
WATER RESOURCES RESEARCH, VOL. 17, NO. 4, PAGES 827-832, AUGUST 1981 

Performance Evaluation of a Stochastic Optimization Model for Reservoir Design 
and Management With Explicit Reliability Criteria 
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A seasonal, chance-constrained linear programing model, which facilitates the development of reser- 
voir system designs and operation policies and which incorporates multiple linear decision rules (LDR) 
conditioned upon the streamflows in other seasons, is evaluated with variations in the numbers of seasons 
per year and decision rules per season. The performance is also compared with the original, single-LDR 
model. The motivations for the expected results and the numerical solutions obtained for the examples 
considered are presented. The multiple-LDR model is shown to be superior to the single-LDR model: for 
equivalent restrictions on the reservoir operation and performance the multiple-LDR model gives a 
smaller capacity reservoir than the single-LDR model. Furthermore, as the number of LDR's per season 
is increased, the required capacity decreases. And when the operating rules defined by the models are 
tested in a simulation of actual reservoir operation, the multiple LDR's perform more closely to the spec- 
ifications prescribed in the linear program than the single LDR. 

INTRODUCTION 

During the last 10 years the problems of sizing and opera- 
tion of water reservoir systems have received great attention 
with the introduction of systems analysis and operations re- 
search methodologies. These attempts are aimed at optimal 
decision making in reservoir regulation, together with simulta- 
neous explicit statements on the degree of risk or reliability 
with which the various objectives can be met in the long run. 

One approach to finding optimal operating rules, as pro- 
posed by Re Velle et al. [1969], requires the release rule to be a 
linear function of reservoir storage. As applied to reservoir op- 
eration, the form of this linear decision rule (LDR) is X = $ - 
b, where X denotes the release during a period of reservoir op- 
eration, $ denotes the storage at the end of the previous pe- 
riod, and b is the decision parameter chosen to optimize a cri- 
terion function. This rule may be interpreted as an aid to the 
actual operator's judgment in selecting a release commitment. 

Since the introduction of linear decision rules in water res- 
ervoir management problems by Rel/'elle et al. [1969], many 
modifications, extensions, and discussions of the rule have 
been reported in the literature [e.g., Sobel, 1975; Loucks, 1976; 
$niedovich, 1980]. Loucks and Dorfman [1975] proposed a 
LDR that is a function of present storage volume and future 
inflow; the future inflow is assumed to be a known quantity. 
Gundelach and ReF'elle [1975] and ReF'elle and Gundelach 
[1975] proposed a LDR that is a function of present and past 
storage volumes. Both of these extended LDR's, when em- 
ployed in an optimization model with an objective of mini- 
mizing reservoir storage capacity subject to satisfying several 
performance criteria, require smaller reservoirs than the origi- 
nal LDR. Other investigators have demonstrated the ease of 
finding optimal linear decision rules under certain conditions 
[Eastman and Rel/'elle, 1973], the means of including eco- 
nomic efficiency as the criterion for determining optimal 
LDR's [Houck et al., 1980], and the use of LDR's in multiple- 
reservoir operations [Joeres et al., 1971; Nayak and •lrora, 
1971]. Loucks and Dorfman [1975] presented a comparative 
study of some of the existing forms of the linear decision rules. 
Still other investigators have discussed the physical meaning 
and implications of reservoir operation reliabilities in an at- 
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tempt to develop a probability theory of reservoirs based en- 
tirely on statistical techniques [Phatarford, 1976; Kleme•, 1969, 
1970]. Methods of finding storage size-probability of failure- 
draft relationships for reservoirs with Markovian seasonal in- 
puts and methods of accounting for the seasonal and annual 
correlation of streamflows are discussed in these works. 

Models to define optimal operating rules that do not use 
linear decision rules have also been reported in the literature. 
Colorni and Fronza [1976], $imonovic and Marino [1980], and 
others have employed reliability programing, a form of 
chance-constrained dynamic programing, to find optimal op- 
erating rules. Young [1967], Bhaskar and Whitlatch [1980], and 
others have proposed using deterministic optimization models 
and regression analysis to develop operating rules. Butcher 
[1971], Buras [1966], and others have assumed a discrete 
Markov structure for streamflows and used stochastic dy- 
namic programing to define operating rules. Loucks [1969], 
Houck and Cohon [1978], and others also assumed a discrete 
Markov structure for the streamflows but found operating 
rules using linear programing. And numerous investigators 
have reported other methods for finding optimal reservoir-op- 
erating rules. 

