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Abstract

Australian funnel-web spiders are generally considered the most dangerous spiders in the world, with envenomations from
the Sydney funnel-web spider Atrax robustus resulting in at least 14 human fatalities prior to the introduction of an effective
anti-venom in 1980. The clinical envenomation syndrome resulting from bites by Australian funnel-web spiders is due to a
single 42-residue peptide known as d-hexatoxin. This peptide delays the inactivation of voltage-gated sodium channels,
which results in spontaneous repetitive firing and prolongation of action potentials, thereby causing massive
neurotransmitter release from both somatic and autonomic nerve endings. Here we show that d-hexatoxin from the
Australian funnel-web spider Hadronyche versuta is produced from an intronless gene that encodes a prepropeptide that is
post-translationally processed to yield the mature toxin. A limited sampling of genes encoding unrelated venom peptides
from this spider indicated that they are all intronless. Thus, in distinct contrast to cone snails and scorpions, whose toxin
genes contain introns, spiders may have developed a quite different genetic strategy for evolving their venom peptidome.
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Introduction

Spiders are one of the most megadiverse animal groups on the

planet. They are by far the most speciose venomous animal, with

3,859 genera comprising 42,751 species having been described to

date [1]. Their evolutionary success is due in large part to the

evolution of a pharmacologically complex venom that enables

rapid subjugation of prey and predators. Spider venoms are

complex chemical cocktails composed of salts, low molecular

weight inorganic compounds (such as polyamines), disulfide-rich

peptides (2–9 kDa), and proteins (including enzymes) larger than

10 kDa [2–7]. However, most spider venoms are dominated by

disulfide-rich peptide neurotoxins that typically have very high

affinity and selectivity for specific types of ion channels and

receptors, which has made them particularly valuable as

pharmacological tools and therapeutic leads [8–11].

Spider venoms are predicted to contain more than 10 million

bioactive peptides based on their extraordinary taxonomic

diversity and the demonstration that some venoms contain

.500 unique peptides [12,13]. Indeed, their venoms can be

viewed as pre-optimized combinatorial peptide libraries that have

evolved over hundreds of millions of years [14]. Surprisingly, very

little information is available about the genetic framework

underpinning production of these complex peptide libraries.

Numerous transcriptomic studies have revealed that spider-venom

peptides are typically produced from a prepropeptide precursor

that is posttranslationally processed to yield the mature toxin [14].

However, the sequences of genes encoding spider-venom peptides

are available from only the araneomorph spider Diguetia canities

and the mygalomorph spiders Haplopelma huwenum and H. hainanum

[15–18] (Figure 1).

The first spider-venom peptide gene to be sequenced was that

encoding m-diguetoxin-Dc1a (DTx 9.2) from D. canities [15]. The

intron-exon arrangement of this gene is similar to that reported for

genes encoding peptide toxins in cone snail venoms [19] with small

exons (27–226 bp) encoding the signal, propeptide, and mature

toxins regions separated by much larger introns (0.89–1.64 kbp)

(Fig. 1A). In contrast with cone snails, however, the propeptide

and mature toxin sequences are not encoded on single exons but

rather are partitioned over two exons separated by a large intron.

Nevertheless, this early work suggested that cone snail and spiders

may have developed similar genetic strategies for evolving their

panel of venom peptides. However, recent work on the

mygalomorph spiders H. huwenum and H. hainanum has shown

that, in contrast with cone snails, the genetic architecture of genes

encoding venom peptides in spiders is much more variable since

all of the toxin genes sequenced from these spiders are intronless

(Fig. 1B) [16–18].

Despite their fearsome reputation, only six genera of spiders are

capable of inflicting lethal envenomations in humans [20]. The

Australian funnel-web spiders (Aranae: Mygalomorphae: Hex-

athelidae: Atracinae) are a group of approximately 40 species that

comprise three of these lethal genera: Atrax, Hadronyche, and

Illawarra [21,22]. Representatives from the genus Atrax caused at

least 14 human deaths between 1927 and the introduction of anti-

venom in 1980 [23]. The envenomation syndrome caused by bites
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from these spiders is due to a 42-residue peptide known as d-

hexatoxin (formerly d-atracotoxin) (Fig. 2A). This peptide induces

delayed inactivation of voltage-gated sodium channels, resulting in

prolonged action potentials that cause massive neurotransmitter

release from both somatic and autonomic nerves [24,25]. The

structures of d-hexatoxin-Hv1a and d-hexatoxin-Ar1 (from

Hadronyche versuta and Atrax robustus respectively) were solved using

NMR spectroscopy [26,27]. Structurally, the toxins are stabilized

by four disulfide bonds, three of which form an inhibitor cystine

knot (ICK) motif [28,29]; the fourth disulfide bridge links the C-

terminal residue to the core ICK region of the peptide (Fig. 2B).

