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INTRODUCTION

A high level of genetic diversity in plant popula-
tions is associated with increased benefits for plant
survival and ecosystem services (Booy et al. 2000).
The loss of genetic diversity may cause reduced
adaptability to environmental change through loss of
fitness (Reed & Frankham 2003). In both marine and
terrestrial systems, experimental studies have de -
mon strated the benefits of genetic diversity to the
capacity of populations to resist stressors such as dis-
ease, predation, and physical disturbance (Zhu et al.

2000, Hughes & Stachowicz 2004, Reusch et al. 2005,
Johnson et al. 2006, Hughes & Stachowicz 2011). In
marine systems, lower genetic diversity in the sea-
grass Zostera marina (eelgrass) has been shown to
reduce survivorship following disturbance (Hughes
& Stacho wicz 2004, 2011, Reusch et al. 2005). In ter-
restrial systems, genetically diverse assemblages of
primrose plants Oenothera biennis were found to
serve as a better habitat and support more species of
arthropods than less diverse assemblages (Johnson
et al. 2006). Also, genetically diverse rice Oryza
sativa fields have been found to be less susceptible to
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disease (Zhu et al. 2000). Given the positive benefits
associated with higher levels of genetic diversity, it
should be considered an essential component of
ecosystem restoration.

Strategies to enhance the likelihood of increased
genetic diversity through restoration focus on 2
 alternatives. The first is to maximize the use of ge -
netic resources incorporated into captive breeding
programs. The second is to use the diversity present
in natural populations. Both strategies have been
adopted widely, such as when salmon hatcheries that
have captive animals sourced from a variety of loca-
tions have been used to mitigate population declines
in the wild (Waples 1991, 1994). Captive breeding
and reintroduction of young into wild populations
also have been employed as tactics to increase the
genetic diversity of the endangered Hawaiian thrush
and big horn sheep (Kuehler et al. 2000, Ostermann
et al. 2001). However, this strategy, where material is
sourced from a variety of origins, has also been criti-
cized, because new genotypes are introduced into
remnant populations and this potentially results in
less fit progeny (Knapp & Dyer 1998).

Many estuarine and coastal areas are experiencing
increasing levels of disturbance and/or stress related
to human activities, such as eutrophication, low dis-
solved oxygen, increasing temperatures, and inva-
sive species (Jackson et al. 2001, Lotze et al. 2006,
Halpern et al. 2008, Waycott et al. 2009). Knowledge
of the value of the plant and animal species that
occupy these habitats has resulted in significant ef -
forts to reduce anthropogenic stressors and to em -
pha size restoration of species and habitats.

Seagrasses (marine angiosperms), of which there
are approximately 72 species, are often the dominant
macrophytes in estuaries, shallow coastal bays, and
lagoons worldwide (Green & Short 2003, Short et al.
2011). Globally, seagrasses are declining (Orth et al.
2006a, Waycott et al. 2009), most often as a result of
increasing nutrients and sediments from watersheds
being altered by human activities (Waycott et al.
2009). In many degraded systems efforts are being
made to mitigate seagrass decline and to improve
habitat for seagrass restoration (Greening & Janicki
2006, Orth et al. 2010). There is a growing body of
evidence that indicates that genetically diverse
assemblages of seagrasses are fitter (Williams 2001)
and more resistant to a variety of disturbances
(Hughes & Stachowicz 2004, 2011, Reusch et al.
2005). In the seagrass ecosystems dominated by a
single species that are typical of northern hemi-
sphere seagrass communities, adopting appropriate
restoration strategies to capture adequate levels of

genetic diversity is an important and realistic goal.
Monospecific seagrass meadows can act as case
studies for evaluating the relative success of imple-
menting different restoration strategies based on
maintaining genetic diversity.

