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Abstract:

A statistical model for predicting seasonal tropical cyclone landfalls in Queensland, Australia using an index of the El
Niño-Southern Oscillation (ENSO) is presented. The approach uses a generalised linear model (GLM) to relate seasonal
counts to the Southern Oscillation Index (SOI). A Bayesian methodology is employed to estimate parameters of the
model. The available tropical cyclone record is first separated into historical (1910/1911–1959/1960) and instrumental
(1960/1961–2004/2005) eras. Historical counts, which are considered to be less reliable observational sources, are used
to specify informative prior distributions when fitting the GLM to instrumental counts with the Bayesian approach. The
inclusion of historical information is found to lead to increased certainty in parameter estimates when compared to a
model where historical counts are excluded and a non-informative prior model used. Predictive distributions are given,
which allow inferences on seasonal landfall activity, given pre-seasonal values of the SOI. A cross-validation procedure
shows that the model incorporating historical information outperforms, in terms of mean-squared prediction error, both
the non-informative prior model and a model without the SOI-predictor (climatology). A trend analysis highlights possible
decadal variability in the relationship between ENSO and seasonal tropical cyclone activity. Copyright  2007 Royal
Meteorological Society
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INTRODUCTION

Australian region tropical cyclone activity exhibits
marked inter-seasonal variability. Nicholls (1979) first
showed that part of this variability was explained by
pressure anomalies at Darwin, an index of the El Niño-
Southern Oscillation (ENSO) phenomena, in the months
preceding the tropical cyclone season. Nicholls (1984)
subsequently demonstrated a link to ENSO indices based
on sea surface temperatures (SSTs), finding that tropi-
cal cyclone numbers were generally greater in seasons
preceded by high SSTs in the north Australian region
and low SSTs in the east equatorial Pacific. Since then,
several attempts have been made to produce seasonal
forecast models for Australian region tropical cyclone
activity using a lead value of the Southern Oscillation
Index (SOI) (e.g. Nicholls, 1992; Nicholls et al., 1998;
McDonnell and Holbrook, 2004).

Considerable effort has also been directed towards
investigating the relationship between ENSO and tropical
cyclone activity in the Coral Sea (Figure 1) and broader
southwest Pacific regions (e.g. Revell and Goulter, 1986;
Basher and Zheng, 1995; Grant and Walsh, 2001).
Basher and Zheng (1995) showed that the reduced
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(increased) incidence of storm activity in the Coral Sea
region during El Niño (La Niña) periods is largely
associated with localised SST variability. During El
Niño periods, positive SST anomalies tend to occur
further eastward towards the central Pacific causing
an eastward displacement in the origins of tropical
cyclones. This results in an effective decrease in tropical
cyclone activity nearer Queensland and consequently
fewer landfall events (Grant and Walsh, 2001). During
La Niña periods, the reverse pattern occurs and there is
a corresponding increase in activity near Queensland and
a higher number of landfall events.

Relatively little work has been undertaken to statisti-
cally model the relationship between Queensland land-
falling tropical cyclones and ENSO. This is somewhat
surprising because this landfall record can be consid-
ered fairly reliable for the period prior to the advent of
routine satellite reconnaissance in the 1960s. As a conse-
quence of concerns over the Australian region best-track
database detailed by Holland (1981), most recent studies
for the region have restricted their analyses to the post-
1960 period or later (e.g. Broadbridge and Hanstrum,
1998; Nicholls et al., 1998; McDonnell and Holbrook,
2004). Given that this represents a relatively short time
period, any statistical analysis undertaken on this record
is potentially subject to considerable uncertainties.
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Several strategies have been proposed to incorporate
sources of historical information when analysing seasonal
tropical cyclone activity. In fitting a Poisson regression
model to storm counts in the Australian region with
the SOI as a predictor, Solow and Nicholls (1990)
treated counts prior to 1965 as incomplete. They then
proposed a model for estimating the likelihood that an
event was observed during the pre-1965 period as a
means to reconstruct the incomplete portion of the record.
More recently, Elsner and Bossak (2001) highlighted
the advantages of Bayesian statistical methods as ideally
suited for combining instrumental hurricane records with
historical records in the United States. Elsner and Jagger
(2004) extended this Bayesian modelling strategy to the
prediction of seasonal US hurricane activity conditional
on several climate indices.

