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INTRODUCTION

Populations of sessile marine organisms often exist
in spatially (Levin & Whitfield 1994, Hanski 1999)
and temporally (Giesel 1976, McPeek & Holt 1992,
Travis & Dytham 1999) heterogeneous environments.
While larval dispersal and recruitment are amongst
the most important factors determining adult popula-
tion maintenance (Levin 2006, Cowen & Sponaugle
2009, Pineda et al. 2009), post recruitment competi-
tion can also be fundamental to population success
(Caley et al. 1996, Marshall & Keough 2009, Burgess
& Marshall 2011). Understanding and quantifying
competition amongst coexisting species has been a
focus for ecologists using both theoretical (Levins &
Culver 1971, Hanski 2008, Spencer & Tanner 2008)

and empirical approaches (Cadotte et al. 2006, Chad-
wick & Morrow 2011, Logue et al. 2011).

In the marine environment, inter- and intraspecific
competition often manifests in a variety of reproduc-
tive modes and larval dispersal behaviours (Kawecki
& Stearns 1993, Hadfield & Strathmann 1996, Krug
2001), with larval dispersal occurring over wide
(Schel tema 1988) and narrow spatial scales (Swearer
et al. 1999). However, despite the advances in our un-
derstanding of larval dispersal, recruitment and com-
petition, much of the empirical work to date has fo-
cused on individual invertebrate species, in part due
to the complexity associated with recruitment dy-
namics (Pineda et al. 2009). While this single- species
approach has been useful in providing information on
processes such as larval dispersal (Shanks 1995) and
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planktonic mortality (Vaughn & Allen 2010), identify-
ing the relative effectiveness of competitive strategies
requires either detailed retesting of successive target
species, or examining competition between unrelated
species. This ‘apples and oranges approach’ risks
making inferences about the competitive strategies of
species, when advantage may be due in part to differ-
ing underlying anatomies, physiologies or locations.
An ideal approach would be to target a taxon with
multiple species or genera that share and compete for
the same discrete substrata—allowing for direct com-
parisons to be made as to the effectiveness of compet-
itive strategies, without confounding by any extrane-
ous biological differences.

Shipworms (Family Teredinidae) are highly de -
rived lamellibranch bivalves that are obligate wood-
feeders, and as such are limited to a substratum that
is both sparsely distributed and often uncommon in
the marine environment (Alix 2005, Hinojosa et al.
2011). The reduced shells and wormlike bodies of the
sessile adults facilitate growth, via burrowing, into
woody plant tissue. This mechanical action of bur-
rowing by many coexisting individuals and species
steadily destroys the host timber, resulting in short-
lived and highly competitive populations. The life
history and dispersive strategies of shipworms have
evolved accordingly to exploit these ephemeral habi-
tats, and shipworms can be broadly grouped by
reproductive mode. Broadcast-spawning species re -
lease gametes or fertilized eggs into the water col-
umn for a full, planktotrophic development of 20 to
25 d (Nair & Saraswathy 1971, Culliney 1975). In con-
trast, short-term brooders hold fertilized eggs in spe-
cialized gill pouches for 5 to 8 d, and release swim-
ming, planktotrophic larvae that reach competency
in 10 to 15 d (Calloway & Turner 1988), while long-
term brooders release large, non-feeding, highly
competent larvae capable of settling in hours to days
(Calloway & Turner 1988). Consistent with the litera-
ture for other benthic invertebrates (Blueweiss et al.
1978, Strathmann & Strathmann 1982), brooding is
correlated with a smaller body size (Cragg et al.
2009) and lower clutch size, compared to free-spawn-
ing species (Calloway & Turner 1988), which grow
larger (Haderlie & Mellor 1973) and have prodigious
fecundities estimated at 106 or higher per adult
(Scheltema 1971).

Much of the research conducted on shipworms has
focused on the economic impacts of their recruitment
and growth, and the resistance of various wood spe-
cies to borer damage (Haderlie 1983, Cookson 1990,
Cookson & Woods 1995). However, recent work has
begun to examine shipworms from a broader eco -

logical perspective, and identifies that the level of co -
existence within the patchy, specialized habitat of
shipworms makes them a useful taxon for examining
recruitment dynamics and competitive strategies of
benthic invertebrates (Cragg et al. 2009). The wood-
feeding niche of shipworms means that growth and
feeding are synonymous, and the competition faced
by shipworm species is directly correlated with their
abundance and diversity within wood habitat. Fur-
thermore, shipworms have few known predators
(Nair & Saraswathy 1971) or other competitors within
wood, so shipworm communities are shaped primar-
ily by interactions between and amongst shipworm
species, and by environmental effects.