Zostera marina is a seagrass found in temperate
and sub-temperate regions of the North Atlantic and
North Pacific Oceans and in the Medi terranean Sea
(Green & Short 2003). This species of seagrass has
been observed to undergo periods of extreme popu-
lation fluctuations, especially in the North Atlantic
(Cottam 1934, 1935). The most notable broad-scale
population decline was associated with the spread of
Labyrinthula zosterae, a fungal parasite, in the 1930s
(Rasmussen 1977). While many populations eventu-
ally recovered from the im pact of this disease (Cot-
tam & Munro 1954), populations in a number of
coastal bays in the mid-Atlantic region of the United
States did not (Orth et al. 2006b). Most recovery in
the Virginia coastal bays is the result of large-scale
restoration (Orth et al. 2006b, 2012, this Theme Sec-
tion). While the scale and success of the restoration in
the Virginia coastal bays is somewhat unique, miti-
gation to compensate for seagrass loss through
restoration is becoming more globally widespread
(Paling et al. 2009, van Katwijk et al. 2009)

One concern surrounding seagrass restoration is
the possible loss of genetic diversity when adult
plants are used for re-establishing populations
(Williams & Davis 1996, Williams 2001). Depending
upon the size of the clone, it is entirely possible that
adult plants for a small-scale restoration effort could
be drawn from a single clone with low genetic di -
versity. The use of seeds harvested from multiple par-
ents, rather than adult plants, could offset this gen -
etic bottleneck. The successful re-establishment of
Zostera marina into unvegetated coastal bays in the
mid-Atlantic region of the United States using seeds
from a number of source beds (Orth et al. 2012)
offered a unique opportunity to test the hypothesis
that genetic diversity is not eroded when seeds are
used as in restoration. Here we present results from
our analysis of genetic diversity from both natural Z.
marina beds in Chesapeake Bay, several of which
have served as source beds for restoration, and the
restored beds in the Virginia coastal bays.

MATERIALS AND METHODS

A total of 9 Zostera marina meadows were sampled
in 3 distinct regions. These included both natural
beds in Chesapeake Bay (mouth of the York River,
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YR; Mobjack Bay, MB; Hungar’s Creek, HC; and
Fisherman Island, FI), 1 bay to the immediate north
of the restoration sites (Chincoteague Bay, CB), and
restored beds in 3 Virginia coastal bays (South Bay,
SB; Spider Crab Bay, SC; and 2 sites in Hog Island
Bay, HR6, HR7) (Fig. 1). These Virginia coastal bays
are part of the Virginia Coast Reserve Long Term
Ecological research site. Several of the Chesapeake
Bay sites were sources of seeds (YR, MB, and HC)
used in the coastal bay restoration (Table 1). Restored
beds sampled in South Bay were seeded from a vari-
ety of western Chesapeake Bay sources, including
MB and YR. Restored beds sampled in Spider Crab
Bay were seeded from SB seeds in 2008. Restored
beds sampled in Hog Island Bay were seeded either
from Hungar’s Creek in 2006 (labeled HR6) or from
South Bay (SB) in 2007 (labeled HR7).

Methods for collection, storage, and disbursing of
seeds can be found in Marion & Orth (2010). Because
we were interested in whether genetic diversity
would be maintained in restored beds developed
with seeds, we compared donor sites and restored
beds for genetic diversity, resulting in 7 comparisons
of donor meadows and recipients. Natural popula-
tions at Fisherman Island (FI) and Chincoteague Bay
(CB) were also sampled as they represent popula-
tions immediately south and north of the restored
sites.

At each sampling site, whole eelgrass shoots were
haphazardly collected by hand from areas approxi-
mately 5 m apart, to avoid collecting shoots from the
same clones. Leaf tissue was dried and stored at room
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Site                                       Site description                                         N         NA        AR        A        A<25%     Ho          He        F

Fisherman Island (FI)         Southern natural meadow                      46         47        4.4      6.7         0.6       0.7         0.6     −0.2
                                            at the mouth of Chesapeake Bay
Hungar’s Creek (HC)         Natural Chesapeake Bay meadow         48         71        5.5     10.1        0.6       0.8         0.7     −0.1
Mobjack Bay (MB)             Natural Chesapeake Bay meadow         30         63        5.4      9.0         0.6       0.6         0.6     0.0
York River (YR)                   Natural Chesapeake Bay meadow         30         66        5.7      9.4         0.7       0.7         0.7     0.0
South Bay (SB)                    VA coastal bay meadow restored          95         79        5.6     11.3        0.7       0.7         0.7     0.0
                                            in 2002 using seed from MB and YR
Hog Island Bay (HR6)        VA coastal bay meadow restored         167        94        5.6     13.4        0.7       0.7         0.7     −0.1
                                            in 2006 using seed from HC
Hog Island Bay (HR7)        VA coastal bay meadow restored          46         66        5.3      9.4         0.7       0.8         0.7     0.0
                                            in 2007 using seed from SB
Spider Crab Bay (SC)         VA coastal bay meadow restored          48         70        5.3     10.0        0.7       0.8         0.7     −0.2
                                            in 2008 using seed from SB
Chincoteague Bay (CH)     Northern natural VA                               48         60        4.6      8.6         0.6       0.7         0.6     −0.1
                                            coastal bay meadow