The purpose of this paper is to evaluate a proposed mul- 
tiple-LDR model [Houck, 1979]. Instead of a single LDR per 
season, several LDR's per season, each conditioned on the 
previous season's streamflow, are defined. Thus the feasible 
region of the operation rules is relaxed, allowing improvement 
in the reservoir operation. The multiple-LDR model is solved 
for various numbers of LDR's per season and seasons per year 
for a hypothetical reservoir on the Gunpowder River in Mary- 
land. The solutions are compared with each other and with 
the solution of the single-LDR model proposed by Re I/'elle et 
al. [1969]. The results of simulating the optimum operation 
policies of the single- and multiple-LDR models are also com- 
pared. 

LDR MODELS 

Because the single-LDR model is a special case of the more 
general multiple-LDR model, the latter will be presented first. 
The objective function of the model is chosen to be mini- 
mization of the capacity of the reservoir, which may be con- 
sidered as a surrogate for initial economic costs. Physical op- 
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erating restrictions and performance requirements are 
incorporated as constraints in the linear programing model. 

The following notation is used in the model: 

X/j release in season t, conditioned upon streamflows 
in interval i in season t - 1 and interval j in sea- 
son t - 2; 

S/ storage volume at the beginning of season t, con- 
ditioned upon streamflow in interval j in season t 
- 2; 

b/ decision parameter in season t, conditioned on 
streamflow in interval i in season t - 1; 

R/ streamflow in season t, conditioned on stream- 
flow in interval i in season t - 1, a random vari- 
able; 

F•,_•( ) cumulative distribution function of streamflows 
in season t - 1, conditioned on streamflow in in- 
terval j in season t - 2; 

P? probability of streamflow in interval j in season t 
- 2; 

P/J probability of streamflows in intervals i and j 
during seasons t- 1 and t - 2, respectively; 

oil • probability with which X/• equals or exceeds 
Xm•; 

/•? probability with which St ./equals or exceeds $•n; 
¾? probability with which $? does not exceed CAP; 

CAP reservoir capacity; 
i,j indices of streamflow interval in seasons t - 1 

and t - 2; 
I, J number of streamflow intervals in seasons t - 1 

and t - 2; 
$m• minimum permissible storage volume; 

t index of seasons; 
T number of seasons per year; 

Xm• minimum allowable release volume per season; 
a probability with which releases in a season ex- 

ceed or equal Xm•n; 
• probability with which storage volume in a sea- 

son equals or exceeds $m•; 
¾ probability with which storage volume in a sea- 

son does not exceed CAP; 

F•t_•-•() inverse cumulative distribution function of 
streamflows in season t - I conditioned on 

streamflow in season t - 2 occurring in intervalj. 

The continuity equation, or mass balance equation, for 
storage in the reservoir is 

s,+,'= s/+ &'- 

The form of the linear decision rule to be used is 

X/• -- S?- b ,' 

For each season t and for each range or interval i of stream- 
flow volume in season t - 1, there will be a decision parameter 
b/. Thus the release in season t will be dependent on the 
streamflows of previous seasons. Substituting the linear deci- 
sion rule yields 

X, • = R,_? + b,_?- b/ (2) 

Therefore storage and release are reduced to relations be- 
tween the inflow and the decision parameter only. The per- 
formance criteria are defined in terms of minimum and maxi- 

mum required storages and the minimum permissible release. 