Tropical Australian waters support a high diversity
and abundance of shipworms (Cookson & Scown
1999), making it an ideal location to investigate the
biology of co-occurring and competing species, and
the mechanisms that enable regional coexistence in
the absence of habitat partitioning. The numerous
species in the region form a competitive metacom-
munity, and the scattered habitats available can be
viewed as a patch dynamic paradigm in modern
metacommunity theory (Leibold et al. 2004). As such,
the goals of this research were to quantify patterns of
seasonality, recruitment and diversity in tropical
Australian shipworm species, to examine modes of
inter- and intra-specific competition amongst co-
occurring shipworm species, and to explore ship-
worms as a metacommunity model in understanding
patterns of coexistence and the relative contributions
of competitive strategies.

MATERIALS AND METHODS 

Wooden panels were used to quantify larval re -
cruitment abundance, seasonality and adult demo-
graphics. Panels comprised 6 separate 2 mm thick
layers of radiata pine Pinus radiata bolted together
between 2 Perspex sheets, following Manyak (1982)
and Junqueira et al. (1991). The final dimensions of
panels were 220 × 150 × 12 mm (Fig. 1), with a total
area of 816 cm2 available for recruitment. The use of
these panels allowed larvae to settle and for unim-
peded growth by adults. The separate layers of wood
in the panels allow easy deconstruction, facilitating
the removal of intact individuals.

Panels were deployed at 3 sites in northern Queens-
land, Australia: the Australian Institute of Marine
Science (AIMS), Cape Cleveland (19°16’ 37.02’’S,
147° 03’ 31.46’’E); White Lady Bay, Magnetic Island
(19° 06’ 29.85’’S, 146° 51’ 42.73’’E); and Pioneer Bay,
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Orpheus Island (18° 36’14.70’’S, 146° 29’14.48’’E)
(Fig. 2). To record seasonal variation in recruitment,
panels were submerged for 1, 2, 4, 6 and 12 mo, with
6 replicate panels per month, then collected and
replaced (destructive time series sampling), starting
in the Austral winter, July 2007. Because of logistical
constraints, 1 mo collections were not used at Mag-
netic and Orpheus Islands. At each site, panels were
distributed randomly in pairs along floating long
lines, hanging at depths of 1.5 m for a total of 12 pairs
of hanging panels. Water depth ranged from 3 to
10 m with a soft sediment benthos. The surrounding
coastal habitat was dry tropical forest with fringing
mangroves.

Panels collected from each time point were gently
cleaned to remove light external fouling, fixed with
5% formalin in seawater for 2 wk and subsequently
stored in 70% ethanol pending analysis. To quantify
recruitment, each panel was then carefully opened
and all shipworms were removed. As shipworm iden-
tification relies almost exclusively on the morphology
of calcareous ‘pallet’ structures at the animal’s poste-

rior (Turner 1966), care was taken to ensure specimens
were removed intact. Each shipworm only makes one
burrow, and this remains after death, therefore a bur-
row count provides a value of total recruitment to a
panel. Intact individuals provide a value of living
adults occupying the panel at time of collection. The
difference between these 2 values represents the total
mortality experienced by settled adults. All specimens
retrieved were identified to species level, pho-
tographed and measured (length and width) using
ImageJ analysis software. Species identifications and
their modes of reproduction were verified against col-
lections in the Australian Mu seum, Sydney.

Recruitment data were plotted according to the age
of the panel, site and time, in order to visualize tempo-
ral and spatial recruitment patterns. Further ana lysis
with PRIMER v6 (Clarke & Gorely 2006) consisted of
principal component analyses (PCA) to determine
species weighting across the sample period, and mul-
tivariate analysis of similarities (ANOSIM) to generate
pair-wise statistical comparisons between sites and
age treatments. To avoid undue weighting by species
at extremes of abundance, scarce species were omit-
ted from analysis (see ‘Results’), with the remaining
data log transformed.