Table 1. Zostera marina. Summary of multilocus genetic diversity estimates for all 9 populations based on 8 microsatellite loci.
Sites refer to locations shown on Fig. 1. N: sample size; NA: total number of alleles per population; AR: allelic richness; A: aver-
age number of alleles per locus; A<25%: uncommon alleles; Ho: observed heterozygosity; He: expected heterozygosity; 

F: Wright’s inbreeding coefficient; VA: Virginia, USA

Fig. 1. Site map. Chincoteague Bay (CH), Fisherman Island
(FI), Hungar’s Creek (HC), Mobjack Bay (MB), and York
River (YR) are natural Zostera marina meadows. Seeds
from various Chesapeake Bay sites including MB and YR
were used to restore South Bay (SB). HC was used as a
donor for HR6 in 2006, and seeds from the restored
meadow in SB were used in a restoration in Hog Island Bay
in 2007 (HR7) and in a restoration in Spider Crab Bay (SC) 

in 2008
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temperature using silica gel desiccant (AGM, mix-
ture of white and indicating beads) until DNA extrac-
tion. All plant samples were collected during the
summer months (June to August) of 2008 and 2009.

Total genomic DNA was extracted using DNeasy
plant extraction kits (Qiagen) following manu -
facturer’s instructions. A total of 8 microsatellite loci
previously used for this species (Reusch et al. 1999)
were amplified using fluorescently tagged primers
(CT17H, CT3, CT35, GA2, CT19, CT20, GA3, and
GA6). Amplification of PCR products followed the
procedures recommended by Reusch et al. (1999).
PCR products were analyzed by capillary electro -
phoresis on a MegaBACE 1000 (GE Biosciences) with
ET 400-Rox (GE Biosciences) internal size standard
in each sample, as per manufacturer’s instructions.
Fragment lengths for each allele, at each locus, were
determined using Fragment Profiler V1.2 (GE Bio-
sciences).

Standard measures of genetic diversity were calcu-
lated for each population sampled. Allelic richness
(AR), standardized to the smallest population size by
rarefaction, was computed using FSTAT 2.9.3.2
(Goudet 2001). Total number of alleles per popula-
tion (NA), the average number of alleles per locus (A),
the average number of low-frequency alleles (A<25%)
at each locus, the mean observed (Ho) and mean
expected heterozygosity (He), and Wright’s inbreed-
ing coefficient (F) were calculated using GenAlEx
6.3 (Peakall & Smouse 2006). Differences in genetic
diversity between donor and recipient populations
were analyzed using both a paired t-test and a chi-
squared goodness-of-fit test, where paired donor
meadows were treated as expected values.

The population structure or relatedness of geo-
graphically separated meadows was compared using
the standard measure of population differentiation,
Fst, calculated in GenAlEx 6.3 (Peakall & Smouse
2006). Within-population inbreeding was estimating
using Fis, calculated in GenAlEx 6.3 (Peakall &
Smouse 2006). A test of population assignment using
Bayesian modeling of all samples was conducted
using the software STRUCTURE for assigned num-
bers of populations of K = 1 to 10 and with 10 repli-
cates with a random start for each value of K
(Pritchard et al. 2000). The number of distinct popu-
lation clusters was determined using the delta K
method (Evanno et al. 2005). The relationship be -
tween the cluster to which a sample was assigned
and geographic origin were analyzed with a Kruskal-
Wallis 1-way analysis of variance. Pairwise differ-
ences were analyzed with individual Mann-Whitney
U-tests, with Bonferroni-corrected alpha values.

RESULTS

Moderate to high levels of allelic diversity were
detected across the 9 Zostera marina meadows sam-
pled from the Chesapeake Bay, Virginia coastal bays,
and Chincoteague Bay. All loci conformed to Hardy-
Weinberg equilibrium in at least some of the popula-
tions. All populations sampled showed relatively
high allelic richness (mean AR = 5.3), with York River
having the highest value at 5.7 and Fisherman Island
having the lowest value at 4.4. Across all sites both
the observed (mean Ho = 0.72) and expected (mean
He = 0.67) heterozygosities were high, which is typi-
cal of Z. marina. Although in many population sam-
ples Ho was greater than He, which resulted in
slightly negative inbreeding coefficients (F = −0.2
to 0), the F-values were not significantly different
(Table 1).

