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Abstract

Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to
concentrations of CO2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues.
However, there is considerable variation both within and between species in CO2 effects, whereby some individuals are
unaffected at particular CO2 concentrations while others show maladaptive responses to predator odour. Our goal was to
test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether
learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using
two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement
damselfish Pomacentrus amboinensis that were exposed to 440 matm CO2 (current day levels) or 850 matm CO2, a
concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of
learning, damselfish exposed to elevated CO2 failed to learn to respond appropriately to a common predator, the dottyback,
Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift
in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 matm-CO2 fish to
learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-
conditioning, CO2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO2 exposed
fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO2-treated
fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO2 may alter the
cognitive ability of juvenile fish and render learning ineffective.
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Introduction

Ocean acidification, caused by the uptake of additional carbon

dioxide (CO2) from the atmosphere, is a significant threat to

marine ecosystems [1,2,3,4]. A rapid increase in CO2 in the

atmosphere leads to a lowering of the pH of the oceans, as

additional CO2 reacts with water to release bicarbonate (HCO3
2)

and hydrogen ions (H+). This process has resulted in a drop in

oceanic pH by 0.1 pH units since pre-industrial times [5] and a

further 0.3–04 pH units decrease is predicted by 2100 if current

CO2 emissions trajectories are maintained [4]. Such a decrease is

not novel per se, as geologic records indicate similar situations

have occurred in the past, such as during the Paleocene-Eocene

period some 56 million years ago [6,7]. A key question is how

biological life will cope with this rapid change in ocean chemistry

[5].

The potential effects of acidification on calcifying organisms,

such as corals and invertebrates with calcareous exoskeletons, due

to the reduced saturation of carbonate ions in the ocean at lower

pH [3,5,8] is now well-recognised. Much less is known on the

consequences of ocean acidification on non-calcifying marine

species, such as fish [9,10]. Indeed, a recent meta-analysis [10]

shows that only 25% of the 198 tests reporting ocean acidification

effects were performed on non-calcifiers, with only 2% of the

studies being done on fishes (the other 23% focusing on algae and

aquatic plants). Although early research indicated that very high

levels of CO2 (.10,000 ppm) were lethal for a number of fish

species [11], some fish species appear to be tolerant of mild

increases in pCO2 [12,13]. However, non-lethal CO2 levels

predicted by the end of the century (up to ,1000 ppm depending

on the IPCC scenario chosen) [14] may still lead to negative

consequences. For example, Dixson et al. [15] reported that the

coral reef clownfish Amphiprion percula was affected by CO2

exposure so that larvae exposed to CO2 levels of 1000 ppm were

not able to respond appropriately to the odour of predatory fishes

(the rockcod, Cephalopholis cyanostigma and a dottyback, Pseudochromis
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fuscus). Munday et al. [16] provided the first evidence of the fitness

costs associated with such effects of CO2. Young juveniles of the

damselfish, Pomacentrus wardi, that were exposed to 850 matm of

CO2 and released in the wild suffered an 8-fold increase in

predation-related mortality in the first 30 h of settlement,

compared to control fish exposed to present-day levels of CO2

(440 matm CO2). These results do not reflect a lack of detection of

the cues by the fish, as both Dixson et al [15] and Munday et al.

[16] showed that juveniles from controls avoided predator odours,

while CO2-treated juveniles were attracted to predator odours.

Recent studies have shown a surprising amount of intra- and

inter-specific variation in the effects of CO2 on fishes [16,17]. At

levels nearing 700 matm, some individuals consistently display an

appropriate response while others consistently show maladaptive

responses to predators. Thus, there should exist a time in the

future where affected fish (those that do not respond appropriately

to predators) will co-occur with unaffected individuals. This could

either result in strong directional selection, whereby affected

individuals will be removed from the population, or it could delay

the effects of CO2, by allowing these fish to learn to display the

appropriate response by copying the behaviour of non-affected

individuals. Thus, the extent to which appropriate responses to

predators may be acquired is a key question. If this is possible, it

might mitigate the effects of ocean acidification on predator-prey

interactions.

Some coral reef fishes do not show innate recognition of

predators [18]. Learning is key to acquire new knowledge, skills

and behaviours, and interaction and experience with predators are

among the most efficient means of learning the identity of

predators, due to the immediate costs (i.e., injury or death)

associated with a lack of an appropriate response by potential prey.