This study looks specifically at tropical cyclones mak-
ing landfall along the Queensland coast rather than the
entire Australian or southwest Pacific/Coral Sea regions.
In terms of methodology, the major difference with pre-
vious studies conducted in the Australian region is in the
adoption of a Bayesian modelling approach. The advan-
tages of this approach for this study are twofold. First,
as shown by Elsner and Bossak (2001) and Elsner and
Jagger (2004), it provides a means to combine sources
of historical observations with information from a period
of sampling that is considered reliable. The use of an
extended record thus offers an opportunity to quantify any
relationship between seasonal landfall activity and ENSO
with greater confidence. Second, the availability of a pos-
terior distribution for model parameters can more readily
facilitate predictive inference on future storm activity
within a probabilistic framework. A cross-validation pro-
cedure is also employed here to compare predictions
derived from the model that includes historical counts
against a model that uses only counts from the instru-
mental record. These models are also compared against

predictions from a model based on climatology without
the ENSO predictor. In addition, the possibility of trends
in the relationship between ENSO and tropical cyclone
landfalls over the twentieth century is examined.

DATA

In the Australian region, a tropical cyclone is defined
as a non-frontal, synoptic-scale system that has devel-
oped over tropical waters and has a 10-min mean sur-
face wind speed of at least 63 km/h near the centre of
an organised wind circulation. The best-track database
archived by the Bureau of Meteorology (BoM) com-
piles observations of these events in the Australian region
(∼90 °E–160 °E). This data set is available in an elec-
tronic format at http://www.bom.gov.au/climate/how/.
To ensure maximum accuracy, observations within this
database were cross-referenced with information from
the Queensland region (∼135 °E–165 °E) tropical cyclone
database, which was obtained from the Severe Weather
Section of the BoM in Brisbane. In addition to this, a
summary record of Queensland tropical cyclone impacts
(Callaghan, 2005) was used to verify the occurrence of
landfall events, particularly in the case of those occurring
prior to the 1960s.

A landfall was defined here as a tropical cyclone
originating in the Coral Sea and crossing the main-
land east coast (Figure 1). This definition also included
major near-coast islands. Note also that multiple land-
falls of the same tropical cyclone were counted as a
single event. A distinction was made between an instru-
mental era (1960/1961–2004/2005) and a historical era
(1910/1911–1959/1960) in the best-track observations.
The former represents the beginning of a formal struc-
ture in the tracking and recording of tropical cyclones,
whereas the latter represents a period in which sampling
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Figure 1. Coral Sea tropical cyclones making landfall along the east coast of Queensland over the period 1960/1961–2004/2005. Note that this
figure includes only events that attained a minimum central pressure of at least 990 hPa at some stage during their lifetime.
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was largely ad hoc in nature. The period post-1960 has
been used in a number of recent studies (e.g. Broadbridge
and Hanstrum, 1998; McDonnell and Holbrook, 2004) as
the date for which reliable data on tropical cyclones in
the Australian region are available.

As a consequence of major improvements in the
observational network in the second half of the last
century, tropical cyclone observations in the Australian
region are generally acknowledged to be sufficiently
reliable only from the 1960s onwards (Holland, 1981).
Before this, the detection and monitoring of tropical
cyclones relied on limited surface measurements from
ships and land stations. During this period, a number of
events, particularly those that remained well out at sea for
their duration, were liable to go undetected. Conversely,
it is also likely that some low-pressure weather systems
were mis-classified as tropical cyclones due in part to
inadequate information.