Restored meadows did not show a significant
reduction in allelic richness, mean number of rare
alleles, or expected heterozygosity relative to their
donor meadows (Fig. 2). A paired t-test between
donor and recipient meadows resulted in p-values of
0.39 or greater, and a chi-squared goodness-of-fit
using donor values as expected values resulted in p-
values equal to or greater than 0.98. The inbreeding
coefficient within populations (Fis) approached zero,
and there was no significant deviation between
donor and recipient pairs (Fig. 2; t = 0.62, p = 0.58 and
χ2 = 1.08, p = 0.77).

All Chesapeake Bay sites and restored Virginia
coastal bay sites were closely related when analyzed
with permuted Fst values (<0.1). Higher pairwise Fst

values were observed in comparisons with Fisher-
man Island and Chincoteague Bay. This was ex -
pected as these sites acted as external non-donor
recipient reference sites for the present study. Fisher-
man Island had pairwise Fst values >0.1 with all other
meadows. Chincoteague Bay showed a similar devi-
ation from Chesapeake Bay and South Bay sites;
however, it had lower pairwise Fst values when com-
pared with Hog Island (2006 and 2007) and Spider
Crab Bay, the more northerly restored Virginia
coastal bay sites (Table 2).

The relative distinctiveness of sampled meadows
was assessed by assigning individuals based on
genetically homogenous groups, rather than on sam-
pled locations, using a Bayesian cluster approach
with the software STRUCTURE (Pritchard et al. 2000)
and by implementing the ad hoc statistic (ΔK)
(Evanno et al. 2005). The highest values for the ΔK
statistic identify 4 groups, or genetic populations,
that were present among the 9 sampled locations
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(Fig. 3). Samples from different geographic locations
were assigned to each of these 4 different clusters
with high probability (Kruskal-Wallis: χ2 = 72,
p < 0.0001). Significant differences in pairwise com-
parisons, made with individual Mann-Whitney U-
tests using a Bonferroni corrected alpha of 0.001,
were observed for many of the comparisons, particu-
larly between reference sites and the donor-recipient
locations (Table 3). The southern-most site near the
mouth of the Chesapeake Bay, Fisherman Island (FI),
was assigned to Cluster 4 and was significantly dis-
tinct from each of the other locations. All Chesa-
peake Bay locations (HC, YR, MB) and the restored
meadow at South Bay (SB) were assigned to both
Clusters 1 and 2; however, they were not signifi-
cantly different from one another. The Hog Island
Bay beds restored in 2006 (HR6) were not different
from the donor meadow of Hungar’s Creek (HC).
HR6 differed from the York River site and the South
Bay site. The Hog Island Bay beds restored in 2007
(HR7) were not different from the South Bay donor
meadow, but like HR6 differed from the York site.
The Spider Crab Bay site (SC) was similar to the
South Bay donor site, as well as the restorations in
Hog Island Bay. The northern natural Virginia
coastal bay site, Chincoteague Bay, differed from
Fisherman Island, all Chesapeake Bay sites, and the
older restoration sites of South Bay and HR6. Spider
Crab Bay and HR7 were not statistically different
from Chincoteague Bay (Table 3).

The proportional assignment of individual samples
to each of the 4 modeled genetic clusters supports the
observation that the diversity in the restored mead-
ows was equivalent to that in the donor meadows
(Fig. 4). Fisherman Island was distinctive, with few
individuals from other sites having a high likelihood
of sharing this group; these were assigned to Cluster
4 (Fig. 4). Chesapeake Bay samples (HC, MB, YR), as
well as the restored meadows in the Virginia coastal
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Fig. 2. Zostera marina. Four measures of genetic diversity
were used to compare donor (dark) and recipient (light)
 eelgrass meadows (± SE): (A) allelic richness, (B) frequency
of rare alleles (<25%) per population, (C) expec ted hetero -
zygosity (He), and (D) Wright’s inbreeding coefficient (F). 