RESULTS

Species diversity

From 6 genera of Teredinidae, 19 species were re -
corded across all panels (Table 1), with a total of
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62 075 individuals. Spawning and short-term brood-
ing species were both present, with spawning spe-
cies comprising 58% of species and short-term
brooders comprising 37%. Only 1 long-term broo d -
ing species (Lyrodus pedicellatus) was recorded.
Of the 19 species, 11 were recorded intermittently
across the year or in too low an abundance to make
accurate inferences about their seasonality or demo-

graphics, other than their relative
scarcity. Further analyses examined
data for the 4 most abundant brood-
ing (L. tristi, Teredo parksi, L. flori-
danus and L. turnerae) and spawning
(Bankia carinata, B. gracilis, B. nez-
talia and Psiloteredo healdi) species,
totaling 99.7% of all recruitment, with
each recorded in at least 2 sites for at
least 2 sample periods.

Recruitment and abundance

Panels were settled by shipworms
year-round, with peak intensities in
March and May (Fig. 3A). At AIMS,
1 mo panels, sampled at a finer res -
olution, showed similar levels of re -
cruitment to 2 mo panels, indicating
that the majority of recruitment in a
given panel occurred between 1 and
2 mo of age. At AIMS, mean 2 mo
panel recruitment ranged from 130
(±42) individual (ind.) shipworms per
panel in the winter and spring months
of September and November, to >1200
(±132) ind. per panel in the au tumn
peak of May, before falling sharply
again in July (Fig. 3A). At AIMS, 4 mo
old panels displayed simi lar trends
but with a later peak, as less frequent
sampling ex pressed May recruitment
as part of the final July collection.
Adding the total re cruit ment across all
panel ages show ed decreased recruit-
ment with panel age, particularly in 4
to 6 mo old  panels (Fig. 3B). This was
most  clea rly observed in 12 mo panels,
where despite exposure for a year, re -
cruit ment was at levels more consis-
tent with the first 4 mo of measurement.

Magnetic Island and Orpheus Is -
land received significantly lower re-
cruitment rates (ANOSIM, r > 0.7, p =

0.001), but patterns of seasonality and abundance
mirrored that of AIMS. At all sites high mortality
rates, indicated by empty burrows, were measured in
treatments 4 mo and older, ranging from 40 to 90%
(Fig. 3A). High mortality in a panel reduced the accu-
racy of ascertaining species composition. Low mor -
tality (0 to 30%) in 2 mo treatments again provided a
much more accurate representation of seasonal re-
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Lyrodus tristi

Teredo parksi

Lyrodus floridanus

Lyrodus turnerae 

Teredo johnsoni
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Lyrodus massa

Lyrodus pedicellatus

Bankia carinata

Bankia gracilis

Bankia neztalia

Psiloteredo healdi

Dicyathifer manni

Teredothyra excavata

Bankia bipalmulata

Bankia australis

Bankia tanzensis

Bankia brevis

Teredothyra matocotana

Table 1. Presence/abundance matrix of shipworm species at study sites (Aus-
tralian Institute of Marine Science [AIMS], Orpheus and Magnetic Islands),
ranked in decreasing abundance for both brooding (unshaded) and spawning 

(shaded) species. Total abundance per site is listed beneath
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cruitment. Increasing mortality with age occurred at
all sites regardless of overall recruitment, suggesting
that mortality was driven by the age of the habitat,
and is not dependant on  density-related competition.

PCA demonstrated that different species of ship-
worms drive recruitment abundance at different
times across the year, with a high (>75%) percentage
of variation accounted for by the first 2 components
in all age treatments and sites (Fig. 4). In 2 and 4 mo
treatments, clear separation between months was
visible within the ordination, with strong associations
by groups of species driving  patterns of abundance.
In 6 and 12 mo treatments, high mortality resulted in
less distinct groupings of month groups.

At AIMS, 2 and 4 mo treatments were driven by
2 groups of species. This is clearly seen in the ordina-
tion where the first group, made up of Lyrodus flori-
danus and Bankia gracilis, drove the majority of re -
cruitment in January while the second group, made

up of Teredo parksi, L. tristi, L. turnerae and B. cari-
nata, composed the majority of recruitment abun-
dance in May (Fig. 4A,B). January and May repre-
sent 2 peaks in recruitment for these species at
AIMS. At Magnetic Island 2 and 4 mo panels, L. tristi,
L. turne rae and L. floridanus were contributors to a
peak in January and March, while T. parksi, B. cari-
nata and B. neztalia were associated with a May
peak (Fig. 4E,F). At Orpheus Island, accurate infer-
ences could not be made, as recruitment by all spe-
cies was low, resulting in fewer distinct vectors on
the ordination (Fig. 4I−L).

