# ResearchOnline@JCU

This file is part of the following reference:

Babcock, Russell Clayton (1986) A comparison of the population ecology of reef flat corals of the family Faviidae (Goniastrea, Platygyra). PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/24092/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://eprints.jcu.edu.au/24092/</u>



A comparison of the population ecology of reef flat corals of the family Faviidae (<u>Goniastrea</u>, <u>Platygyra</u>).

Thesis submitted by Russell Clayton BABCOCK Bsc(Hons) (JCU) in May 1986

for the degree of Doctor of Philosophy in the Department of Marine Biology at James Cook University of North Queensland I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow acess to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

"In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it."

Beyond this, I do not wish to place any restriction on access to this thesis.

1/8/8C

. . . .

### DECLARATION

I declare that this is my own work and has not been submitted in any form for any other degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

R. C. Babcock26 May 1986

#### ACKNOWLEDGEMENTS

I would like to thank my supervisors J. Collins and M. Pichon for their advice and assistance at all stages in the preparation of this thesis. I also wish to thank: P. Harrison, A. Heyward, J. Oliver, C. Wallace and B. Willis for invaluable stimulation, criticism and practical support; T. Done, V. Harriott, R. Jones, R. Kenny, H. Marsh, P. Sammarco, R. Smith and J. Veron for their comments made on the various manuscripts and chapters which have gone into this thesis, and the many people who have provided field assistance throughout the study.

I also wish to thank my wife Margie for her patience and unflagging support in all areas, and for her determination that this thesis must be finished. Finally I must also thank Sarah and Emma, my parents, and my wife's parents for their understanding and support, which has helped in so many ways.

## TABLE OF CONTENTS

.

.

| Abstrac | t.  |              |       |                          | 1   |
|---------|-----|--------------|-------|--------------------------|-----|
| Chapter | 1   | Introduction |       |                          | 2   |
| Chapter | 2   | Distribution |       |                          | 5   |
|         | 2.1 | Introduction |       |                          | 5   |
|         | 2.2 | Methods      |       |                          | 7   |
|         |     |              | 2.2.1 | spatial distribution     | 7   |
|         |     |              | 2.2.2 | sedimentation            | 9   |
|         | 2.3 | Results      |       |                          | 9   |
|         |     |              | 2.3.1 | spatial distribution     | 9   |
|         |     |              | 2.3.2 | sedimentation            | 17  |
|         | 2.4 | Discussion   |       |                          | 19  |
| Chapter | 3.  | Growth Rates |       |                          | 22  |
|         | 3.1 | Introduction |       |                          | 22  |
|         | 3.2 | Methods      |       |                          | 23  |
|         |     |              | 3.2.1 | alizarin staining        | 23  |
|         |     |              | 3.2.2 | X-ray analysis of annual |     |
|         |     |              |       | growth bands             | 23  |
|         |     |              | 3.3.3 | juvenile growth rates    | .24 |
|         | 3.3 | Results      |       |                          | 25  |
|         |     |              | 3.3.1 | alizarin staining        | 25  |
|         |     |              | 3.3.2 | X-ray analysis of annual |     |
|         |     |              |       | growth bands             | 27  |
|         |     |              | 3.3.3 | juvenile growth rates    | 28  |
|         | 3.4 | Discussion   |       |                          | 32  |
| Chapter | 4   | Reproduction |       |                          | 39  |
|         | 4.1 | Introduction |       |                          | 39  |
|         | 4.2 | Methods      |       |                          | 40  |
|         |     |              | 4.2.1 | gametogenic cycles       | 40  |
|         |     |              | 4.2.2 | size specific fecundity  | 40  |
|         |     |              | 4.2.3 | spawning observations    | 41  |
|         |     |              | 4.2.4 | larval development and   |     |
|         |     |              |       | settlement               | 43  |

.