Site abbreviations, see Fig. 1

                                                    FI              HC              MB              YR               SB           HR6           HR7         tSC       CH

Fisherman Island (FI)              0.000
Hungar’s Creek (HC)              0.124         0.000
Mobjack Bay (MB)                   0.187         0.048           0.000
York River (YR)                       0.159         0.031           0.012           0.000                                                              
South Bay (SB)                         0.143         0.019           0.014         0.005*         0.000
Hog Island Bay (HR6)             0.117         0.006           0.056           0.031           0.023         0.000
Hog Island Bay (HR7)             0.114         0.030           0.095           0.062           0.044         0.018         0.000
Spider Crab Bay (SC)              0.109         0.026           0.082           0.051           0.046         0.014         0.037       0.000
Chincoteague Bay (CH)          0.136         0.092           0.148           0.111           0.095         0.064         0.067       0.023     0.000

Table 2. Zostera marina. Pairwise Fst estimates for all 9 Z. marina populations based on 8 microsatellite loci. *Values not 
significantly different from zero
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bays, were similar and assigned across Clusters 1
and 2. Neither Cluster 1 nor 2 was specific to 1 loca-
tion (Fig. 4). Chincoteague Bay samples were distinct
and assigned to Cluster 3, along with numerous sam-
ples in the Virginia coastal bays, especially Hog
Island Bay, which is closest in proximity (Fig. 4). The
same patterns persisted when data were grouped as
averages of plants collected from 1 location (Fig. 4).

DISCUSSION

Our results demonstrate that the restoration of
Zostera marina with seeds in Virginia coastal bays
has maintained overall population genetic structure
and diversity compared to the donor populations.
This finding is in contrast to the significant reduction
in genetic diversity observed in a restored Z. marina
meadow in Southern California, USA, where adult
plants were used in the restoration effort and were
collected from a very small area (200 to 12 000 m2)
(Williams & Davis 1996, Williams 2001). A genetically
diverse donor population is required to achieve a
genetically diverse restored population, and this was
the case with Chesapeake Bay and the Virginia

coastal bays. Despite population fluctuations in Che -
sa peake Bay’s Z. marina populations in the last 80 yr,
since the 1930s decline (Orth & Moore 1983, 1984,
Orth et al. 2010), current populations exhibit rela-
tively high genetic diversity (Tables 1 & 4).

In the restoration efforts evaluated here, measures
of genetic diversity and levels of inbreeding did not
differ between the paired donor meadows and recip-
ient meadows (Fig. 1). There is no evidence currently
that genotypes are being selected for in the restora-
tion sites. Donor and recipient pairs appear as highly
connected, undifferentiated population pairs through
high gene flow and low Fst values (Nm ranges be -
tween 4.95 and 8.61, while Fst ranges between 0.005
and 0.05), and this supports the conclusion that the
donor and recipient populations are genetically com-
parable. We propose that the success in maintaining
genetic diversity in restored populations of the Vir-
ginia coastal bays is due to a combination of high lev-
els of genetic diversity present in the donor mead-
ows, collection of seeds from a broad area that does
not result in oversampling of closely related indi -
viduals, and the introduction of adequate numbers of
seeds into donor sites in a manner reflecting rela-
tively ‘natural’ recruitment processes. While this is an
improvement over previous analyses of restorations
using adult plants (Williams & Davis 1996, Williams
2001), those studies incorporated plants that were
collected from a small area and restorations were
 relatively small in numbers of transplant units. If
adult plants were collected from a large area within
a genetically diverse region, reductions in genetic
diversity could be improved; however, lo gistic -
ally, it is easier to collect and transplant large num-
bers of seeds than to transplant large numbers of
adult plants. This is underscored by the small scale
(<0.5 ha) of most adult transplant restoration efforts
(Paling et al. 2009).
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                                                      FI              HC               PC               PR                SB           HR6           HR7          SC         CH

Fisherman Island (FI)                                                                                                                                                   
Hungar’s Creek (HC)           <0.0001
Mobjack Bay (MB)                <0.0001         0.4 
York River (YR)                     <0.0001     0.004           0.2
South Bay (SB)                       <0.0001         0.2               0.9             0.202
Hog Island Bay (HR6)           <0.0001       0.06         0.004       <0.0001       <0.0001
Hog Island Bay (HR7)           <0.0001       0.03         0.002       <0.0001       0.0003       0.05
Spider Crab Bay (SC)           <0.0001   <0.0001   <0.0001     <0.0001         0.002     0.0004         0.9
Chincoteague Bay (CH)       <0.0001   <0.0001   <0.0001     <0.0001       <0.0001   <0.0001       0.12       0.004