The first set of chance constraints, to define the probability 
that each possible release in a season exceeds the minimum al- 
lowable release, is 

or 

or 

•[ XtiJ •. Xmin ] = a t ij (3) 

P[R,_? + b,_?- b,'> Xm• = or/• (4) 

e[&_¾ <_ -- b,_/ + 03 = - (5) 

Because R,_• j is a random variable, the left-hand side of the 
equation is the cumulative distribution function (CDF) of the 
streamflows in season t - 1, conditioned on the streamflow in 
season t - 2 occurring in interval j. This CDF, denoted by 
F•_,(), can be written as 

C_,(Xm• - b,_? + b/) = 1 - ,,'J (6) 

Denoting the inverse CDF by Fj,_,-'( ) allows (6) to be writ- 
ten as 

Xm•, - Or_? + b/- Fjt-,-'(1 - at ø) = 0 (7) 

i-- 1,2, '..,I j-- 1, 2, ...,J t= 1,2, ..-, T 

The convex portion of the inverse CDF can be piecewise 
linearized so that the regular simplex algorithm or its common 
variants may be used. Houck [1979] has shown that in the 
range of interest of the model the inverse CDF can be taken 
as convex without incurring formidable errors. However, with 
an increase in the number of decision rules per season, or in 
the number of seasons considered per year, some accuracy 
may have to be sacrificed in order to keep the feasible region 
convex. The actual reliability with which release in season t 
exceeds Xm•, is the expected value of the atø'; this reliability is 
specified to exceed a, which may assume values like 0.8, 0.9, 
or 0.99, depending on the actual planning or management 
problem under consideration. The reliability constraint on re- 
lease is 

•. •. P,•a/• • a t = 1, 2, ..., T (8) 

The same procedure is followed in formulating the reliabil- 
ity constraint on the minimum storage requirement: 

P[S/>_ Sm•] -- fi,J (9) 

or 

j= 1,2, ... ,J t-- 1,2, ..., T 

The reliability with which minimum storage is exceeded is 
specified as/•, and the reliability constraint is given as 

or 

• P?lg/>•lg t= 1,2, ..., T (11) 

The other restriction on the maximum storage is given as 

P[S/• CAP] = ¾/ (12) 

CAP- b,_?- F•,_,-'(¾/)= 0 

j= 1,2, ...,J 

(13) 

t-- 1,2, ..-, T 
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The reliability with which the storage must not exceed the 
dam capacity is specified as ¾, and the reliability constraint is 
given by 

•. P/¾?_• ¾ t -- 1, 2, ..., T (14) 
J 

The entire multiple-LDR model comprises an objective 
function of minimize reservoir capacity (minimize CAP) and 
constraints on minimum storages ((10) and (11)), maximum 
storages ((13) and (14)), and minimum releases ((7) and (8)). 
As was stated previously, the model can be solved as a linear 
program. 

The single-LDR model is obtained by restricting the indices 
i and j to a single value i -- j -- 1. Then there is only one LDR 
per season, p,' -- 1.0, P," -- 1.0, and the release in one season 
is now independent of the streamflows in previous seasons. 
The loss of the dependence of release on previous streamflows 
and the reduction in the number of release rules per season as 
incorporated in the multiple-LDR model are expected to re- 
suit in the single-LDR model requiring a larger reservoir ca- 
pacity than the multiple-LDR model to achieve the same per- 
formance criteria. 

TESTING THE LDR MODELS 

The multiple-LDR model was extensively tested and com- 
pared with the single-LDR model. The operating rules speci- 
fied by the solutions of the LDR models were tested in a reser- 
voir simulation model. The LDR models were constructed for, 
and all testing was performed on, a hypothetical reservoir lo- 
cated on the Gunpowder River in Maryland. 

In the first phase of testing, the number of seasons (i, j) con- 
sidered per year was varied, starting with two seasons of 6 
months each, in both the multiple-LDR and the single-LDR 
models. For the multiple-LDR model the number of intervals 
per season, that is, the number of decision rules considered 
per season, was also two; the median streamflow value of the 
historical record was used to partition the intervals, so that the 
frequency of occurrence of streamflows in each season and 
each interval was equal. In a similar manner the number of 
seasons per year was increased up to six. The solutions were 
obtained for both types of LDR models with equivalent num- 
bers of seasons and for different specified values of minimum 
release and/or m'mimum storage. In the second phase the 
number of intervals or decision rules in the multiple-LDR 
model was increased to three and tested in a four-season 

model. 