It is important to note, however, that there was a trend
towards a greater quantity and quality of observations
during the pre-1960s period, when a particular storm
crossed the coast. This was a result of a greater concen-
tration of population in coastal areas. As such, there was
an increased likelihood of identifying and obtaining direct
surface measurements for landfall events. This means that
a greater level of reliability can be attached to the land-
fall record than for the entire region for the era prior
to satellite observations. Indeed, Holland (1981) noted
that most landfall events in the eastern Australian region
dating back to 1910 would likely have been identified
because of a dense network of stations along this coast.
The analysis presented here is based on the assumption
that landfall events are relatively well represented in the
pre-1960s record.

Even over the post-1960 instrumental period, further
improvements in observational technologies and analysis
techniques have had an effect on the number of tropi-
cal cyclone events classified. Nicholls (1992) regressed
first differences of seasonal tropical cyclone numbers in
the entire Australian region and the SOI to reduce the
effect of trends due to these changes in observational
practices. Nicholls et al. (1998) attributed the presence of
an apparent shift to a lower frequency of events during the
mid-1980s to an increased ability to discriminate between
tropical cyclones and other low-pressure systems. Buck-
ley et al. (2003) identified a shift to a decreased period
of activity in the late 1970s for the case of Tasman Sea
tropical cyclones, which was also attributed to changes
in observational practices. Therefore, following Nicholls
et al. (1998), the analysis presented here used only tropi-
cal cyclones that attained a minimum central pressure of
≤990 hPa at some stage during their lifetime. Figure 2
shows the time series of counts of these events for the
period 1910/1911 to 2004/2005.

The seasonal ENSO index used in this analysis was
obtained from a 4-month average of the SOI, the
normalised mean sea-level pressure difference between
Darwin and Tahiti, for the period August–November.
Given that tropical cyclone events that comprise the
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Figure 2. Time series of (a) Queensland tropical cyclone landfall
numbers (with minimum central pressures of at least 990 hPa),
and (b) averaged August–November SOI, for the period

1910/1911–2004/2005.

landfall record occurred exclusively over the months
December to May, the August to November SOI is
taken here to be a suitable pre-season index. Monthly
values of the SOI were obtained from the BoM
(http://www.bom.gov.au/climate/current/soihtm1.shtml).
A 4-month mean is used in preference to a single monthly
value because monthly SOI values are more likely to
contain variability that is unrelated to the ENSO phe-
nomena itself (Trenberth, 1984). This SOI time series is
also shown in Figure 2.

REGRESSION ANALYSIS

The relationship between seasonal landfall counts and the
SOI is investigated using a regression analysis. Nicholls
et al. (1998) employed a linear regression on the August
SOI and storm counts in the entire Australian region as
a means to forecast seasonal activity. Both Solow and
Nicholls (1990) and McDonnell and Holbrook (2004)
adopted Poisson regression models in a similar context
using the September SOI. Poisson regression is a special
case of the generalised linear model (GLM), which is
an extension of the classical linear regression to include
response variables that follow any distribution in the
exponential family (McCullagh and Nelder, 1989).
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A Poisson process has a single parameter λ > 0,
here specifying the mean rate of event occurrence per
season. The Poisson regression is used to model a set
of counts that are observed in seasons i = 1, . . . , n yi ∈
0, 1, 2, . . . , ∞, with the parameter λi estimated as a
function of a vector of predictor variables x ′

i :

yi ∼ Poisson (λi)

ln(λi) = x ′
iβ (1)

The natural logarithm is the canonical link function for
the Poisson GLM (McCullagh and Nelder, 1989), while
β is a vector of regression parameters associated with the
predictors.