Table 3. The Zostera marina samples from each of 9 geographically separated meadows were assigned to different genetically
distinct clusters using STRUCTURE. Mann-Whitney U-tests were used to determine differences in populations, and p-values 

are reported

Fig. 3. The 9 geographically separated Zostera marina
meadows sampled were grouped into 4 genetically distinct
clusters based on the ad hoc statistic ΔK. ΔK was calculated
based on 10 runs of the model following Evanno et al. (2005)
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Fig. 4. Zostera marina. Each sample was assigned to 1 of 4 genetic clusters using the Bayesian cluster model STRUCTURE (Pritchard et
al. 2000), and samples tended to cluster regionally. Plots of outcomes for proportional assignments of individual samples to each of the
4 genetic clusters based on 10 independent runs are presented. For each panel, the left plot depicts the mean proportional assignment
(±SE) for each individually sampled seagrass shoot; the grey shaded area highlights where assignment to the cluster was >0.5. The
right plot depicts the mean proportion assigned to that genetic cluster for all samples collected within that location (±SE). Samples are 

arranged by geographical location from south to north. Site abbreviations, see Fig. 1
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Using seeds from local or regional provenances
that are likely locally adapted to appropriate envi-
ronmental conditions would enhance restoration suc-
cess. In addition to immediate restoration outcomes,
the presence of high levels of genetic diversity in
restored populations suggests that the populations
will be less likely to show signs of genetic erosion.

Overall, our estimates of genetic diversity are high,
but are consistent with the range of values observed
in previous studies (Table 4). Olsen et al. (2004)
found an insignificant trend of increased diversity
with decreased latitude along the western Atlantic
coast. Our study adds additional data from closer to
the geographic margin of the species, and further
supports the observation of a trend of increased
diversity with decreased latitude. Compared to the
western Atlantic and eastern Pacific populations
studied (Reusch et al. 2000, Olsen et al. 2004, Talbot
et al. 2004, Coyer et al. 2007, Ort et al. 2010, Wyllie-
Echeverria et al. 2010), the Chesapeake and Virginia
coastal bay populations described here are more
diverse. The only meadows found to have higher val-
ues of heterozygosity and numbers of alleles per
locus were in Mikawa Bay, Japan (Yoshida et al.
2009; Table 4, present study). The high levels of di -
versity found in Virginia were unexpected due to the

population history of Zostera marina in the region.
Over the last century, the Z. marina meadows in Vir-
ginia have experienced many disturbances including
disease, reduced water quality and clarity, bioturba-
tion by rays, and high temperature stress (Orth 1975,
1976, Orth & Moore 1984, Moore & Jarvis 2008). The
large-scale decline of Z. marina populations in the
1930s, which was attributed to disease (Orth & Moore
1984), would be expected to have created a popula-
tion bottleneck, with subsequent high levels of in -
breeding and reduced genetic diversity in remnant
populations in the Chesapeake Bay and Chinco -
teague Bay. While a recently published study found
that Z. marina populations from both New Jersey and
1 site in the Chesapeake Bay showed significant
signs of inbreeding (Fis > 0.6; Campanella et al. 2009)
(Table 4), our data from Chesapeake and Chin-
coteague Z. marina meadows do not, despite finding
similar levels of allelic diversity.

The mechanism by which natural seagrass mead-
ows in Virginia maintain such a high diversity may be
quite similar to the mechanism by which restoration
by seed maintains high genetic diversity: large num-
bers of seeds added to open space. The disturbances
in Chesapeake Bay (i.e. Orth 1975, 1976, Orth &
Moore 1984, Moore & Jarvis 2008) remove seagrass,
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Location AR A He Fis Source

Eastern Pacific
San Juan Archipelago, 2.3−3.1 2.5−10.4 0.29−0.51 −0.11 to 0.05 Wyllie-Echeverria et al. (2010)
Washington, USA

San Francisco Bay, 2.7−5.4 3.1−6 0.24−0.60 −0.2 to 0.19 Talbot et al. (2004)
California, USA Ort et al. (2010)

Eastern Pacific, 4.9−6.4 0.17−0.51 −0.14 to 0.16 Olsen et al. (2004)
USA and Canada