While a PCA quantifies the contributions of differ-
ent species over time, it is difficult to visualize re -
cruitment patterns on a per-species basis. For direct
comparison, the abundance of each species across all
sites and times was graphed (Fig. 5). At all 3 sites, the
most abundant species recruit year-round, and peak
recruitment occurred between January and May.
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Matching the PCA results, each species exhibited a
peak in recruitment. For example, Lyrodus floridanus
and Bankia gracilis peaked in January and March,
L. tristi, Teredo parksi, L. turnerae and B. carinata
peaked in March and May, and B. neztalia peaked in
July. Despite a higher number of spawning species,
recruitment by short-term brooding species was
notably higher than that of free-spawning species,
with brooders comprising 95.7% of recorded abun-
dance. Only one individual of a long-term brooding
species (L. pedicellatus) was found, with all other
brooders being short-term.

Two-way nested ANOSIM (Month[Age]) of each
site showed significant differences in species com -
position and abundance between panel ages and
over time (R > 0.3, p = 0.001). One-way ANOSIM-
generated pairwise tests of 2 mo panels showed sig-
nificant differences between all months at AIMS
(Table 2A) and all but September and November at
Magnetic Island (Table 2B), demonstrating that the
abundance and composition of species assemblages
exhibit significant variation. At Orpheus Island there
was no significant difference in recruitment for
months outside of the March and May peak season
(Table 2C).

DISCUSSION

The broad findings of this study highlight the
dynamic life history of shipworms, an ecologically
and economically important invertebrate group that
utilizes a sparsely distributed, highly-specific habitat
in the marine environment. Shipworm populations
exist as highly competitive metacommunities in
patchy, ephemeral habitats, and employ different
reproductive modes and seasonality to overcome
these limitations and seek competitive advantage.
Shipworm diversity can be categorized into broad-
cast-spawning and brooding species, and the relative
effectiveness of these strategies can be assessed.
Despite the higher diversity of broadcast spawning
species, abundance at all sites, ages and months was
strongly driven by short-term brooding species, indi-
cating that the constraints of shipworms’ niche favor
a life history strategy balancing fecundity, larval
retention and dispersive ability. The different repro-
ductive strategies employed by tropical Australian
shipworms represent different levels of investment in
colonization ability and dispersal, enabling regional
coexistence of species despite a lack of habitat parti-
tioning. This fits the predictions of patch-dynamic
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paradigms (Levins & Culver 1971) and supports ship-
worms as a useful model group for examining com-
petition within metacommunities.

The year-round larval recruitment that occurs is
consistent with past reports on the reproduction of
tropical Australian shipworms (Smith 1963, Ibrahim
1981), with 2 mo panels providing discrete measure-
ments of recruitment across a 12 mo period. This
perennial reproduction, early maturation and high

fecundity (Turner 1966, Nair & Saraswathy 1971)
produces constant larval supply, but given the speci-
ficity of shipworm habitat, also highlights the com-
petitive stress for these communities. This stress can
be spatial, whereby most of a panel is occupied (e.g.
>1200 ind. recruiting to a single panel, resulting in a
density of ~3 ind. cm−3), as well as temporal, with
high mortality rates observed in panels over 4 mo of
age. While these stresses are likely to be dependent