The most time-consuming portion of this study was the ac- 
tual formulation of the model, which also included the com- 
putation of joint and conditioned probability distributions 
from the historical streamflow data. The commonly adopted 
method of frequency interpretation was used, and Weibull's 
plotting formula was ut•ed to find the cumulative distribu- 
tion functions. The number of intervals into which a particu- 
lar season could be partitioned was limited by the length of 
the historical record available. Even a relatively long record of 
81 years can provide only 27 plotting positions per season if 
streamflows are divided into three intervals. This is a vital lim- 

itation because the multiple-LDR model is a linear program 
that necessitates the linear approximation of the cumulative 
conditioned distribution functions. All the models tested were 

found to be highly sensitive to even small variations in plot- 

TABLE 1. Solutions for Two-Season LDR Models 

Minimum Required Capacity (CAP*), 106 m s 

Xm•n, Multiple LDR 
106 mS/season Single LDR (Two Intervals) 

0-62.5 239.1 189.3 
73.1 241.6 189.3 
83.6 252.0 189.3 
93.9 262.5 189.9 
96.2 264.6 192.0 
99.2 infcasible ... * 

104.5 infeasible 200.4 
115. l-oo infeasible infeasible 

*The value of CAP* was not determined for certain Xm• values. 

ting positions for very low and high probabilities. However, 
this does not undermine the comparative judgments presented 
here. 

The number of linear segments used to piecewise linearize 
the nonlinear conditioned CDF's was determined by actual 
eye estimation, based on the shape of the individual CDF's; 
no hard and fast rules were followed. Only the convex regions 
in decision space given by the CDF's could be considered be- 
cause a convex decision space is necessary to ensure a global 
optimal solution. 

Some sample solutions of the single-LDR and multiple- 
LDR models for the different variations as described earlier 

are summarized in Tables 1-3. The LDR models are solved 

without any restfictions on maximum release and minimum 
freeboard. The value of S.•t. equals 52.2.10 6 m • and the relia- 
bility levels (a, fi, ¾) are set equal to 0.9 in all models unless 
stated otherwise. Also, the seasons within any particular 
model are of equal length. 

In an effort to improve the four-season, three-interval, mul- 
tiple-LDR model's performance the constraints corresponding 
to events of very low joint probability were removed from the 
model. No significant improvement resulted, especially for 
very low specified releases. This is due mostly to the fact that 
for very low values of Xm• the constraints on a, ø are rarely 
binding; hence the constraints on CAP and Sm• determine the 
solution. 

The models were also solved with different values of Sm•. 
AS was found by Re Velle et al. [1969], the optimal value of 
CAP changed by an amount equal to the change in S.•t.. It 
was also found, as expected, that the feasible range of X•t. in- 

TABLE 2. Solutions for Four-Season LDR Models 

Minimum Required Capacity (CAP*) 

Xmin, Single LDR, 
10 6 m3/season 10 • m 3 

Multiple Multiple 
LDR (Two LDR (Three 
Intervals), Intervals), 

10•m z 10•m z 

0-31.4 148.5 146.1 142.4 
41.6 156.2 146.1 142.4 
44.3 161.5 146.1 142.4 
45.4 ... 146.1 142.4 
46.9 166.7 148.5 142.4 
47.3 ...... 142.4 
49.2 ...... 147.8 
51.1 ...... 153.5 
52.2 infeasible 159.7 ... 
53.0 infeasible 162.8 159.8 
54.1 infeasible infeasible 165.6 
54.5-oo infeasible infeasible infeasible 
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TABLE 3. Solutions for Six-Season LDR Models 

Minimum Required Capacity (C4P*) 

Multiple LDR 
Xmin, Single LDR, (Two Intervals), 

106 m3/season 106 m 3 106 m 3 

0-22.7 125.1 123.5 
26.5 133.2 123•6 
30.3 148.4 138.0 
32.2 infeasible 145.5 
33.3 infeasible 150.1 
34.1-oo infeasible infeasible 

creases with a decrease in reliability levels (a,,/•,, ¾,). And the 
minimum capacity required for a specified minimum release 
increases as the reliability levels increase: for the six-season, 
two-interval, multiple-LDR model, with Xmin equal to 
26.5,106 m 3, the minimum capacity is 123.6,106 m 3 with relia- 
bility levels of 90% but is 164.9,106 m 3 with reliability levels of 
95%. 