Baja California, Mexico 1.5−4.0 0.13−0.54 −0.04 to 0.36 Coyer et al. (2007)
Western Pacific
Mikawa Bay, Japan 10.5−12 0.70−0.85 −0.04 to 0.03 Yoshida et al. (2009)

Eastern Atlantic
Baltic Sea, Germany 5−5.9 0.40−0.44 −0.02 to 0.09 Reusch et al. (2000)
Baltic Sea, Finland 1.17 0.17−0.44 −0.67 to 0.01 Olsen et al. (2004)
Margot, France 3.33 0.32 0.01 Reusch et al. (2000)
Eastern Atlantic, Europe 1.5−2.7 0.33−0.52 −0.26 to 0.038 Olsen et al. (2004)

Western Atlantic
Nova Scotia, Canada 5.67 0.46 −0.022 Reusch et al. (2000)
Western Atlantic Ocean, 2.9−4.9 0.41−0.56 −0.09 to 0.19 Olsen et al. (2004)
USA and Canada

New Jersey coastal 6.8−10.5 0.69−0.83 0.55 to 0.71 Campanella et al. (2009)
bays, New Jersey USA

Chesapeake Bay, 5.4−5.7 9−10.1 0.6−0.7 −0.1 to 0 Present study
Virginia, USA

Virginia Coastal Bays, 4.6−5.6 6.7−9.1 0.6−0.7 −0.2 to 0 Present study
Virginia, USA

Table 4. Zostera marina. Summary of multilocus microsatellite-based genetic diversity around the world. AR: allelic richness; 
A: average number of alleles per locus; He: expected heterozygosity; Fis: inbreeding coefficient
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which reduces competition and thus seedling survival.
Phillips et al. (1983) showed that Zostera marina flow-
ering increased due to environmental stress and dis-
turbance, which suggests an increase in the source of
seeds in disturbed areas. Modeling of clonal terrestrial
plants has shown that frequent disturbance and high
seedling recruitment can increase overall genotypic
diversity (Watkinson & Powell 1993).

Seeds used in the coastal bay restoration sites were
collected from as far as 80 km away, as no local
source populations were available from the Virginia
coastal bays. We detected no direct evidence of ge-
netic erosion through outbreeding depression. Out-
breeding depression occurs when locally adap ted
genotypes interbreed with non-adapted genotypes,
resulting in reduced fitness of the progeny (Hufford
& Mazer 2003), and usually occurs when different
populations mix. Another potential genetic impact of
population mixing is heterosis, often referred to as
hybrid vigor, that occurs when deleterious alleles are
masked or when an increase in hetero zygosity re -
sults in progeny which are fitter relative to their par-
ents (Hufford & Mazer 2003). Although heterosis is a
positive effect of genetic mixing among the first-gen-
eration population hybrids, the next generation may
experience reduced fitness as deleterious genetic
traits are expressed in future generations. Since ge-
netic structure was maintained by restoration with
seeds, as long as donor sites are chosen carefully,
these problems are more likely to be minimized.

The use of donor material for restoration from the
closest populations, the coastal bay meadows in
Chincoteague Bay (CH) or the very small population
at the mouth of Chesapeake Bay (FI), may result in
problems not encountered when Chesapeake Bay
populations were used as donors. These 2 natural
meadows in the Virginia coastal bay region have
 little gene flow and relatively high Fst values among

them and with Chesapeake Bay to the west
(Nm ranges between 1.362 and 1.588, Fst = 0.136)
(Tables 2 & 5). Because they are geographically sep-
arated and differ genetically, it is possible they may
have acquired distinct adaptations through either
genetic drift or due to selection for fitness to local
conditions. Using seeds from these locations could
result in outbreeding depression if environmental
conditions differ from those in the restoration sites.