Unfortunately, no information is currently available about the

genes encoding d-hexatoxin or any other neurotoxins produced by

any species of Australian funnel-web spiders. To investigate the

architecture of the gene encoding d-hexatoxin, we cloned and

sequenced its genomic DNA from the Fraser Island funnel-web

spider Hadronyche infensa, as well as the genes encoding two other

neurotoxins produced by the same spider.

Materials and Methods

Spider collection
Adult and juvenile specimens of the Australian funnel-web

spider Hadronyche infensa (Hickman) (Aranaea: Hexathelidae) were

collected from Orchid Beach, Fraser Island, Queensland,

Australia. The specimens were collected from private land with

the permission of the owners (the Tasker family) and were not

endangered species or subject to any specific collection permits.

Individual spiders were housed in plastic containers at 23uC in

dark cabinets until required. Throughout this manuscript, spider

taxonomy is from the World Spider Catalog V. 11.5 [1] and toxins

are named following the rational nomenclature recently proposed

for spider-venom peptides [30].

Isolation of genomic DNA
Genomic DNA (gDNA) was extracted from the leg muscle of a

number of H. infensa specimens using the method described

previously [31]. Briefly, three legs were isolated from the base of

the cephalothorax and ground with a chilled, sterile mortar and

pestle in liquid nitrogen. After pulverization, the tissue (,100 mg)

was added to 400 ml of low salt buffer (0.4 M NaCl, 10 mM Tris-

HCl pH, 2 mM EDTA pH 8, 2% SDS and 400 mg/ml proteinase

K) and incubated at 55uC overnight. DNA was recovered by

adding 300 ml of 6 M NaCl followed by ethanol precipitation.

DNA was re-suspended in 250 ml of DNAse/RNAse-free water.

The quality and quantity of gDNA was determined visually using a

1% agarose gel stained with SYBRH Safe and by assessing the

A260/280 ratio using a spectrophotometer. Isolated gDNA was

used as the template for PCR.

Preparation of venom-gland cDNA
Venom glands from one Hadronyche infensa spider were removed

from an anesthetized specimen and placed immediately in

TRIzolH reagent. Total RNA was extracted according to the

manufacturer’s protocol. The quality and quantity of RNA was

determined by running an aliquot on a Pico chip in a Bioanalyzer

(Agilent) and by assessing the A260/A280 ratio. mRNA was reverse

transcribed using SuperScriptH III reverse transcriptase (Invitro-

Figure 1. Architecture of spider-toxin genes. Intron-exon organization for genes encoding (A) m-diguetoxin-Dc1a from the American desert
spider Diguetia canities [15]; (B) 24 different disulfide-rich venom peptides from the Chinese tarantulas Haplopelma hainanum and Haplopelma
huwenum [16–18]. In panel (A), the colors denote exons encoding the signal peptide, propeptide, and mature toxin. In panel (B), the entire toxin
prepropeptide precursor is encoded by an intronless ORF.
doi:10.1371/journal.pone.0043699.g001

Figure 2. Primary and tertiary structure of d-hexatoxins. (A) Alignment of the amino acid sequences of the lethal toxins d-hexatoxin-Hv1a (and
its paralog d-hexatoxin-Hv1b), d-hexatoxin-Ar1a, d-hexatoxin-Hi1a, and d-hexatoxin-Iw1a from the Australian funnel-web spiders Hadronyche versuta,
Atrax robustus, Hadronyche infensa, and Illawarra wisharti, respectively. Identical amino acids are boxed in black and conservative substitutions are
shaded grey. (B) Ribbon representation of the three-dimensional structure of d-hexatoxin-Hv1a (PDB code 1VTX) [26]. b-Strands and 310-helix are
shown in orange and blue, respectively. The N- and C-termini are labeled. The three disulfide bonds shown in green form an inhibitor cystine knot
motif while the disulfide bridge that connects the C-terminal Cys residue to the core ICK region is colored red.
doi:10.1371/journal.pone.0043699.g002