For aquatic species, one way to learn to recognize predators is

through the simultaneous detection of novel predators and cues

from injured conspecifics (reviewed by [19]). Cues from injured

conspecifics (or ‘alarm cues’) are known to elicit immediate and

dramatic antipredator responses, due to the highly reliable nature

of those cues in a predation context; they are only released through

mechanical damage to the skin of the prey, typically during a

predator attack. Such learning is highly efficient – one-time

learning – and widespread, from flatworms to larval amphibians

[19]. The first goal of our study was thus to test if 850 matm CO2-

exposed fish would acquire recognition of novel predators through

this learning process.

Another form of antipredator learning involves social learning,

whereby naive individuals learn by observing more experienced

conspecifics respond to a predator ([20,21] for reviews). Social

learning may be particularly important for coral reef fishes, as they

often colonize corals at high densities and have opportunities to

observe the behaviours of resident conspecifics and heterospecifics.

If individuals that are affected by CO2 can learn to recognize

predators from unaffected individuals, then the negative effects of

CO2 exposure may be reduced. Thus, the goal of a second

experiment was to investigate how exposure to elevated CO2

affected the ability to acquire recognition of a novel predator from

individuals not affected by CO2.

A failure to respond to predator cues following a conditioning

event may be explained one of two ways: 1) the prey may have

failed to learn the predator as a danger, or 2) the prey successfully

learned to recognize the predator, but intrinsic factors may

prevent them from showing an overt antipredator response to the

cues at the time of testing. One such intrinsic factor is hunger level.

For instance, Brown et al. [22] showed that hungry fathead

minnows, Pimephales promelas, still learned to recognize pike, Esox

lucius, as a predator despite the absence of an alarm response

during conditioning. When subsequently fed, the minnows

displayed antipredator responses similar to those of well-fed

minnows when exposed to pike odour. These results are explained

by a shift in foraging trade-offs whereby the need of prey to forage

overrides the behavioural responses to the predator. In our

situation, it is possible that CO2 may alter physiological and

foraging needs via another state-dependent factor explaining the

lack of response of prey to predator cues. To discriminate between

these two options, we performed a third experiment whereby 700-

matm CO2-exposed fish that had been conditioned to recognize a

predator, via conditioning with injured conspecific cues, were

tested for their response to the predator at one day or five days

post conditioning. We chose 5 days as previous studies have shown

that the CO2 effects only last up to four days after the fish have

been returned to control water [16].

Our study examined these questions in the context of a coral

reef ecosystem on the Great Barrier Reef, Australia. Most coral

reef fishes have a pelagic larval stage that resides in the plankton

for a period of weeks to months [23]. At the end of this phase,

juvenile fish must locate suitable benthic habitat and in doing so,

face a new and abundant array of predatory reef fishes. Predators

may remove up to 60% of newly settling fish in a single night [24],

creating population bottlenecks. In the days immediately prior to

settlement, juvenile fish can be captured away from the reef in

large numbers using light traps [25,26]. Although they have

juvenile form and colouration, these individuals are naı̈ve to the

suite of predators that await them on the reef. Learning to

recognize predators upon settlement is a critical step in the life

history of these fish. Our system provides a unique opportunity to

examine interactions between learning behaviour, predation and

the effects of ocean acidification.

Methods

Test subjects and CO2 treatment
Experiments took place at the Lizard Island Research Station

(14u409S, 145u289E), on the Great Barrier Reef, Australia, in

November and December 2009 (experiments 1 and 2) and 2010

(experiment 3). We used established protocols to capture and treat

our fish [16,27]. Pre-settlement juveniles (16–21 days old) of

Pomacentrus amboinensis were caught overnight in light traps [26]

moored .100 m off the reef at Lizard Island. Light traps collect

these fish immediately prior to their arrival on the reef at the end

of the planktonic larval stage [28]. Every morning, P. amboinensis

collected in the traps were transferred to 35-L rearing aquariums

at 440 (present-day control CO2 levels), 700 or 850 matm CO2.

Pomacentrid larvae exposed to elevated CO2 over a few days

showed identical behavioural impairments as larvae raised under

the same CO2 levels from birth [16], indicating that the alteration

in behaviour were not due to a sudden CO2 exposure. Moreover,

given their bipartite life history, juvenile damselfish would

naturally be exposed to a change in CO2 conditions, when they

recruit from the open ocean, where CO2 conditions are relatively

stable, to the coral reef where pCO2 can fluctuate significantly on

a daily basis due the net effects of photosynthesis, respiration and

calcification [29,30].