The GLM is typically fit by way of a maximum
likelihood procedure to estimate the parameter vector
β by maximising the likelihood function for the model
�(y|β). An alternative approach that is adopted here
follows Elsner and Jagger (2004) in using a Bayesian
strategy to fit the GLM. Fundamental to the Bayesian
approach is that model parameters are treated not as fixed
values but as random variables. These parameters are
assigned a prior density π(β), about which information
is expressed without reference to the data. Inference
concerning the parameters is then based on the posterior
distribution π(β|y), which according to Bayes’ Theorem
can be obtained from:

π(β|y) ∝ π(β) �(y|β) (2)

To implement a Bayesian approach it requires that prior
distributions be specified for the model parameters. This
leads to the following model structure used in this study:

yi ∼ Poisson(λi)

ln(λi) = β0 + β1SOI

β ∼ MVN(φ, �) (3)

This particular model structure represents a three-
stage hierarchical Bayesian approach (see e.g. Wikle and
Anderson, 2003). At the first stage, a Poisson process
with rate parameter λi is specified for the data describing
the process. At the second stage, a Poisson regression
is used to relate the log-transformed rate parameter to
the SOI, with parameters β = (β0, β1) describing the
strength of the association. In fitting this particular model,
the seasonal SOI values are divided by a factor of 10 to
allow for a more convenient representation of results.
Finally, at the third stage, a multi-variate normal (MVN)
prior distribution having mean vector φ and covariance
matrix � is assigned to the model parameters. The choice
of a MVN prior distribution follows that used by Elsner
and Jagger (2004).

To complete the model specification requires values for
φ and � of the MVN prior. In the non-informative case,
values for these parameters are chosen to reflect lack of
prior information, leading to the specification of a vague

prior distribution. In the informative case, prior informa-
tion can be derived from various sources, including expert
opinion, spatial information, and historical data. Owing
to the relatively short length of instrumentally recorded
data available for fitting the Poisson GLM, it is important
to adopt an approach that maximises use of all existing
information. For this reason, historical counts from the
pre-1960 period are used here to obtain an informative
prior.

Following Elsner and Jagger (2004), a bootstrap re-
sampling procedure is used to estimate prior parameters
from historical counts for the period 1910/1911–1959/
1960. This is achieved by fitting a GLM of the
form, ln(λi) = β0 + β1SOI, individually to 1000 boot-
strap samples of the historical counts. Fitting is done
through maximum likelihood. The purpose of using the
bootstrap re-sampling procedure is to allocate a likely
range of uncertainty to estimating model parameters from
historical counts. For each bootstrap sample, the param-
eter estimates β∗ = (β0

∗, β1
∗) are retained, allowing φ

and � to be calculated from the series β1
∗, . . . , β1000

∗.
Sampling distributions of the parameter estimates based
on these bootstrap samples are shown in Figure 3.

Bayesian inference for the model shown in Equa-
tion (3) is relatively simple with the use of Markov chain
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Figure 3. Sampling distributions of regression coefficients (a) intercept
term, and (b) SOI term, from GLM fit to bootstrap samples of historical

counts (1910/1911–1959/1960).
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Monte Carlo (MCMC) techniques. MCMC techniques
offer an indirect way of obtaining an estimate of the
posterior distribution. A straightforward approach is to
use a Gibbs sampling algorithm (Gelfand and Smith,
1990), which attempts to simulate a Markov chain in
such a way that its equilibrium distribution converges to
the target posterior π(β|y). Gibbs sampling involves an
iterative procedure that generates samples from the pos-
terior distribution by successively updating the individual
parameter components conditionally on the current values
of the other parameters (see e.g. Elsner and Jagger, 2004;
Wikle and Anderson, 2003). The Gibbs sampling scheme
used here involved a 5000 iteration burn-in period with
10000 subsequent updates used to summarise posterior
distributions of the regression parameters. Convergence
was verified by visual inspection of the chains for sta-
bility and by repeating the process for several different
initial values.

