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Abstract

The present study addressed the need to understand how short-term variations in metal

concentrations in the environment determine its concentrations in a biomonitor, and how this

information affects the use of the biomonitor in environmental monitoring programs. As a

case study, the barnacle biomonitor Balanus amphitrite present in Ross Creek (Townsville,

Queensland, AU) and the heavy metal Cd were used. The research methodology for this study

comprised three integrated approaches: field measurements; the performance oflaboratory

.experiments, and the development of an ecotoxicological simulation model, in order to

understand the processes controlling Cd accumulation in Balanus amphitrite in the field. Two

sampling programs were carried out along Ross Creek, in the dry season of 2002 and the wet

season of 2004, in which barnacles, their food sources (two class sizes of suspended

particulate material, SPM, and microzooplankton) and water (dissolved phase) were sampled

weekly for Cd concentrations and mass abundances. Sampling periods were selected to test

whether the concentration of Cd in the biomonitor responded to any variation in the dissolved

and particulate phase Cd concentrations in Ross Creek, as caused by rainfall variation.

In both sampling periods, the Cd concentration in the dissolved phase increased upstream,

ranging from 1.6 to 283 ngl,", The Cd concentration in the barnacle's food sources exhibited

the same pattern - ranging from <0.01 to 2.10 mg kg" for the small size class of SPM (0.45

50 urn), from 0.07 to 1.62 mg kg" for large SPM (50-200 urn), and from 0.03 to 0.80 mg kg-I

for microzooplankton (50-200 urn). The Cd concentration in two populations of Balanus

amphitrite increased upstream between two sites 2.20 km apart and ranged from 2.15 to 6.40

mg kg" and from 5.22 to 12.8 mg kg-I. Even though no significant temporal variation was
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detected for the Cd sources to the barnacles, the biomonitor Cd concentrations varied over the

three sampling months, within each sampling period, exhibiting specific patterns for this

variation. These observations suggest that changes in the Cd concentrations in the food

sources and the relative mass abundance of these sources may result in a specific Cd

concentration in Balanus amphitrite.

Similar Cd concentrations, within sites, were observed for the particles between the dry and

wet seasons. Only the most contaminated site exhibited significant differences in the

dissolved Cd concentration between seasons. Because more than 95% of the total Cd in the

Ross Creek water «200 urn) was in the dissolved phase «0.45 um), the differences in the

dissolved Cd concentration resulted in the barnacles from the most Cd-contaminated site

being exposed to a total Cd concentration in the wet season (45.8 ng L-I ) that was a half of

that in the dry season (91.6 ng L-I ) . Such Cd differences were not indicated by the biomonitor

whose Cd concentration did not vary significantly between dry (8.4 mg kg") and wet (7.4 mg

kg") seasons. A budget analysis based on Thomann's bioenergetic kinetic model, indicated

that Cd flux from food contributes >80% of the Cd concentration in Balanus amphitrite.

Thus, because no significant variation was identified for the Cd concentration in the food, no

variation in the Cd concentration in the biomonitor was observed at the most contaminated

site between seasons. A sensitivity analysis on the model showed that physiological

characteristics of the biomonitor are the key parameters controlling Cd accumulation in

Balanus amphitrite, rather than the metal concentration in the dissolved or particulate phases.

This, coupled with the fact that the Cd flux from food is the major source of Cd to Balanus

amphitrite suggests no tight coupling between Cd in the biomonitor and its availability in the

environment.
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A simulation model was developed based on Thomann's bioenergetic kinetic model. The

daily-simulated Cd concentration in Balanus amphitrite produced by the model reproduced

the general trend observed in the field. However, even though high and low patterns of Cd

concentration in this organism could be reproduced by the model, it could not reproduce the

short-term temporal variations accurately. A model investigation suggested that variations in

the mean weight of the sampled barnacles might mask the real pattern of temporal variation of

the barnacles Cd concentration; even though no size effect has been identified in the field

data.

Two simulation exercises indicated that Balanus amphitrite may present some weakness in

indicating temporal variations in Cd concentrations in the environment. The model results

suggested that this organism could not indicate a 6-month Cd-pulse in the environment that

increased the Cd concentration in its main source (small SPM, 0.45-50 urn) by a factor of 2.8

using a realistic sampling effort. In addition, this organism took more than a year to reach

equilibrium for its Cd concentration in a simulated relocation experiment. These problems

may be critical for the use of Balanus amphitrite as a biomonitor, and suggest that this

organism can only provides a poor measure of current bioavailability of the metal in the

environment. However, if a long-term mean Cd availability in the particulate fraction (sized

<200 urn) is required, Balanus amphitrite can provide such an information.
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