CO2 treatments were maintained by CO2 dosing to a set pHNBS

following standard techniques for ocean acidification research, as

set out in the Best Practices Guides for Ocean Acidification

Research [31]. Seawater was pumped from the ocean into 4660 L

sumps where it was diffused with ambient air (control) or CO2 to

achieve a pH of approximately 8.15 (control), 7.97 or 7.89. The

reduced pH values were selected to achieve the approximate CO2

conditions required, based on preliminary observations of total
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alkalinity, salinity and temperature of seawater at Lizard Island. A

pH-controller (Tunze Aquarientechnik, Penzberg, Germany) was

attached to each of the CO2 treated sumps to maintain pH at the

desired level. A solenoid injected a slow stream of CO2 into a

powerhead at the bottom of the sump whenever the pH of the

seawater rose above the set point. The powerhead rapidly

dissolved CO2 into the seawater and also served as a vigorous

stirrer. Equilibrated seawater from each sump was supplied at a

rate of ,500 ml.min21 to four replicate 35-L aquariums, each

housing a group of larval fishes. To maintain oxygen levels and the

required pCO2 levels, aquariums were individually aerated with

air (control ,440 matm) or CO2-enriched air (,700, or

850 matm). The concentration of CO2-enriched air was controlled

by a scientific-grade pressure regulator and precision needle valve

and measured continuously with an infrared CO2 probe (Vaisala

GM70, Vaisala, Helsinki, Finland). Temperature and pHNBS of

each aquarium was measured each morning and afternoon using

an HQ40d pH meter (Hach, Loveland, Colorado, USA)

calibrated with fresh buffers. Total alkalinity of seawater was

estimated by Gran titration from water samples taken twice weekly

from each CO2 treatment. Alkalinity standardizations performed

before processing each batch achieved accuracy within 1% of

certified reference material from Dr. A. Dickson (Scripps

Oceanographic Institute). Average seawater pCO2 was calculated

using these parameters in the program CO2SYS and using the

constants of Mehrbach et al. [32] refit by Dickson & Millero [33].

Estimated seawater parameters are shown in Table 1.

Young damselfishes were fed freshly hatched Artemia nauplii

three times a day. The fish were treated for 4 consecutive days and

then used in our experiment immediately after the treatment

period was over. Due to experimental limitations in the amount of

CO2 water that could be produced daily, it was not possible to test

CO2-treated fish in CO2-enriched water. Thus, the experimental

manipulations described thereafter took place in control water.

This methodology was successfully used previously [16,17,34].

Juvenile damselfish have also been shown to display the same

behavioural alteration in CO2-enriched as in control water after a

4-day CO2 exposure period [16]. Fish treated with 700–850 matm

CO2 retain their CO2-induced impaired behavioural responses for

at least 48 h after being transferred back into control water, but no

longer than 4 days [16].

Experiment 1: Acquired predator recognition via pairing
with cues from injured conspecifics

Our first experiment investigated the ability of CO2-treated fish

to respond to predator odour following conditioning with cues

from injured conspecifics. The learning procedure is a 2-step

process that first involves a conditioning phase where fish are

exposed to cues of injured conspecifics paired with those of a novel

predator and second, a testing phase, where fish are exposed to the

predator cue alone to measure any learned antipredator response.

Our experimental set-up followed a complete 26262 design,

consisting of conditioning either control or 850 matm CO2-treated

fish with the odour of a predatory dottyback, a common predator

of newly-settled damselfishes at Lizard Island [35], paired with

either water (pseudo-conditioning) or cues from injured conspe-

cifics (true conditioning). Later, the fish were tested for their

response to either the dottyback odour or a water control. The

group of individuals that were pseudo-conditioned should not have

acquired recognition of the predator, while predator odour should

be recognised as a risky stimulus by the group that were exposed to

the cues from injured conspecifics.

Conditioning phase. At least 6 h prior to conditioning,

larvae were removed from their respective CO2 treatment, and

placed individually in 20-L flow-through tanks (32616616 cm)

equipped with sand, a small piece of dead coral as a shelter, an

airstone, and a 1.5 m long injection tube used to introduce stimuli

into the tank. Each tank was covered on three sides with black

plastic to avoid visual transfer of information from surrounding

tanks. In addition, a black plastic curtain was hung in front of the

tanks to minimize disturbance to the fish by the movement of the

observer. One h after adding fish to the conditioning tanks and

again, 1 h prior to conditioning, the fish were fed ad lib with Artemia

larvae. Water flow was turned off 30 min prior to conditioning the

fish. In half of the tanks, we introduced 5 mL of injured

conspecific cues paired with 20 mL of dottyback odour, while

the other half received 5 mL of seawater paired with 20 mL of

dottyback odour. The concentrations we used are based on

previously published studies [17,18]. After 1 h, we turned the flow-

through system back on, transferred the fish into their testing tanks

with the water flow on, and fed them ad lib 30 min later.