Using this procedure, the GLM was fit to counts from
the instrumental era (1960/1961–2004/2005) with the
informative prior derived from historical counts using
the bootstrap procedure described previously. Plots of
the posterior densities for the regression parameters are
shown in Figure 4. These were obtained by applying
a standard Gaussian kernel density estimator to the
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Figure 4. Posterior distributions of Bayesian GLM regression coeffi-
cients (a) intercept term, and (b) SOI term, based on non-informative

(dashed line) and informative (solid line) priors.

output MCMC samples. The posterior density for β1,
representing the SOI term, is seen to have its mass largely
greater than zero, meaning the majority of MCMC output
samples for this term are in the positive domain.

To check the sensitivity of the results to the prior
specification, the Bayesian GLM was also fit with a non-
informative prior. This places emphasis solely on the reli-
able sample information (i.e. instrumental record) in the
estimation process. The resulting posterior densities are
also plotted in Figure 4. Comparison of the informative
and non-informative prior cases indicates that inclusion
of historical data as prior information shifts the posterior
density for β1 slightly towards zero, indicating that the
influence of ENSO was perhaps weaker during the histor-
ical period. The posterior mean for β1 with the historical
prior is 0.41, while for the non-informative prior case
it is 0.52. It can also be seen from Figure 4 that poste-
rior distributions are less diffuse for the informative prior
case, indicating that uncertainty in parameter estimates is
reduced by the inclusion of historical information.

In order to examine the model’s predictive capacity,
two scenarios representing extremes of ENSO are pre-
sented as examples. In the Bayesian approach, the poste-
rior predictive density for some future observation z with
density function f (z|β) is defined by

f (z|y) =
∫

f (z|β) π(β|y) dβ (4)

The posterior predictive distribution accounts for
uncertainty in both parameter estimates and that due to
the variability of future observations. Direct calculation
of Equation (4) can again be avoided by using the output
posterior MCMC samples.

Figure 5 gives predictive distributions showing the
probability of observing a specified number of events in
a season, given SOI values of −25 and 25. These values
of the SOI correspond respectively to a major El Niño
and a major La Niña event. As expected, these show a
marked increase in the probability of observing one or
more events during a major La Niña event than during
a major El Niño event. For instance, the probability of
observing two or more landfalls in a season when the
SOI = 25 is about 54% higher than when the SOI = −25.

MODEL VALIDATION

Model skill in the forecast context was tested using a
leave-one-out cross-validation procedure. Cross-valida-
tion works by successively omitting an observation from
the data set, then re-fitting the model with the remain-
ing data, and using these estimates to obtain a prediction
of the omitted observation (Solow and Nicholls, 1990;
Elsner and Jagger, 2006). From this, the mean-squared
error (MSE) can be calculated from observed and pre-
dicted values. As the observed storm counts were found
to exhibit no serial correlation at lags of 1–10 seasons,
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Figure 5. Predictive distributions of the probability of observing tropical
cyclone landfalls under two ENSO states (a) SOI = −25 (strong El

Niño) and (b) SOI = 25 (strong La Niña).

it can be assessed that they are independent from sea-
son to season, hence the standard approach of remov-
ing a single count at a time is used. Elsner and Jagger
(2006) discuss the use of cross-validation for seasonal
prediction of US hurricanes based on the application of
a Bayesian GLM. A similar approach is employed here
to assess three model strategies for the prediction period
1960/1961–2004/2005: the first with the informative his-
torical prior, the second with a non-informative prior,
and a third model based on climatology. The climatol-
ogy model uses no ENSO predictor and is obtained by
fitting a Poisson distribution to observed counts with a
non-informative prior. The MCMC fitting process used to
estimate parameters for each model strategy is identical
to that previously described.

Table I shows the results of the cross-validation pro-
cedure. The MSE for the model using the informative
prior is 1.437, it is 1.555 for the uninformative prior, and
1.697 for climatology. Hence, it can be assessed that the
model with the informative prior outperforms that using
the non-informative prior as well as that based on cli-
matology. Table I also shows MSE values for seasons
in which 0, 1, or 2 counts were observed. Although the
sample sizes are relatively small for these cases, again it
can be seen that informative prior model obtains lower
MSE values.