102

L. turnerae 

1.17 0.502.331.67 10.17

L. tristi

82.50
29.33

358.17

87.33

702.17

60.67

L. floridanus 

6.83 31.33

111.33
188.50

24.83 20.50

B. carinata 

0.67 4.50 10.33 1.50

B. gracilis 

0.17
41.67 8.67

B. neztalia 

0.83 3.33

P. healdi 

3.50 0.50
0

100

200

300

400

Sep
t 2

N
ov

 2

Ja
n 

2

M
ar

 2

M
ay

 2

Ju
ly
 2

Sep
t 2

N
ov

 2

Ja
n 

2

M
ar

 2

M
ay

 2

Ju
ly
 2

Sep
t 2

N
ov

 2

Ja
n 

2

M
ar

 2

M
ay

 2

Ju
ly
 2

1.33 1.17 8.00 14.3315.0013.00

3.83 1.50 23.17 6.83

79.67

164.17

12.17 9.67 18.17
68.00

336.33

42.67

3.33 5.00 12.33 21.0015.5018.33

1.17 0.17 5.8311.33 33.83

0.50

0.17 3.502.83

0.33

0.67 0.17 4.67 1.0024.50

0.17 0.33 2.67

0.17 1.00 2.00

0.17 0.335.33

0.50

A B C
B

ro
o

d
e
rs

S
p

a
w

n
e
rs

42.00
8.83

85.6775.50

308.17

54.50

L. turnerae 

L. tristi

L. floridanus 

B. carinata 

B. gracilis 

B. neztalia 

P. healdi 

T. parksi T. parksi 

L. turnerae 

L. tristi

L. floridanus 

B. carinata 

B. gracilis 

B. neztalia 

P. healdi 

T. parksi

R
e
c
ru

it
m

e
n
t 

(m
e
a
n
 n

o
. 

o
f 

in
d

. 
p

e
r 

p
a
n
e
l)

R
e
c
ru

it
m

e
n
t 

(m
e
a
n
 n

o
. 
o

f 
in

d
. 
p

e
r 

p
a
n
e
l)

0

100

200

300

400

0

100

200

300

400
0

100

200

300

400

0

100

200

300

400

0

100

200

300

400
0

100

200

300

400

0

100

200

300

400

500

600

700

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400
0

100

200

300

400

0

100

200

300

400
0

100

200

300

400
0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

800

Fig. 5. Abundance (means ±SE) of shipworms of Lyrodus, Teredo, Bankia and Psiloteredo spp. in 2 mo recruitment panels at
(A) AIMS, (B) Magnetic and (C) Orpheus Islands. Separation into brooding and spawning reproductive modes is noted. 

See study sites in Fig. 2



MacIntosh et al.: Competition in shipworm communities

on the size of the wood habitat, the ability of ship-
worm larvae to assess habitat age or size as a func-
tion of its quality remains unknown. Our findings
show that in addition to using year-round spawning
to increase larval supply, faced with high interspe-
cific competition, shipworm species have different
peak reproductive seasons, which increases the rela-
tive proportion of their larvae returning to wood sub-
strata at different times of the year. In sampling 2 mo
panels, Lyrodus floridanus, Bankia gracilis and Psilo -
teredo healdi reached peak recruitment in Janu-
ary–March, L. tristi and L. turnerae in March–May,
Teredo parksi and B. carinata in May, and B. neztalia
in July. Staggered peak reproductive seasons sug-
gest that even comparatively rare shipworm species
such as B. gracilis or B. neztalia provide a higher
 proportion of their larvae recruiting to new habitat
independently of one another, reducing interspecific
competition.

Dead woody plant tissue, as the obligate habitat for
shipworms, is extremely patchy in the marine envi-
ronment, with high variation in the abundance, size
and life span of wood debris (Alix 2005, Hinojosa
et al. 2011). Due to the limited life span of wood
 substrata, it is unlikely that philopatric recruitment—
larvae returning and recruiting to the same source

habitat from which they were released—is ad van -
tag eous. Indeed, as shipworms gradually destroy
their habitat by boring and growing into wood, pro-
ducing larvae with extended planktonic larval phases
is a more plausible scenario, as is often the case for
other marine invertebrate larvae (Levin 2006, Cowen
& Sponaugle 2009). Nevertheless, the roles endoge-
nous recruitment, or larger scale dispersal, play in
shipworm population maintenance is to our knowl-
edge unknown. Low habitat permanence and high
habitat patchiness are known to strongly influence
the recruitment dynamics of organisms (Travis &
Dytham 1999), with the benefits of new habitat out-
weighing the risks associated with planktonic larval
dispersal. 