Cues from injured conspecifics were prepared fresh, by gently

slicing the side of a sacrificed individual (JCU Animal Ethics

Protocol A1067) and rinsing it with fresh seawater. A preliminary

experiment showed that cues produced by making 4 cuts on each

side of a fish were enough to elicit an overt antipredator response

in juvenile damselfish when injected into the tanks. Thus, to

minimize the number of fish sacrificed, we made 12 cuts on each

side of a fish and rinsed it with 15 mL of seawater in a glass Petri

dish to obtain enough cues for 3 conditioning events. We repeated

this procedure until we had enough cues to condition all the tanks

for that day, and mixed all the cues together prior to injection. All

cues were used within 15 min of being made to ensure their

potency [18]. Dottyback were collected 3 weeks prior to our

experiment while diving in the lagoon at Lizard Island using hand

nets and anaesthetic clove oil mixed with alcohol and seawater.

Two yellow morph dottybacks (6.5 and 7.1 cm standard length)

were maintained in a 70-L tank of aerated water where 60% of the

water was changed daily. The dottyback were fed prior to the

water change with INVE Aquaculture Nutrition 12/20 pellets.

Water taken from the dottyback tank was used as our predator

odour and was injected into our experimental tank within 20 min

of being collected.

Testing phase. Trials began between 4 and 8 hours after

transfer of juvenile fish into the testing tank. Test and conditioning

tanks were identical, with the exception that a 464 cm grid was

drawn on the side of the test tank to help the observer record

positions of the fish during the experiment. One h prior to testing,

the juvenile fish were fed and the flow-through system was tuned

off 30 min later. Behavioural observations of the fish were

conducted during this phase. The order of treatments was

randomized.

Behavioural bioassay. To stimulate activity, we injected

small quantities of food into the tank, on the opposite side of the

Table 1. Mean (6 SD) seawater parameters in the
experimental system.

pHNBS Temp 6C Salinity ppt TA (mmol.kg21SW) pCO2

8.15 (0.04) 27.66 (0.98) 35 2269.66 (15.01) 440.53 (44.46)

7.97 (0.06) 27.59 (0.97) 35 2259.87 (11.55) 718.37 (110.82)

7.89 (0.06) 27.74 (0.99) 35 2261.23 (14.92) 879.95 (140.64)

Temperature, pH salinity, and total alkalinity (TA) were measured directly. pCO2

was estimated from these parameters using CO2SYS.
doi:10.1371/journal.pone.0031478.t001
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coral shelter, creating a choice for juveniles to either forage or take

refuge within the coral head. During each observation period, we

measured 3 behaviours: (1) the total number of feeding strikes

displayed by the fish, regardless of whether they were successful at

capturing a food item or not; (2) the total number of lines the fish

crossed during the observation period, using the 464-cm grid

drawn on the side of the tank. A line was counted as crossed when

the entire body of the fish crossed a line. This behaviour represents

a measure of the swimming activity of the fish; (3) the total number

of different squares visited during the observation period. This

represented the 2-dimensional area of activity of the fish, and is a

standard technique used to measure activity [18]. Prey fishes

exposed to risk typically decrease or stop feeding, decrease their

swimming activity and reduce their area of activity [36,37].

Initially, the juvenile fish were fed 2.5 mL of food (seawater

containing ,250 Artemia larvae.mL21) to remove the possibility of

a ‘‘feeding frenzy’’ effect at the start of the bioassay. Pre-stimulus

observation began 5 min later, when another 2.5 mL of food was

injected into the tank. At the end of this 5-min pre-stimulus

observation period, 20 ml of dottyback odour or 20 mL of water

were introduced into the tank followed by 2.5 mL of food. The

behaviour of the juvenile was then observed for 5 min. The

experimenter was blind to the treatment during the observation.

To control for any day effect, we tested the same number of fish

from each of the treatment groups each day. We ran 16–17

replicates in each of the 8 treatment groups, testing a total of 129

fish.