For the typical multiple-LDR model just mentioned the so- 
lution of the linear program, by the multipurpose opti- 
mization system resident on a CDC6500, required approxi- 
mately 60 CPU seconds and cost about $2; the number of 
constraints equals 199; the number of lower or upper bounds 
specified equals 96; and the number of variables was 126. 
However, it should be noted that the size of the linear pro- 
gram may be substantially increased by increasing the num- 
ber of straight-line approximations of the CDF's. The per- 
formance evaluation of the model through simulation is 
discussed next. 

PERFORMANCE EVALUATION 

A simulation study was performed with the release policies 
specified by the solution of the multiple-LDR and single-LDR 
models. The program was made as simple as possible to simu- 
late the way a hypothetical, single reservoir may operate if the 
decision rules are blindly applied. Thus whenever possible, 
the reservoir release equaled the relevant LDR. A failure was 
defined as any time the LDR could not be followed because 
too little water was available (actual release is less than LDR) 
or spilling occurred (actual release is greater than LDR) and 
any time the release failed to satisfy the minimum required re- 
lease. Most of the simulations (all of those included in Table 
4) were performed for an 80-year period, using the historical 
streamflows as inputs to the reservoir. 

Examination of Tables 1-3 and column 6 of Table 4 shows 

a significant decrease in the capacity required for a given min- 
imum release when the multiple-LDR model and single-LDR 
model are compared. When two seasons are considered (mod- 
els 1 and 2 of Table 4), the single-LDR model specifies a ca- 
pacity 38% greater than that required by the multiple-LDR 
model. With four seasons (models 4, 5, and 6 of Table 4) the 
single-LDR model specifies a capacity 12% and 17% greater 
than the capacities of the two-interval and three-interval mul- 
tiple-LDR models, respectively, and for six seasons (models 8 
and 9 of Table 4) a capacity 8% larger is required by the 
single-LDR model. 

Although it may appear that the percentage advantage of 
the multiple-LDR model over the single-LDR model de- 
creases with an increase in the number of seasons, these data 
may not fully support this conclusion. At the same time that 
the number of seasons increased, the value of Xr•n with re- 
spect to the maximum feasible value of Xm•n diminished. As 
the minimum release becomes very small, some of the advan- 
tage of the multiple-LDR model is lost. Thus two competing 
effects are included in these data. 

This phenomenon can be seen more clearly by examining 
the results for models 2 and 3 in Table 4. Here the only differ- 
ence in performance requirements is the value of Xm•n: in 
model 2 the value of Xm•n is very near the maximum feasible 
value; in model 3 the value of Xm•n is sufficiently small that it 
does not even affect the optimal reservoir capacity. If Xm• 
were increased from 52.3,106 m3/season, the value of CAP*, 
as shown in Table 1, does not change. One conclusion that 
could be drawn from these facts is that in a simulation, model 
2 will have more failures in meeting the minimum release 
than model 3, and model 2 will have more storage plus release 
failures than model 3. This is exactly what occurs, as can be 
seen by the last three columns of Table 4. The same effect is 
seen in models 5 and 7 for the four-season case. 

Because all reliability levels (a, fl, ¾) were set equal to 0.9, it 
is expected, in the simulation, that the percentage of releases 
less than Xm• will not be greater than 10%. Also, the percent- 
ages of storages equal to the reservoir capacity or less than 
Sm•n are expected to be no greater than 10%. Because of a 
slight difference in the way that the LDR model and the simu- 
lation model represent actual operation (the LDR model as- 
sumes that storage volumes greater than the reservoir capacity 
could actually exist, whereas the simulation model does not), 
it is possible that the percentages of various failures could be 
traded between the types of failure. For example, it would be 
possible that the percentage of storages equaling capacity 
would be 12%, while the percentage of releases satisfying the 