Faced with competition for limited habitat re -
sources, and with the need to balance self-recruit-
ment and dispersal, the different reproductive
modes of shipworm species reflect ways in which
species can become more competitive with regard
to fecundity and the size or dispersive ability of lar-
vae. Both numbers of larvae and their dispersal
capability may play critical roles in their recruitment
success, given the relatively scarce nature of wood
in the marine environment. The effectiveness of
these strategies can be readily examined, and our
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                            September               November                January                    March                       May                       July

A) AIMS
September          –                                –                                –                                –                                –                             –
November           0.742 (0.002)            –                                –                                –                                –                             –
January               1 (0.002)                   0.959 (0.002)            –                                –                                –                             –
March                  0.991 (0.002)            0.961 (0.002)            0.806 (0.002)            –                                –                             –
May                     0.991 (0.002)            0.978 (0.002)            1 (0.002)                   0.937 (0.002)            –                             –
July                      0.617 (0.002)            0.820 (0.002)            1 (0.002)                   0.988 (0.002)            0.974 (0.002)         –

B) Magnetic Island
September          –                                –                                –                                –                                –                             –
November           0.087 (0.221)            –                                –                                –                                –                             –
January               0.897 (0.002)            0.897 (0.002)            –                                –                                –                             –
March                  1 (0.002)                   1 (0.002)                   0.922 (0.002)            –                                –                             –
May                     1 (0.002)                   1 (0.002)                   1 (0.002)                   0.767 (0.002)            –                             –
July                      0.981 (0.002)            1 (0.002)                   0.693 (0.006)            0.650 (0.002)            0.707 (0.002)         –

C) Orpheus Island
September          –                                –                                –                                –                                –                             –
November           0.019 (0.416)            –                                –                                –                                –                             –
January               0.158 (0.106)            0 (1.0)                       –                                –                                –                             –
March                  0.293 (0.006)            0.512 (0.004)            0.736 (0.002)            –                                –                             –
May                     0.368 (0.002)            0.510 (0.002)            0.708 (0.002)            0.924 (0.002)            –                             –
July                      −0.100 (1.0)              0.106 (0.242)            0.316 (0.061)            0.324 (0.004)            0.529 (0.002)

Table 2. ANOSIM 1-way pairwise tests of species composition between 2 mo recruitment panels at (A) Australian Institute
of Marine Science (AIMS), (B) Magnetic and (C) Orpheus Islands. ANOSIM R-statistic with p-value in parentheses. 

Significant results in bold
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results show that despite more species of free-
spawners occurring overall, at all sites abundance
was clearly driven by short-term brooders in the
genera Lyrodus and Tere do. Broadcast-spawning of
gametes hedges on high fecundity and a longer lar-
val period, with dispersal recorded even at oceanic
scales (Scheltema 1971), but is often constrained by
variable rates of fertilization (Levitan 1995, Yund
2000), high mortality of early embryos (Vaughn &
Allen 2010) and poor early swimming ability (Culli -
ney 1975, Koehl & Hadfield 2010). Long-term brood-
ing, by releasing competent, non-feeding larvae,
allows for a high chance of local retention and rapid
re-recruitment (Strathmann et al. 2002), but risks
overcrowding, limits the effective range of larvae
dispersal due to limited energy reserves and is
much more reliant on adult rafting for delivering
larvae to new habitats (Highsmith 1985, Cragg et al.
2009). Short-term brooding, however, strikes a bal-
ance between lower fecundity and a high rate of
fertilization success. This results in developed
planktotrophic larvae with a higher chance of being
locally retained, but with the ability to survive long
dispersal periods in search of new suitable sub-
strata, all characteristics of effective opportunistic
species (Grassle & Grassle 1974). Short-term brood-
ing shipworms, so equipped, outcompete other re -
pro ductive modes and are generally the most geo-
graphically widespread (Turner 1966). Long-term
brooders, limited by short dispersal, are often con-
strained to rafting or fewer source populations
(Cragg et al. 2009), while broadcast-spawning gen-
era, incorporating the more basal members of the
family, are more common in brackish or cold water
locations (Turner 1966), deeper offshore wood sinks,
or large reservoir habitats such as mangrove
swamps (Cragg 2007).

This research shows that shipworms are an ideal
model group with which to examine metacommuni-
ties inhabiting patchy, ephemeral habitats. Ship-
worms are a fascinating confluence of recruitment/
dispersal tradeoffs, the constraints of a sessile life -
style, and specialized habitat. For shipworms, the
‘middle of the road’ strategy of short-term brooding is
most effective at balancing reproductive output, local
recruitment, and longer range dispersal, and compe-
tition between species can be lessened through
 different peak spawning seasons. With this work
focusing on larval supply and recruitment, further re -
search on this group has the potential to examine the
ecological paradigms of r/K selection between repro-
ductive modes, and the carry-on effects of competi-
tion and overcrowding on fitness.
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