Experiment 2: Acquired predator recognition via visual
cues from conspecifics

This experiment was designed to test whether the fish could

acquire recognition of predators via visual cues from conspecifics,

and in particular, whether this ability was impaired by exposure to

850 matm CO2 concentrations. Similar to Experiment 1, the

conditioning with odour cues from injured conspecifics and social

learning procedures are divided into two phases: the conditioning

phase consisting of pairing predator-naive (hereafter ‘learner’) and

predator-experienced (hereafter ‘tutor’) individuals and exposing

them to predator cues. At this time, the naive learner individual

has an opportunity to observe the behavioural response displayed

by the experienced tutor toward the predator cues and thus

acquire recognition of the cues as a potential threat. In the testing

phase, the tutor is removed and the naı̈ve fish subjected to the

predator cues. Our experimental design followed a 26262 design,

consisting of pairing a naive learner raised under normal or

850 matm CO2 (CO2 effect on learner) to a tutor that was either

naive or experienced with dottybacks (tutor experience), and then

exposing the pair to dottyback odour. During the testing phase, the

observers were exposed to water or dottyback odour (testing cue)

and their antipredator responses were measured. We predicted

that learner fish paired with naive tutors would not learn to

recognize the predator as threatening, and that learning to

recognize predators from tutors would potentially be reduced if

learners were exposed to high CO2 concentrations.

Naive and experienced tutors. Presettlement juvenile P.

amboinensis were collected from the light traps in the morning and

conditioned to be used as tutors the following day. To distinguish

the tutors from learner fish, we marked the tutors with a small

colored elastomer tag injected under the skin on their dorsal side

behind their dorsal fin. This tagging does not influence the

behaviour or survivorship of juvenile damselfishes [38]. Tutors

were then randomly placed in conditioning tanks identical to those

described in the previous experiment, and underwent a

conditioning identical to the one described for Experiment 1.

Half of the tutors were conditioned via pairing of injured

conspecific cues and dottyback odour, hence rendering them

‘experienced’ to the dottyback predator, while the other half

received dottyback odour paired with water (pseudo-conditioning),

which kept them ‘naive’ with regards to the dottyback.

Conditioning phase. In a flow-through conditioning tank,

we paired one naive or one experienced tutor with a learner fish

that was raised for 4 days under normal or 850 matm CO2 levels.

To control for day effects, we conditioned and tested the same

number of each of the four pairing combination each day. Thirty

min after pairing them, the fish were fed to satiation. The next

morning, the fish were fed again. One h after feeding, the flow-

through system was turned off and the conditioning phase began

20 min later. To ensure an overt antipredator response from the

tutor fish, we injected 5 mL of Artemia in the tank 5 min prior to

conditioning. We then injected 2.5 mL of Artemia, followed by

20 mL of dottyback odour. We left the fish undisturbed for 1 h,

then turned the water flow back on and removed the tutor fish.

Testing phase. This phase took place between 4 and 8 h

following the conditioning phase. The experimental setup,

behavioural bioassay and methodology and cues were identical

to the ones described for Experiment 1. The fish were tested for a

response to 20 mL of seawater or 20 mL of dottyback odour. We

ran 16 replicates in each of the 8 treatment groups, testing a total

of 128 fish. The order of testing was randomized among

treatments.

Experiment 3: Is CO2 exposure inducing a lack of learning
or simply a lack of response?

This experiment was designed to test whether fish that did not

display an antipredator response after being conditioned in

elevated-CO2 water, would subsequently respond to the predator

once the CO2 effects wore off. Juvenile damselfish exposed to

control or 700 matm CO2-levels were conditioned via injured

conspecific cues to recognize a predatory dottyback following the

same methodology as Experiment 1. All fish were exposed to 5 mL

of injured conspecific cues paired with 20 mL of dottyback odour.

Although the goal of the experiment was to test for residual CO2

effects post-CO2 treatment, we needed to ascertain that the results

observed in Experiment 1 with 850 matm CO2 fish were also

observable with 700 matm CO2 fish. Thus, as in Experiment 1, a

group fish was tested for their behavioural response to the predator

odour or a water control one day post-conditioning. The rest of

the fish were tested 5 days post-conditioning for their response to

the predator odour, a water control or an injured conspecific cue

control. The water served as a negative control, while the injured

conspecific cues served as a positive control, as they elicit overt

antipredator responses independently of experience. Hence, we

predicted that if fish are able to display an overt antipredator

response to injured conspecific cues, they should also be able to

display an antipredator response when exposed to the predator

odour, assuming they have successfully learned to recognize the

odour as a risky stimulus during the conditioning phase.

