Multi-party computation with conversion of secret sharing

Ghodosi, Hossein, Pieprzyk, Josef, and Steinfeld, Ron (2012) Multi-party computation with conversion of secret sharing. Design, Codes and Cryptography, 62 (3). pp. 259-272.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1007/s10623-011-951...

Abstract

Classical results in unconditionally secure multi-party computation (MPC) protocols with a passive adversary indicate that every n-variate function can be computed by n participants, such that no set of size t < n/2 participants learns any additional information other than what they could derive from their private inputs and the output of the protocol. We study unconditionally secure MPC protocols in the presence of a passive adversary in the trusted setup ('semi-ideal') model, in which the participants are supplied with some auxiliary information (which is random and independent from the participant inputs) ahead of the protocol execution (such information can be purchased as a "commodity" well before a run of the protocol). We present a new MPC protocol in the trusted setup model, which allows the adversary to corrupt an arbitrary number t < n of participants. Our protocol makes use of a novel subprotocol for converting an additive secret sharing over a field to a multiplicative secret sharing, and can be used to securely evaluate any n-variate polynomial G over a field F, with inputs restricted to non-zero elements of F. The communication complexity of our protocol is O(l•n²) field elements, where l is the number of non-linear monomials in G. Previous protocols in the trusted setup model require communication proportional to the number of multiplications in an arithmetic circuit for G; thus, our protocol may offer savings over previous protocols for functions with a small number of monomials but a large number of multiplications.

Item ID: 22105
Item Type: Article (Refereed Research - C1)
Keywords: Multi-party computation, Hybrid secret sharing schemes, Unconditional security
ISSN: 0925-1022
Date Deposited: 28 Jun 2012 16:14
FoR Codes: 08 INFORMATION AND COMPUTING SCIENCES > 0804 Data Format > 080401 Coding and Information Theory @ 100%
SEO Codes: 89 INFORMATION AND COMMUNICATION SERVICES > 8903 Information Services > 890399 Information Services not elsewhere classified @ 100%
Citation Count from Web of Science Web of Science 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page