Lethal Spider Toxin Encoded by an Intronless Gene
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gen) using the following two-step reaction: (a) 1 ml of total RNA

was mixed with 2.3 mM NotI-(dT)18 primer, 1x dNTPs, and

nuclease-free water to a volume of 13 ml, then incubated at 65uC
for 15 min followed by 1 min on ice; (b) The following reagents

were then added: 4 ml of 56 first strand buffer (250 mM Tris-HCl

pH 8.3 at room temperature, 375 mM KCl and 15 mM MgCl2),

0.005 M dithiothreitol (DTT), 1 U SuperScriptH III and nuclease-

free water to a volume of 20 ml. The sample was then incubated as

follows: 37uC for 10 min, 42uC for 10 min, 50uC for 30 min, 55uC
for 15 min, and a final cycle of 75uC for 15 min. Nuclease-free

water was then added to a final volume of 50 ml. The resulting

cDNA was used as a template for PCR.

Amplification of the d-hexatoxin gene and gene
transcript

PCR reactions using gDNA as template were carried out using a

long-distance amplification polymerase (NE biolabs). Each 50 mL

PCR reaction contained 100 ng of gDNA template, 16 PCR

buffer, 0.2 mM each dNTPs, 0.5 mM forward primer, 0.66 mM

reverse primer and 1 U LongAmp polymerase. Cycling conditions

were as follows: 2 min at 95uC followed by 40 cycles of 95uC for

30 s, 50uC for 1 min, 65uC for 2 min, and a final cycle of 65uC for

10 min.

PlatinumH Taq DNA polymerase (Taq Pol) (Invitrogen) was used

for PCR using cDNA as template. Each 50 mL reaction sample

contained 100 ng of template, 16 PCR buffer, 0.2 mM each

dNTPs, 0.5 mM forward primer, 0.66 mM reverse primer, 1 U

Taq Pol and 1 mM MgCl2. Cycling conditions were: 2 min at

96uC followed by 35 cycles of 94uC for 45 s, 50uC for 1 min, 72uC
for 2 min, and a final cycle of 72uC for 10 min.

For both sets of PCRs, 10 ml of PCR product was run on a 1.5%

agarose gel stained with SYBRH Safe and visualized using a

BioRad Gel DocTM system. PCR products encoding full-length d-

hexatoxin were purified using a QIAquick PCR purification kit.

Purified samples were sent for sequencing to the Australian Equine

Genetics Research Centre at the University of Queensland.

Chromatograms were analyzed using Geneious Pro V. 5.4.5.

cDNA and gDNA sequences were aligned using ClustalW [32].

Figure 3. The gene encoding d-hexatoxin-Hi1a is intronless. (A) Schematic of the putative d-hexatoxin gene showing the region that each
primer set (L1–L5) is designed to amplify. (B) Gels showing the PCR products obtained using each of the designed primer sets L1–L5: (i) cDNA
template; (ii) gDNA template; (iii) Southern Blot. For each gel, ML denotes 1 kb molecular-weight ladder, while L1–L5 denote the primer sets A–E
shown in Table 1.
doi:10.1371/journal.pone.0043699.g003

Table 1. Primer sets used to amplify specific regions of the transcript and gene encoding d-hexatoxin-Hi1a from cDNA and gDNA
templates, respectively (letters in brackets denote lanes in gels in Fig. 3B).

Primer set Target region Predicted size (bp)

A (L1) Signal to the beginning of the propeptide sequence 90

B (L2) Signal to the end of the propeptide sequence 219

C (L3) Signal to the beginning of the mature sequence 243

D (L4) Signal to the end of the mature sequence 345

E (L5) Signal to the end of the 39 untranslated region 560

doi:10.1371/journal.pone.0043699.t001
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Southern Blot analysis
After amplification, PCR products were concentrated to 10 ml,

loaded onto a 1.5% agarose gel and electrophoresed for 1.5 h at

100 V. Gels were photographed, marked and prepared for

Southern blotting as described previously [33]. Subsequently,

cDNA probes were prepared using the Amersham MegaPri-

meTMDNA labeling system according to the manufacturer’s

protocol. Hybridization between the membrane and the 32P-

labelled cDNA probes was performed overnight at 65uC with

hybridization solution (0.263 M Na2HPO4 pH 7, 1 mM EDTA,

7% SDS, 1% BSA and deionized water). After incubation,

membranes were washed two times with a 26 saline-sodium

citrate (SSC)/1% SDS solution (10 min each), 15 min with a

SSC/1% SDS solution, and two final washes with a 0.26 SSC/

1% SDS solution for 15 min each. Radiolabelled membranes were

wrapped in a plastic cover, loaded onto a radiography cassette,

and incubated at room temperature for 2 h. Screens were scanned

using a Typhoon 8600 variable mode imager (GE Healthcare,

UK).