Conditioning and testing protocols were identical to those

described in Experiment 1. We conditioned a total of 75 fish.

Statistical analysis
For all experiments and all variables, no pre-stimulus difference

was found among treatments. Thus, we used the raw data to

compute change in activity from the pre-stimulus baseline (post

minus pre) for each of the three behaviours. Due to the inter-

dependency of the three behaviours, we analyze them together

using a multivariate approach (MANOVA). In cases where the

data did not meet parametric assumptions, the data were rank-
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transformed and a non-parametric ANOVA approach (extension

of the Kruskall-Wallis test) was used on the transformed data [39].

For Experiment 1, we performed a 3-way MANOVA testing the

effect of conditioning, CO2 and testing cue on the behaviour of the

fish. Due to a significant 3-way interaction, we performed 2-way

MANOVAs on each conditioning type (pseudo-conditioning with

water and true conditioning with injured cues) independently, to

investigate the effect of CO2 (control vs 850 matm) and testing cue

(water vs predator odour) on the responses of fish. Similarly, for

Experiment 2, we performed a 3-way MANOVA, followed by 2-

way MANOVAs on each tutor type (naive and experienced tutors)

independently, to investigate the effects of CO2 (control vs.

850 matm) and testing cue on the responses of the fish. For

experiment 3, we first established that 700 matm CO2-treated fish

did not learn to recognize the predator by conducting a 2-way

ANOVA, testing the effect of CO2 treatment (control vs 700 matm)

and testing cue (water vs predator odour) on the antipredator

response of the fish one day post-conditioning. We then conducted

a 2-way ANOVA, testing the effect of CO2 (control vs 700 matm)

and testing cue (water vs predator odour vs injured conspecific

cues) on the response of the fish 5 days post conditioning.

Results

Experiment 1
The antipredator responses displayed by the fish were affected

by the cues to which they were exposed, the conditioning they

undertook and the CO2 levels at which they were maintained (3-

way non-parametric MANOVA: Pillai’s Trace: Cue6CO26Con-

ditioning: H3,119 = 5.2, P = 0.002, Figure 1). The responses of fish

pseudo-conditioned with water were affected by neither CO2 nor

cue (2-way MANOVA: Pillai’s Trace: CO2: H3,59 = 0.8, P.0.4,

Cue: H3,59 = 0.4, P.0.7; CO26Cue: H3,59 = 1.8, P = 0.16).

However, the responses of fish that were conditioned to recognize

the predator with injured conspecific cues (true conditioning) was

dependent on both CO2 and cue (CO26Cue: H3,58 = 16.3,

P,0.001). More specifically, CO2 did not affect the responses of

fish to water (F3,28 = 1.1, P.0.3), but rather that to predator odour

(H3,28 = 29.5, P,0.001). In addition, fish exposed to 850 matm

CO2 did not respond differently to water and predator odour

(F3,28 = 0.01, P.0.9).

Experiment 2
The antipredator responses displayed by the fish were affected

by the cues to which they were exposed, the experience of their

tutor and the CO2 levels at which they were maintained (3-way

non-parametric MANOVA: Pillai’s Trace: Cue6CO26Condi-

tioning: H3,118 = 9.7, P,0.001, Figure 2). The responses of fish

conditioned with naive tutors were affected by neither CO2 nor

cue (2-way MANOVA: Pillai’s Trace: CO2: H3,58 = 1.0, P.0.4,

Cue: H3,58 = 0.2, P.0.9; CO26Cue: H3,58 = 0.6, P.0.6). How-

ever, the responses of fish that were conditioned to recognize the

predator with alarm cues (true conditioning) was dependent on

both CO2 and cue (CO26Cue: H3,58 = 16.7, P,0.001). More

specifically, CO2 did not affect the responses of fish to water

(F3,28 = 1.2, P.0.3), but rather that to predator odour

(H3,28 = 50.6, P,0.001). In addition, fish exposed to 850 matm

CO2 did not respond differently to water and predator odour

(F3,28 = 0.3, P.0.7).

