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Abstract 

Geomechanical processes involved in mineralisation of several Australian 

deposits were tested using both continuous and discontinuous modelling 

techniques. Numerical modelling using both the finite difference method and 

discrete element method, were carried out by firstly devising conceptual 

models. This also allowed rigorous sensitivity testing of many input parameters 

throughout the modelling procedure. Fully coupled deformation and fluid flow 

modelling was applied to investigate and establish the influence of topography, 

structure and extension on porous media fluid flow. Iron ore genesis in the 

Hamersley Province, W.A., has been a contentious genetic issue for many 

years, with several ore genesis models proposed. Modelling results from this 

study confirm the mechanical feasibility of focusing both surface and basinal 

derived fluids towards sites of iron ore genesis during Proterozoic orogenic 

collapse, providing upward and downward migration of (reduced and oxidised) 

fluids during deformation, and allowing infiltration of banded iron formations and 

consequent silica loss during permeability increase, resulting in favourable 

conditions for ore genesis. 

Extension and contractional models of potential scenarios of ore emplacement 

at the Century Zn-Pb-Ag deposit in northwest Queensland were tested by a 

combination of 3-D structural modelling and fully coupled fluid flow models. 

Three conceptual models were devised, and two of these were fully tested by 

numerical simulations (diagenetic and epigenetic), the other (syngenetic) by 

Geological Computer Aided Design (GoCad). Reconstruction of the 3-D 

structural model displayed thickness and grade relationships to NE trending 

growth faults, providing evidence that supports a syngenetic model of 
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emplacement. Numerical models provide clear evidence that stratiform Zn-Pb 

mineralisation is difficult to achieve in subsurface conditions, due to the low 

permeability of shale units. During contractional deformation, modelling results 

suggest that it would most probably result in fault or vein style mineralisation at 

the Century deposit, due to the proximal nature of fluid focussing relative to the 

faults. 

The Eastern Succession of the Mt Isa Inlier is a mineral rich region, with many 

large deposits such as Cannington Pb-Zn-Ag, Osborne Cu-Au, and Slewyn Cu-

Au. This area has been the focus of mineral exploration for some years, and 

evaluating the prospectivity of this region is one of the current goals of the 

pmd*CRC. Stress partitioning in this region, during the Isan Orogeny, may have 

played a vital role in determining the locations of mineral deposits as a result of 

failure and fluid flow. Discrete element modelling of the Eastern Succession 

provides strong correlations with known ore deposits and prospects, particularly 

in the Selwyn region, and also provides several testable targets. Comparisons 

of these results correspond well with other current prospectivity analysis of the 

region. The results indicate that mineralising fluids were preferentially focussed 

into zones of anomalous stress in and around fault zone bends and 

intersections, and intrusive metasediment contacts. Furthermore the optimum 

far-field stress that provides the best correlation with known deposit distribution 

was orientated E/SE rather that E/W, suggesting a component of regional 

transpression late in the 1600 – 1500 Ma Isan Orogeny. 

Extension related mineralisation is commonly linked to near surface fluids 

penetrating into deeper parts of the crust and possible fluid mixing occuring. 

The general mechanics of extensional faulting are fairly well understood at a 
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range of scales, and many models have been proposed. Hydrodynamic 

models, however, are considerably fewer. This study applied fully coupled 

deformation and fluid flow numerical models to test the role of extensional 

deformation and its effects on fluid flow, particularly at basement-cover 

interfaces. Large contrasts in the permeability of the basement and cover 

restrict fluid exchange between these two units, unless permeable faults or 

shear zones are present. Downward migration of fluids is a natural 

consequence of the extension of dilatant materials where strain rates are high. 

Rapid decreases in pore pressure, as a result of dilation and failure, may 

provide mechanisms for mass transfer across basement cover interfaces. 
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