Results

The gene encoding d-hexatoxin is intronless
In order to investigate the architecture of the gene encoding the

lethal d-hexatoxin from the Australian funnel-web spider Hadro-

nyche infensa, the sequence of a previously isolated cDNA transcript

encoding a d-hexatoxin precursor was obtained from the

ArachnoServer database (www.arachnoserver.org) [13] and used

to design primer sets as shown in Table 1 and depicted in Fig. 3A.

Each primer set was designed to target and amplify a specific

segment of the cDNA precursor encoding d-hexatoxin with the

aim of amplifying its gDNA counterpart in such a manner that if

the gene contained introns one would observe differences in size

between the amplified gDNA and cDNA segments. The same

forward primer was used for each amplification, whereas the

reverse primer was varied in order to obtain stretches of sequence

corresponding to either: (i) the signal peptide; (ii) from the

beginning of the signal sequence to the end of the propeptide; or

(iii) from the beginning of the signal peptide to the end of the

mature toxin.

Utilizing this targeted amplification approach, different regions

of the cDNA precursor encoding d-hexatoxin-Hi1a were amplified

as shown in Fig. 3A; amplifications were repeated using the same

primer sets but with the PCR template changed to gDNA instead

of cDNA. Comparison of the amplified cDNA fragments (Fig. 3A,

panel i) with those amplified from the gDNA template (Fig. 3B,

panel ii) revealed that the fragment sizes are identical for each

primer pair, suggesting that the gene encoding d-hexatoxin-Hi1a is

intronless.

Figure 4. Architecture of gene encoding the lethal toxin from Australian funnel-web spiders. Alignment of the cDNA and gDNA
sequences obtained for d-hexatoxin-Hi1a. The nucleotide sequences are identical except at a single position (T versus C, highlighted in grey) that
does not alter the encoded protein sequence. The stop codon is denoted by an asterisk. A schematic of the toxin precursor showing the signal
peptide, propeptide, mature toxin, and 3’ untranslated region in yellow, blue, purple and white, respectively, is shown above the sequences. The
protein sequence (i.e., a translation of the cDNA/gDNA) is shown sandwiched between the cDNA and gDNA sequences.
doi:10.1371/journal.pone.0043699.g004
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Figure 5. Architecture of genes encoding ICK toxins from Australian funnel-web spiders. Alignment of cDNA and gDNA sequences of (A)
v-hexatoxin-Hi2a and (B) U3-hexatoxin-Hi1a. Stop codons are indicated by an asterisk. A schematic of the toxin precursors showing the signal
peptide, propeptide, and mature toxin in yellow, blue, and purple, respectively, is shown above the sequences. The protein sequences (i.e., a
translation of the cDNA/gDNA) are shown sandwiched between the cDNA and gDNA sequences. There are several codons where a difference

Lethal Spider Toxin Encoded by an Intronless Gene
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Due to the manner in which spider-venom genes have been

recruited to the venom arsenal and massively amplified and

diversified, spider venoms typically numerous paralogs of each

toxin [14]. Thus, it is possible that the PCR products described

above might have resulted from non-specific primer binding to

closely related targets rather than the d-hexatoxin-Hi1a gene itself.

With the aim of investigating whether all of the amplified products

correspond to different sections of the precursor within their

respective templates (gDNA or cDNA), southern blot hybridiza-

tions were performed. If a radiolabelled probe, in this case the

cDNA, hybridizes with the immobilized template, the comple-

mentarity would be indicative of true amplifications of the desired

target. As shown in Fig. 3B, panel iii, the full-length gene encoding

d-hexatoxin-Hi1a hybridizes with the labelled cDNA probe,

proving that the amplified gene corresponds to that of the lethal

d-hexatoxin-Hi1a. Furthermore, as shown in Fig. 4, we found that

the gDNA sequence was identical to its cDNA counterpart except

for a single T C base substitution that does not alter the encoded

protein sequence.