Experiment 3
Test at Day 1. Changes in antipredator response were

influenced both by CO2 and cue (262 non-parametric

MANOVA, Pillai’s Trace: H3,78 = 5.7, P = 0.001, Figure 3). The

responses of fish to water was not affected by CO2 (non-parametric

MANOVA, Pillai’s Trace: H3,37 = 0.1, P.0.9), but their responses

to predator odour was (H3,39 = 6.8, P = 0.001).

Test at Day 5. After the effects of CO2 wore off, we still

found that fish’s antipredator responses were influenced by both

CO2 and cue (262 MANOVA, Pillai’s Trace: F6,136 = 6.0,

P,0.001, Figure 4). CO2 did not affect the responses of fish to

water (1-way MANOVA, Pillai’s Trace: F3,20 = 0.2, P.0.8) or a

general risk cue like injured conspecific cues (F3,20 = 1.5, P.0.25),

but did affect the responses of fish to predator odour (F3,23 = 13.7,

P.0.001). Post-hoc tests revealed that fish did not respond

differently to water and predator odour.

Discussion

Learning through conditioning with odour cues of injured

conspecifics and through observational social learning are very

different processes, even though they lead to the same results. In

the first, information about risk is provided by a chemical cue,

while in the second, the information is provided by a visual source.

The results of our study demonstrate that exposure of naı̈ve

juvenile fish to elevated levels of CO2 impairs both these processes.

If our treatments represent future oceanic conditions on coral

reefs, then evidence suggests that new recruit fishes will have a

much reduced ability to assess predation risk and will as a

consequence have much lower survival.

Our first experiment showed that juvenile damselfish exposed

to control levels of CO2 were able to learn to recognise the odour

cue of a predator, but juveniles exposed to 850 matm CO2 were

not. Our last experiment demonstrated that these effects also held

at lower CO2 concentration (700 matm CO2). In addition, once

the CO2 effect wore off, fish conditioned to recognize the

predator in elevated CO2 conditions still did not respond to the

predator odour, but were able to display strong antipredator

responses to other risk cues, such as injured conspecific cues. This

indicates that elevated CO2 conditions did prevent learning from

occurring.

Our work suggests that there is some form of cognitive

impairment of the fish exposed to elevated CO2. The findings of

our second experiment showed that larvae exposed to high levels

of CO2 did not acquire recognition of the predator through

cultural learning, whereas the control larvae were able to learn

through this mechanism. Recent research showed that exposure to

elevated CO2 affects both olfactory [15,27] auditory [40] and

visual [41] senses and a diverse range of behavioural activities in

larval [16,17] and adult fishes [42]. Furthermore, Domenici et al.

[43] provides compelling evidence that elevated CO2 directly

affects brain function in larval fishes, because behavioural

lateralization (the propensity for individuals to turn left or right)

is impaired by elevated CO2. The accumulating experimental

evidence indicates that impaired and altered behaviour following

exposure to elevated CO2 is caused by a systemic effect at the

neurological level. A new study by Nilsson et al. [44] has

confirmed this prediction by demonstrating that ionic changes

associated with acid-base regulation interfere with brain neuro-

transmitter function in fish exposed to elevated CO2. Therefore,

the broad range of behavioural problems identified in larval and

juvenile fishes exposed to elevated CO2, including the impaired

learning ability demonstrated here, appear to be caused by the

ionic changes that fish use to prevent acidosis when permanently

exposed to high CO2. We encourage researchers examining other

environmental stressors to consider systemic neurological effects

rather than focussing their attention on impaired sensory

perception.
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Figure 1. Mean change in number of feeding strikes (top), line crosses (middle) and area use (bottom) from the pre-stimulus period
for fish exposed to water (empty bars) or predator odour (solid bars). Fish were either raised under current-level CO2 (control) or elevated
CO2 (850 matm) and conditioned by pairing predator odour paired with either alarm cues (true conditioning) or water (pseudo-conditioning). (N = 16/
treatment).
doi:10.1371/journal.pone.0031478.g001
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Figure 2. Mean change in number of feeding strikes (top), line crosses (middle) and area use (bottom) from the pre-stimulus period
for fish exposed to water (empty bars) or predator odour (solid bars). Fish were either raised under current-level CO2 (control) or elevated
CO2 (850 matm) and conditioned by being paired with either naive or experienced tutors and exposed to predator odour (N = 16217/treatment).
doi:10.1371/journal.pone.0031478.g002
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Like many ocean acidification studies, our CO2 treatment was

short-term; hence we need to consider whether the responses we

observed were a result of stress related to our methodology.