.

|            | 4.3 | Results         |           |                         | 44  |
|------------|-----|-----------------|-----------|-------------------------|-----|
|            |     |                 | 4.3.1     | gametogenic cycles      | 44  |
|            |     |                 | 4.3.2     | size specific fecundity | 48  |
|            |     |                 | 4.3.3     | spawning observations   | 58  |
|            |     |                 | 4.3.4     | larval development      | 63  |
|            |     |                 | 4.3.5     | larval settlement       | 66  |
|            | 4.4 | Discussion      |           |                         | 66  |
|            |     |                 | 4.4.1     | gametogenic cycles      | 66  |
|            |     |                 | 4.4.2     | size specific fecundity | 69  |
|            |     |                 | 4.4.3     | spawning observations   | 71  |
|            |     | . ,             | 4.4.4     | larval development and  |     |
|            |     |                 |           | behaviour               | 79  |
| Chapter    | 5   | Population dyna | amics     |                         | 83  |
|            | 5.1 | Introduction    |           | •                       | 83  |
|            | 5.2 | Methods         |           |                         | 84  |
|            |     |                 | 5.2.1     | annual population       |     |
|            |     |                 |           | surveys                 | 84  |
|            |     |                 | 5.2.2     | juvenile mortality      | 86  |
|            | 5.3 | Results         | 5.3.1     | size-frequency          |     |
|            |     |                 |           | distributions           | 87  |
|            | •   |                 | 5.3.2     | population dynamics     | 95  |
|            |     |                 | 5.3.3     | age frequency           |     |
|            |     |                 |           | distribution            | 107 |
|            |     |                 | 5.3.4     | juvenile mortality      | 112 |
|            | 5.4 | Discussion      |           |                         | 114 |
| Chapter    | 6   | Life Tables     |           |                         | 124 |
|            | 6.1 | Introduction    |           |                         | 124 |
|            | 6.2 | Age determinati | on and ag | e distribution          | 125 |
|            | 6.3 | Age- specific f | ecundity  | schedules               | 125 |
|            | 6.4 | Rate of increas | e         |                         | 127 |
|            | 6.5 | Mortality and s | urvivorsh | ip                      | 127 |
|            | 6.6 | Life tables     |           |                         | 128 |
|            | 6.4 | Discussion      |           |                         | 140 |
| References |     |                 |           | 146                     |     |
| Appendix 1 |     |                 |           | 157                     |     |

v

| F | i | g | u | r | e | s |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |

·

•

.

•

| 2.1  | Map of study sites                                                       | 8   |
|------|--------------------------------------------------------------------------|-----|
| 2.2  | Cross reef distribution, Geoffrey Bay                                    | 10  |
| 2.3  | Cross reef distribution, Pioneer Bay                                     | 11  |
| 2.4  | Sedimentation at Geoffrey and Pioneer Bays                               | 18  |
| 3.1  | Juvenile growth rates                                                    | 31  |
| 3.2  | Size - age relationships; <u>G. aspera, G. favulus</u>                   |     |
|      | and <u>P. sinensis</u> .                                                 | 38  |
| 4.1  | Gametogenic cycles; <u>G. aspera, G. favulus</u>                         |     |
|      | and <u>P. sinensis</u> .                                                 | 46  |
| 4.2  | Annual temperature cycles                                                | 47  |
| 4.3  | Size - fecundity relationships, Geoffrey Bay                             | 49  |
| 4.4  | Size - fecundity relationships, Pioneer Bay                              | 50  |
| 4.5  | Spawning records, 1981 - 1985                                            | 60  |
| 4.6  | Hour of spawning, 1982 - 1984                                            | 62  |
| 4.7  | Early embryonic stages                                                   | 65  |
| 4.8  | Embryonic and larval stages                                              | 67  |
| 4.9  | Spawning and tidal cycles                                                | 77  |
| 5.1  | Size-frequency distributions and total cover                             |     |
|      | of populations, Geoffrey Bay                                             | 88  |
| 5.2  | Size-frequency distributions and total cover                             |     |
|      | of populations, Pioneer Bay                                              | 89  |
| 5.3  | Size-frequency distributions and total cover                             |     |
|      | of populations, pooled bays                                              | 90  |
| 5.4  | Age-frequency distributions and total cover                              |     |
|      | of populations, Geoffrey Bay                                             | 91  |
| 5.5  | Age-frequency distributions and total cover                              |     |
|      | of popualtions, Pioneer Bay                                              | 92  |
| 5.6  | Age-frequency distributions and total cover                              |     |
|      | of populations, pooled bays                                              | 93  |
| 5.7  | Size-frequency distributions as a function of their                      |     |
|      | size in the previous year, <u>G.</u> <u>aspera</u>                       | 97  |
| 5.8  | Size-frequency distributions as a function of their                      |     |
|      | size in the previous year, <u>G.</u> <u>favulus</u>                      | 98  |
| 5.9  | Size-frequency distributions as a function of their                      |     |
|      | size in the previous year, <u>P. sinensis</u>                            | 99  |
| 5.10 | Age and size of <u>G.</u> <u>aspera</u> , <u>G.</u> <u>favulus</u> , and |     |
|      | <u>P. sinensis</u> at Geoffrey Bay                                       | 109 |
| 5.11 | Age and size of <u>G. aspera</u> , <u>G. favulus</u> and                 |     |
|      | <u>P. sinensis</u> at Pioneer Bay                                        | 110 |