Genes encoding non-lethal Australian funnel-web spider
toxins are also intronless

Using a simplified version of the reaction scheme above, single

reactions were performed with one forward and one reverse

primer to amplify two other toxin genes encoding non-lethal

peptides from the venom of Hadronyche infensa, known as v-

hexatoxin-Hi2a [34] and U3-hexatoxin-Hi1a. Each toxin gene was

amplified, cloned and sequenced independently. As shown in

Figures 5A and 5B, both of the genes are intronless. The cDNA

and gDNA sequences encoding v-hexatoxin-Hi2a were identical

except for a single nucleotide difference in each of the propeptide

and mature-toxin regions, and an apparent deletion of two codons

at the C-terminus of the mature-toxin (Fig. 5A). However, this

two-codon deletion is immediately preceded by a ‘‘GR’’ C-

terminal amidation signal [34], so it would have no impact on the

size of the mature toxin. In the case of U3-hexatoxin-Hi1a, the

cDNA and gDNA sequences are identical except for a single A?G

base substitution that corresponds to a conservative amino acid

change from K to R at position 6 in the mature toxin (Fig. 5B).

Discussion

The venoms of many animals, including marine cone snails,

scorpions, snakes, sea anemones, spiders and platypus contain

many peptides that are produced by post-translational processing

of a larger precursor [14]. The precursors of cone snail and sea

anemone toxins contain both a signal sequence and a propeptide

region, whereas the propeptide region is generally absent in

scorpion and snake toxin precursors [35,36]. The situation is more

complex in spiders, with propeptide regions typically present in

transcripts encoding ‘‘short’’ toxins (,5 kDa) [4,17,34,37,38] but

absent from transcripts encoding longer toxins [39]. However, in

all cases, the precursor encodes only a single copy of the mature

toxin sequence.

Since most venom research (not only on spiders) has been

focused on the isolation and identification of peptides via

proteomic and transcriptomic approaches, mainly with a view

towards developing new pharmacological tools and therapeutic

leads, there is a paucity of information on the number of toxin

genes, their genetic architecture, and the genetic mechanisms

underpinning toxin diversification. A small number of genes

encoding venom peptides have been described from cone snails,

scorpions, sea anemones and snakes and with only a few

exceptions they all have an intro-exon architecture. In conotoxins,

one intron is positioned between the signal and propeptide coding

regions and another between the propeptide and mature toxin

region [19], whereas a variable number of introns (1 to 3) can be

found in snake-toxin genes [35,40,41]. There are examples of both

intronless and intron-containing venom genes in scorpions [36,42–

44].

The gene encoding m-diguetoxin-Dc1a from the araneomorph

spider D. canities [15] was the first spider-venom peptide gene to be

sequenced. This gene contains five introns that span 5.5 kb; the

first two introns are located within the 59 UTR and propeptide-

encoding region while the other two are situated in the region

encoding the mature toxin (Fig. 1A). More recently, 24 genes

encoding ICK-containing venom peptides were sequenced from

two mygalomorph spiders, namely the Chinese bird spider

Haplopelma huwenum and the Chinese Black Earth Tiger tarantula

Haplopelma hainanum [16–18]. All of these genes lacked introns, in

striking contrast to the gene encoding m-diguetoxin-Dc1a.

In this study we determined for the first time the architecture of

genes encoding ICK-containing venom peptides from the highly

venomous Australian funnel-web spider. All three genes we

examined were intronless, including the gene encoding the lethal

d-hexatoxin-Hi1a peptide. Thus, to date, all of the 27 genes

encoding ICK-containing venom-peptides that have been se-

quenced from primitive mygalomorph spiders are intronless,

which raises interesting questions about the ancestral state of genes

encoding spider-venom peptides as well as the mechanism of toxin

diversification.

Spiders evolved from an arachnid ancestor more than

300 million years ago (Mya). Extant spiders are divided into the

suborders Opisthothelae and Mesothelae, with the latter compris-

ing a single family of primitive, venom-less burrowing spiders [45].

Opisthothelae is further divided into two infraorders, Mygalo-

morphae and Araneomorphae, sometimes referred to as ‘‘prim-

itive’’ and ‘‘modern’’ spiders, respectively [45]. Molecular clock

analyses suggest that mygalomorphs and araneomorphs split

,280 Mya [46], which is consistent with the fossil record. The

earliest mygalomorph fossil dates to the early Triassic period

,240 Mya, while the earliest araneomorph fossils date to

,225 Mya [47]. If the complex intron-exon architecture deter-

mined for m-diguetoxin-Dc1a is representative of genes encoding

araneomorph toxins then either introns were lost secondarily by

mygalomorph spiders following their divergence from araneo-

morphs more than 250 Mya or the ancestral state of spider-venom

peptide genes is intronless.