However, previous studies have shown that raising coral reef fishes

in CO2 from hatching lead to similar alterations in antipredator

behaviour as those observed after a 4-day exposure to CO2 [16].

Hence, if our results were mediated by stress responses related to

CO2 exposure, it seems likely than these effects cannot be dealt

with through ontogeny. A possible alternative approach to

studying the effects of ocean acidification may be through raising

generations of fish in increasing CO2 conditions. However,

beyond the limitation due to the life-history of some species

(pelagic larvae), laboratory conditions may relax the selection

pressures needed to maintain responses to predators.

Although larval fishes currently experience relatively stable

CO2 conditions that are in equilibrium with the atmosphere

during their pelagic stage in the open ocean, they may experience

significant diurnal fluctuations in pCO2 once settled to the reef,

temporarily approaching the levels used in our high- CO2

treatment. An obvious question that arises is: why are the fish

able to learn to recognize predators under current conditions with

this fluctuating CO2? The answer likely lies in the temporal

aspect of the exposure regime. Previous research shows that

behavioural impairment only occurs after several days of

exposure to high CO2 and that impairment is retained for

several days after larvae are returned to low pCO2 conditions

[16]. Therefore, short term fluctuations in CO2 do not appear to

impair learning.

Some conservation research has focused on means of increasing

the survival of captive-bred [45] or translocated [46] individuals

when released in an environment where these 1individuals are

totally naive to their predators. A number of training programs

have been undertaken to mitigate the ‘naivete’ effects, including

social learning and conditioned learning, with some success [47],

due to the power and efficacy of learning mechanisms to improve

survival. In our situation however, it appears that learning

mechanisms may be disrupted by these environmental conditions,

which may impact the ability of prey to respond better to

predators. The co-existence of affected and non-affected individ-

uals towards mid-century will likely provide a great source of

selection towards the elimination of individuals displaying

maladaptive behaviour, both in a predation and homing context

[16,27]. This lack of response to predators could result in profound

effects on coral reef community composition. Damselfish are

common prey items for piscivores, especially following larval

settlement on the reefs, and learning about predators is a very

important way to decrease predation-related mortality [37]. A lack

of response by larvae may lead to an increase in consumptive

effects, which will change the amount of energy transferred to

upper trophic levels. However, more works needs to be done on

the effects of CO2 on foraging behaviours to predict how ocean

acidification will affect predator-prey dynamics and trophic

interactions.

While organisms typically exhibit a broad range of responses

(physiological, morphological, life historical etc) to allow them to

cope with current environmental conditions, behaviour is the one

type of response that allow individuals flexibility to adjust to a wide

range of conditions [48]. In the face of environmental change,

behavioural responses typically occur first, as they occur faster, are

more plastic and reversible than other forms of adaptations and

allow the individual some control over its environment, by simply

choosing the type of environment to live in. This crucial

behavioural plasticity is often mediated through learning and

limited or altered learning abilities may explain interspecific

differences in the ability to respond appropriately to human-

induced rapid environmental change [49]. Learning, that is, the

ability to acquire new knowledge, skills, behaviour through

experience, thereby changing the patterns of response to external

stimuli, is an ability shared by virtually all animal species [20,50].

Learning is crucial in allowing individuals to identify new suitable

habitats or mates [51], food sources [20], new threats [52], and

even adjust their behaviour and phenology in the face of

environmental change [53,54]. If CO2 exposure is altering the

cognitive ability of species, by either preventing them from

learning or by altering the interpretation of environmental cues,

the ecological consequences of ocean acidification will be far

reaching, and may impinge on any conservation efforts to mitigate

the ecological effects of ocean acidification.

Figure 3. Mean change in number of feeding strikes (top), line
crosses (middle) and area use (bottom) from the pre-stimulus
period for fish conditioned to recognize a predator and then
exposed to water (empty bars) or predator odour (solid bars)
after one day. Fish were either raised under current-level CO2

(control) or elevated CO2 (700 matm) (N = 20223/treatment).
doi:10.1371/journal.pone.0031478.g003
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Figure 4. Mean change in number of feeding strikes (top), line crosses (middle) and area use (bottom) from the pre-stimulus
baseline for fish conditioned to recognize a predator and then exposed to water (empty bars), predator odour (solid bars) or
injured conspecific cues (grey bars) after five days. Fish were either raised under current-level CO2 (control) or elevated CO2 (700 matm)
(N = 12215/treatment).
doi:10.1371/journal.pone.0031478.g004
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