We observed the genetic signature of Chincoteague
Bay in the restored Virginia coastal bays, principally
Hog Island Bay (HB6). When all samples were ana-
lyzed using a Baysian cluster model, 4 distinct genetic
clusters emerged, with Chincoteague Bay being rela-
tively unique, except for a few samples in the more
northern coastal bays (Fig. 4). This genetic signature
could have been the result of 2 alternative mecha-
nisms. First, small-scale (4 m2) test plots in South Bay
seeded in 1999 used plants from Chincoteague Bay.
These plots spread rapidly, and it is possible that
flowering shoots with seeds could have drifted to Hog
Island Bay and released seeds. Alternatively, flower-
ing shoots with seeds could have drifted out of Chin-
coteague Bay south along the Atlantic coast and en-
tered the coastal inlet near Hog Island Bay, releasing
seeds as they floated over the bay. Flowering shoots
with mature seeds can disperse long (150 km) dis-
tances (Harwell & Orth 2002, Källström et al. 2008),
and it was suggested that natural recruits observed in
1997 in South Bay may indeed have developed from
Chincoteague populations (Harwell & Orth 2002).
Based on these previous studies, the Virginia coastal
bays are within the colonization envelope of Chin-
coteague Bay Zostera marina populations. The detec-
tion of Virginia coastal bay Z. marina populations that
share a specific genetic signal with Chincoteague Bay
(Fig. 4) suggests recruitment via such long-distance
dispersal events is likely occurring, although a more
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                                                    FI              HC           MB              YR              SB             HR6           HR7          SC         CH

Fisherman Island (FI)                                 1.762         1.084         1.325        1.494         1.883       1.948     2.037   1.588
Hungar’s Creek (HC)              1.168                           5.006         7.763        13.249         42.906       7.988     9.348   2.469
Mobjack Bay (MB)                   0.516         5.608                           20.989        18.067         4.193       2.387     2.792   1.435
York River (YR)                        0.639         4.678         3.731                            54.986         7.734       3.764     4.641   1.994 
South Bay (SB)                         0.682         6.234         5.663         4.945                           10.448       5.402     5.243   2.380
Hog Island Bay (HR6)             1.362         8.608         6.058         8.245        9.235                           13.327     17.192   3.632
Hog Island Bay (HR7)             1.307         4.366         2.194         2.603        4.974         10.833                       6.449   3.485 
Spider Crab Bay (SC)              1.280         7.123         4.049         4.089        6.800         13.257       6.953                    10.536
Chincoteague Bay (CH)          1.362         3.262         3.311         2.689        3.680         4.233       4.089     4.705

Table 5. Zostera marina. Pairwise estimates of gene flow for all 9 populations based on 8 microsatellite loci. Values above the di-
agonal are Nm values calculated based on Fst in GenAlEx 6.3 (Peakall & Smouse 2006), and values below the diagonal are calcu-

lated based on rare alleles using GenePop (Raymond & Rousset, http://wbiomed. curtin. edu.au/ genepop/ index. html)
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targeted analysis would be needed to confirm the
most likely source. Natural recruitment into the area
suggests that a slow recovery may have already be-
gun before restoration intervention was initiated.

The present study demonstrates that large-scale
Zostera marina restoration with seed as the source of
propagules maintains comparable levels of genetic
diversity in donor populations. The donor meadows
used in our study had a high genetic diversity, and
the subsequent high diversity in the restored areas
likely contributed to the success of the restoration by
increasing resistance to ecosystem disturbances (for
discussion see Hughes & Stachowicz 2004, 2011,
Reusch et al. 2005). The positive effect of high ge netic
diversity is not limited to marine systems, and the use
of seeds in the restoration of clonal terrestrial plants
might also be advantageous. It should be noted that
the Virginia coastal bays experience good water
quality (www1.vcrlter.virginia.edu/home1/ ?q= data_
wq), and this has undoubtedly been important to the
restoration success in this area given that eutrophica-
tion is the most common cause of seagrass loss (Orth
et al. 2006a). Where restoration attempts are made
with marginal water quality, stresses and distur-
bances are likely to reduce plant growth and survival.
Previous studies suggest that genetically diverse as-
semblages of seagrass will be better at surviving dis-
turbances, such as intense grazing events, tempera-
ture stress, and algal blooms (Hughes & Stachowicz
2004, 2011, Reusch et al. 2005). The present study
also suggests that source material for Z. marina re -
storation can be collected from a relatively great dis-
tance away from the recipient site without a concern
for genetic problems such as outbreeding depression.

The maintenance of genetic diversity can be used
as one measure of restoration success, since high
genetic diversity is associated with increased bene-
fits for plant survival and ecosystem services (Booy et
al. 2000). In our system, we demonstrate a method of
re s toration that maintains genetic diversity, and the
re sults of that restoration are positive in terms of
increased seagrass coverage and feedbacks on sedi-
ment and water-quality characteristics (Hanson &
Reidenbach 2012 this Theme Section, McGlathery et
al. 2012 this Theme Section, Orth et al. 2012 this
Theme Section).
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