Minimization of genome size through extensive loss of ancestral

introns has been reported for microsporidia, fungi, red algae, and

apicomplexans [48]. At this stage it is unclear whether there has

been tendency towards minimization of genome size in mygalo-

morphs, but this seems unlikely. Recent surveys of ,120

araneomorph spiders [49,50] have revealed an enormous variation

in genome size (700–5,500 Mb) but there are no current estimates

for genome size in mygalomorph spiders. Loss of introns is

associated with evolutionary diversification of snake-venom

disintegrins but in this case intron loss is correlated with a

between the cDNA and gDNA sequences leads to a difference in the sequence of the encoded protein; in these cases the amino acid encoded by the
cDNA and gDNA are shown in black and red, respectively. The ‘‘GR’’ sequence underlined in green at the C-terminus of the mature-toxin region of v-
hexatoxin-Hi2a in panel (A) is a C-terminal amidation signal [34].
doi:10.1371/journal.pone.0043699.g005
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corresponding reduction in protein size [51]. Given the growing

consensus that the ancestral bilaterian was rich in introns and that

differences in intron numbers between animals largely reflect

different levels of intron loss [48], the most parsimonious

explanation of the current sparse data on spider-venom peptide

genes is that ancestral spider-toxin genes contained introns (as seen

in the gene encoding m-diguetoxin-Dc1a) but these were lost at an

early stage in the evolution of genes encoding ICK toxins. Since

Australian funnel-web spiders (family Hexathelidae) and tarantulas

(family Theraphosidae) diverged more than 200 Mya, mygalo-

morph spiders presumably dispensed with introns in genes

encoding ICK toxins at a very early stage of venom evolution.

The implications of intron loss or gain in genes expressing

spider-venom peptides will not be understood until more genes are

sequenced from a greater diversity of spiders. However, the

apparent widespread loss of introns in genes encoding mygalo-

morph ICK toxins raises questions about the mechanism of toxin

diversification, as alternative splicing and other intron editing

mechanisms are clearly not being used to expand the repertoire of

venom peptides. Moreover, the absence of introns makes it

difficult to invoke exon shuffling as the mechanism by which

spiders created larger ‘‘double-knot toxins’’ comprised of two

tandemly-repeated ICK domains [52].

The absence of introns suggests that the mechanism of

diversification of spider-venom ICK toxins differs from that

employed by venomous cone snails to expand their toxin

repertoire. As for spider-venom ICK toxins, disulfide-rich peptides

from cone snail venoms are initially produced as prepropeptides

that are post-translationally processed to yield the mature toxin.

These cone snail toxins are encoded by genes that architecturally

resemble those encoding the spider-venom peptide m-diguetoxin-

Dc1a, with three exons separated by large (.1 kb) introns [19].

Exon III, which encodes the mature toxin, appears to have

evolved at a 10-fold higher rate than exon I, which encodes the

signal peptide, and it has been suggested that the separation of

these exons by much larger intronic sequences has facilitated their

markedly different rates of mutation [19]. Spider-venom ICK

toxins show a similar disparity in the rate of mutation between the

signal peptide and mature toxin [14], without the benefit of these

regions being encoded by separate, widely separated exons.

Hence, it will be interesting to determine what allows the

mature-toxin region to be extensively mutated over evolutionary

time while the signal peptide that is only ,40–60 bp upstream

remains under strong negative selection pressure [14].

Most toxin genes are transcribed at high frequency during

venom regeneration, and thus intronless genes might diversify over

time due to elevated rates of mutation that are sometime

associated with highly transcribed genes, a process known as

transcription-associated mutation (TAM). TAM is associated with

an increased frequency of mutations such as base replacements,

deletions, and recombination [53]. Other heavily transcribed

intronless genes such as those involved in immune recognition and

response diversify via mechanisms of recombination, somatic

hypermutation, class switch recombination, and gene conversion

[54,55]. Whether any of these processes underlie the diversifica-

tion of intronless spider-venom genes remains to be seen.

In summary, we have shown that the gene encoding the lethal

d-hexatoxin-Hi1a peptide as well as the genes encoding two other

ICK-containing toxins (v-hexatoxin-Hi2a and U3-hexatoxin-

Hi1a) from the Australian funnel-web spider Hadronyche infensa

are intronless. This rules out alternative splicing as a mechanism

for enhancing venom diversity and it raises still to be answered

questions about the ancestral state of spider toxin genes.
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