Table I. Summary of cross-validated mean-squared errors
(MSE) of prediction of seasonal tropical cyclone activity for
models based on climatology, non-informative prior, and infor-

mative historical prior.

Model Number of events

≥0 0 1 2

Climatology 1.697 1.563 0.876 2.286
Non-informative 1.555 1.343 0.899 2.282
Informative 1.437 1.147 0.831 2.212

The cross-validation exercise also showed that the
informative prior model outperformed climatology in
73% of the sample seasons and the non-informative
prior model in 71% of sample seasons. As expected,
the climatology model worked well in seasons where
the observed count is near the mean rate for the series
and poorly when it is not close to this rate. On the
basis of the MSE values in Table I, it appears that the
informative prior model achieves most of its improved
performance through prediction of seasons where there
were no landfall events.

TREND ANALYSIS

The results obtained from fitting the Poisson regression
with informative and non-informative priors indicated
that the strength of the relationship between ENSO and
the tropical cyclone activity was possibly weaker during
the historical era. This raises the possibility of variation
in the ENSO relationship with tropical cyclone landfalls
over time. A relatively simple approach adopted here to
examine this was to fit the regression to a moving window
of the tropical counts.

Figure 4 shows that the mass of the posterior distribu-
tion for the β1 term is greater than zero. A suitable test of
significance can therefore be established by requiring a
high proportion of the posterior samples generated from
the MCMC scheme to be greater than zero for β1 to be
a significant term in the model. By applying this crite-
rion to the GLM fit to a moving window of the record,
variation in the strength of the relationship over time can
be examined. This approach is similar to that applied
by Elsner et al. (2001), who used maximum likelihood
fitting of a Poisson GLM to a moving window of US
hurricane counts with the SOI as a covariate to examine
secular variability in the relationship over the twentieth
century.

Figure 6 shows the application of this approach with
30- and 40-year moving windows of the record from
1910/1911 to 2004/2005. The p-values measure the
significance of the SOI term in the model, calculated
as the fraction of post-convergence MCMC samples
greater than zero. Higher p-values thus imply that the
inclusion of the SOI offers no improvement over a null
model without the ENSO predictor (climatology). Each
p-value in Figure 6 corresponds to a successive fit of the
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Figure 6. Significance of the relationship between tropical cyclone
landfalls and ENSO as measured over (a) 30-year and (b) 40-year

moving windows of the time series.

model in Equation (3) using a non-informative prior. For
instance, the first point plotted in Figure 6(a) gives the
p-value for the fit to the period 1910/1911–1939/1940,
the second for the period 1911/1912–1940/1941, and
so on up to 1975/1976–2004/2005. No formal level
is given to assess significance; instead, the analysis is
used to highlight possible periods when the relationship
was weaker. Interestingly, the plots highlight a pattern
whereby there is an absence of a strong relationship
between ENSO and Queensland landfall activity over
much of the first half of last century.

SUMMARY AND DISCUSSION

The analysis presented here demonstrates that method-
ologies are available to incorporate pre-1960s historical
information as a means to better assess the relationship
between tropical cyclone landfalls and ENSO in Queens-
land. In particular, the adoption of a Bayesian modelling
strategy to incorporate historical counts in fitting a Pois-
son regression model with the SOI as a predictor is
shown to have several advantages. This includes a reduc-
tion in uncertainty of parameter estimates and smaller
mean-squared prediction errors. This subsequently allows
predictions of seasonal activity (e.g. Figure 5) to be made
with greater confidence than those derived from only the

instrumental record or those based on climatology. The
output of a Bayesian analysis also allows predictions to
be made across the range of possible outcomes in terms
of a probabilistic estimate.