TABLE 4. Simulation Results 

Model Model Type 
Number of Number of 

Intervals Seasons 
Xmin, CAP*, 

10 6 m3/season 106 m 3 

Percentage of 
Releases Less 

than Xmin 

Percentage 
of Storages 
Less Than 

$mi• or Equal 
to CAP* 

Sum of 

Percentages of 
Release and 

Storage Failures 

single LDR 1 2 
multiple LDR 2 2 
multiple LDR 2 2 
single LDR 1 4 
multiple LDR 2 4 
multiple LDR 3 4 
multiple LDR 2 4 
single LDR 1 6 
multiple LDR 2 6 

96.2 264.6 
96.2 192.0 
52.3 189.3 
46.9 166.7 

46.9 148.5 
47.3 142.4 
23.0 146.1 
26.5 133.2 
26.5 123.6 

4.0 

8.0 
2.0 

2.0 
11.2 
10.3 
6.3 
6.8 
7.5 

12.0 
26.0 
24.0 

8.0 

12.2 
8.8 

13.1 
7.0 

6.8 

16.0 

34.0 
26.0 
10.0 
23.4 
19.1 
19.4 

13.8 
14.3 
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minimum release requirement would be 8%. Also, the percent- 
ages may be slightly different because of the finite length of 
the simulation. Perhaps, with a simulation over thousands of 
years, the percentage values could be refined. 

Another difference between the multiple-LDR models and 
the single-LDR models is that the percentages of failures in a 
simulation correspond more closely to the reliability levels 
specified in the LDR models. This is evident for all the models 
of Table 4 but is especially evident when the fullest use is 
made of the reservoir. 

For example, models 1 and 2 differ only in the number of 
LDR's per season and the capacities of the reservoir; the value 
of Xmi n is close to the maximum feasible value of minimum re- 
lease. It would be expected therefore that the sum of percent- 
ages of failures would approximately equal 30%. The single- 
LDR model specifies a larger reservoir capacity (264.6.106 
m 3) and has a 34% failure rate. Although the 34% failure rate 
exceeds the expected failure rate, in longer simulations, using 
synthetically generated data, both the 16% and 34% failure 
rates are slightly reduced. Hence the multiple-LDR model 
specifies an operations policy and reservoir capacity that cor- 
respond to the desired performance criteria more closely than 
the single LDR model. 

The same effect is seen in the other models of Table 4 but to 

a lesser degree. This is because the reservoir considered in 
these models is not being used to its fullest potential. For ex- 
ample, in the four-season case, minimum releases up to 15% 
greater (i.e., 54.1 versus 46.9.106 m3/season) are feasible 
within the reliability criteria specified in the LDR models. 
Hence it is expected that the sum of percentages of failures 
might be less than 30%. 

SUMMARY, CONCLUSIONS, AND DISCUSSION 

A comparison of a single-LDR model and a multiple-LDR 
model which is explicitly stochastic has been presented. By 
varying the number of seasons considered per year, the num- 
ber of LDR's per season, and the values of minimum storage 
and minimum release in the LDR models, a wide range of res- 
ervoir operating conditions were studied. The operating poli- 
cies and the reservoir capacities specified by the LDR models 
for different conditions were tested in a simulation model. All 

of this work was done for a hypothetical reservoir on the Gun- 
powder River in Maryland. 

The multiple-LDR models were shown to be superior to the 
single-LDR model. Under identical operating requirements 
the multiple-LDR models specify significantly smaller reser- 

procedure is straightforward, it involves the manipulation of 
many numbers, increasing the chance of errors in the linear 
programing inputs. 

The single- and multiple-LDR models are similar in several 
important ways. Loucks and Doffman [1975] and Gundelach 
and Re Velle [1975] propose different forms for the linear deci- 
sion rules. All of these can be accommodated in the single- 
and multiple-LDR models. An important property of the 
single-LDR model is its size. Large multiple-reservoir systems 
responding to multiple uses with an objective of economic ef- 
ficiency can be included in a single-LDR model [Houck et al., 
1980]. The multiple-LDR models are also small and can be 
used to consider large reservoir systems. They are larger than 
the single-LDR model, and their size increases as the number 
of LDR's per season increases, but they remain within the 
present limits of computability for multiple-reservoir, mul- 
tiple-purpose systems. 
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