•

| 5.12 | Age specific mortality of <u>G. aspera</u> , <u>G. favulus</u>             |     |
|------|----------------------------------------------------------------------------|-----|
|      | and <u>P. sinensis</u>                                                     | 111 |
| 5.13 | Juvenile mortality, <u>G.</u> <u>aspera</u> , <u>G.</u> <u>favulus</u> and |     |
|      | <u>P. sinensis</u>                                                         | 113 |
| 5.14 | Juvenile mortality, composite graph for <u>G. favulus</u>                  |     |
|      | and <u>P. sinensis</u>                                                     | 113 |
| 5.15 | Typical colonies of <u>G.</u> <u>aspera</u> and <u>P. sinensis</u>         | 116 |
| 5.16 | Reef flats of Geoffrey Bay and Pioneer Bay                                 | 117 |
| 6.1  | Survivorship of <u>G. aspera, G. favulus</u> and                           |     |
|      | <u>P. sinensis</u> from horizontal life tables                             | 136 |
| 6.2  | Survivorship of <u>G. aspera, G. favulus</u> and                           |     |
|      | <u>P. sinensis</u> from vertical life tables                               | 137 |
| 6.3  | Age specific fecundity rates                                               | 139 |
|      |                                                                            |     |

#### ABSTRACT

The spatial distribution, abundance and growth rates of <u>Goniastrea aspera</u>, <u>G. favulus</u> and <u>Platygyra sinensis</u> were studied at two fringing reefs in the central Great Barrier Reef region. All three species exhibited similar degrees of spatial aggregation, despite the reproductive behaviour of <u>G. favulus</u> which was the only one of the species to spawn eggs with benthic development. Growth rates and recruitment rates in <u>G. aspera</u> and <u>G. favulus</u> were positively related to abundances at the two sites. Growth rates of both adults and juveniles were also used to estimate colony ages.

Gametogenic cycles and size specific fecundities were determined for each species at both sites. <u>Goniastrea aspera</u>, <u>G. favulus</u> and <u>P.</u> <u>sinensis</u> were among a large number of species studied which were observed to participate in annual mass spawning events. These mass spawnings are predictable and take place on only a few nights a year, after full moons in October and November. Studies of development subsequent to spawning showed that larvae did not become mobile for at least 36 hours, and the first larvae were capable of settling only after 4 to 5 days. Frequency distributions and rates of mortality based on both size and age were studied in marked quadrats at the two sites.

Frequency distributions based on size differed in some respects from those based on age, particularly with respect to the older age classes which decreased in mean size in many populations. Mortality patterns showed greater similarities between the two methods, however differences were again apparent in the older/larger classes since partial mortality to individuals is not accounted for in age based measurements. Finally, life tables were generated for each species. The life history patterns of <u>G. aspera, G. favulus</u> and <u>P. sinensis</u> appear to demonstrate a number of trade-offs that can be made between traits such as egg size, egg number, larval mortality, age at first reproduction, and mean colony age and generation times.

1