Regardless of which prior specification is used though,
there still remain several seasons in which an SOI-based
predictor of landfall activity performs poorly. This occurs
where there is a discrepancy between an observed count
and the established relationship between the SOI and
Australian region tropical cyclone activity. For instance,
during the 1964/1965 season, no landfall event was
observed despite a relatively high positive value of the
mean August–November SOI of 10.95. Over the period
1978/1979–1989/1990, there were also a number of
seasons where observed landfall activity was relatively
high when the SOI was indicative of neutral ENSO
conditions. There are several possible explanations for
this, including errors in the data set of counts, the need
for additional predictors, the possibility of trends in the
relationship between ENSO and tropical cyclone activity,
or a combination of these and other factors.

The analysis has highlighted the lack of a significant
association between the SOI and landfalls in Queensland
during part of the first half of the last century. A
similar conclusion was reached by Grant and Walsh
(2001), who correlated landfall numbers with the SOI
for three separate periods; 1920–1940, 1941–1966, and
1967–1996, and found no significant correlation in the
period 1920–1940. Whether this reflects an actual trend
of decadal variability in the relationship between ENSO
and tropical cyclone landfalls or is simply indicative of
the less accurate nature of storm counts in the earlier
record is difficult to ascertain. It is interesting to note
though that Elsner et al. (2001) also found a period where
the relationship between ENSO and US hurricane activity
was weakened, which they attributed to the influence of
the North Atlantic Oscillation.

Likewise, a physical reason for the trend observed
here is indeed a possibility because it is well known
that the strength of ENSO teleconnections with climate
patterns vary on decadal timescales. In particular, Allan
et al. (1996) refer to the 1920–1940 period as one
characterised by conditions close to climatology, unlike
the periods prior to and following this where strong
ENSO-phase activity was in evidence. A significant
weakening in the relationship between the SOI and
northeast Australian rainfall was observed during the
1931–1945 period (Cai et al., 2001). Furthermore, Hendy
et al. (2003) using luminescent banding in Porites coral
cores at sites in the central great barrier reef (GBR) as a
proxy for Burdekin river runoff and Queensland summer
rainfall found that these variable ENSO teleconnections
have been present over at least the last 400 years.

While the mechanisms behind this variability are yet
to be fully explained, Power et al. (1999) recently sug-
gested that the strength of ENSO teleconnections with
certain aspects of eastern Australian climate are depen-
dent on low-frequency Pacific SST anomalies associated
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with the Interdecadal Pacific Oscillation (IPO). In particu-
lar, Power et al. (1999) found a weakening in established
relationships between ENSO and climate in IPO posi-
tive periods during which SSTs are generally lower in
the southwest Pacific region. This is somewhat consis-
tent with the trend in Figure 6, whereby the weaken-
ing of the relationship between ENSO and Queensland
landfalls tends to occur during the IPO positive phase.
This is most apparent for the IPO positive phase of
1924/1925–1943/1944, although less so for the IPO pos-
itive phase beginning around 1979/1980. This suggests
the IPO may be a factor in modulating the strength of
the ENSO relationship with Queensland tropical cyclone
landfalls. If this were indeed the case, then ENSO-based
predictions of seasonal landfall activity during IPO pos-
itive phases may perform poorly.

It should be noted though that because of the rel-
atively small sample of landfalls, sampling variability
likely influences the results of the trend analysis. Ran-
dom fluctuations in small samples may either mask the
presence of a trend, or, alternatively, result in mistakenly
interpreting the presence of a trend. This combined with
the uncertain nature of historical records makes trend
detection difficult. Nicholls et al. (1998) also stressed
on caution in interpreting the results of a trend analysis
of tropical cyclone counts where there have been major
changes in observational practices over time. It would
therefore be imperative to investigate if the result reflects
similar patterns in Australian and Coral Sea region trop-
ical cyclone activity before a clearer picture on whether
this trend is natural or artificial can be obtained.
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