JCU ePrints

This file is part of the following reference:

Villarreal Albitres, William F. (2005) An experimental investigation into the effect of interface friction on bagasse compaction between grooved steel platens. Masters (Research) thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/2113

An Experimental Investigation into the Effect of Interface Friction on Bagasse Compaction between Grooved Steel Platens

Thesis submitted by

William F. Villarreal Albitres

BE (Mech.), Universidad Nacional de Trujillo, Perú

in May 2005

for the degree of Master of Engineering Science in the School of Engineering (Mechanical Engineering) James Cook University

Statement of Access

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network or other means, for use elsewhere. All users consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper public written acknowledgement for any assistance that I have obtained it

Beyond this, I do not wish to place any restriction on access to this thesis

04 May, 2005

William F. Villarreal A.

Date

Statement of Sources

DECLARATION

I declare that this thesis is my own work and has not been submitted in any other form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of reference is given

04 May, 2005

William F. Villarreal A.

Date

Acknowledgements

The author wishes to express his feeling of thankfulness and appreciation to the following people for the valuable help and cooperation given to me during the present investigation work:

My supervisor, Professor Jeffrey G. Loughran, of James Cook University, for suggesting the topic for my investigation, and for his incessant support and guidance throughout the course of my research.

Mr. David Kauppila, whose accurate ideas and suggestions about the experimental part of this investigation led me to be successful in this research project.

The workshop staff, for manufacture of the apparatus. Their ideas and experience with technical materials made the apparatus so practical and effective.

Dr Paul Britton, for the fruitful discussions about compaction and groove angles in a rolling environment.

Drs Gina Curro and George Ridgway, of Learning and Communication, who helped me to have an effective academic writing style.

Finally, to my wife Sara and children Gustavo, Marcelo and Maria-Fernanda, who have supported me and faced my absence with courage, during the two years I undertook this challenge.

Abstract

Modern factory crushing units process prepared sugar cane through sets of counter-rotating grooved rolls. A typical unit in Australia would process in excess of 600 tonnes of material per hour. Throughput and extraction performance is strongly dependent on material behaviour, the geometry and surface condition at the roll bagasse interface. Factories use welding procedures to arc roughen the tips of grooves in an effort to increase friction. Although industry procedures appear ad hoc it is clear that some level of roughness is crucial to performance. A similar statement can be made in respect to roll grooving given the wide variation in adopted practice. This project involved an experimental investigation into the effects of interface friction on bagasse compaction between grooved steel platens. An apparatus was developed for use in the SOE MTS testing facility. A factorial design experiment involving 105 tests randomised in blocks was conducted to discover the interaction between friction (the dependent variable) and groove angle, compaction, and roughness (independent variables). The results indicate that roughness, groove angle and compaction significantly affect friction coefficient. While roughness and groove angle contribute to increase friction coefficient, compaction causes a marked decrease. Observations on samples of bagasse exhibiting pure shear suggest that the frictional forces generated at the interface cannot be sustained by the shear strength of bagasse. Comparisons between friction coefficient and shear coefficient showed that the friction coefficient values approach the shear coefficient values under particular geometric and loading conditions. An empirical model was developed to explore variables. The effect of groove angle, degree of roughness (location and size of roughened asperity) and sample compaction on friction has been ascertained.

Contents

Sta	atem	ent of a	access	ii
Sta	atem	ent of s	sources	iii
Ac	knov	vledgn	ients	iv
Ał	ostrac	et		v
Co	onten	ts		vi
Ta	ble .			X
Fi	gures			xi
Sy	mbol	s		xvi
1	Intr	oducti	on	1
	1.1	Overv	/iew	2
	1.2	Descr	iption of the rolling process	
	1.3	Grip a	and deformation of bagasse by grooved rollers	4
	1.4	Conta	ct mechanism between surfaces	4
	1.5	The n	ecessity of friction	6
	1.6	Stater	nent of the problem	6
	1.7	The si	gnificance of this research	
		1.7.1	The requirement for the sugar industry	
		1.7.2	The requirement for computational and experimental modelling	ng of the cane
			crushing	9
	1.8	Thesi	s objectives	9
	1.9	Thesi	s outline	
2	Lite	rature	review	12
	2.1	The p	hysical structure of prepared sugar cane and bagasse	13
		2.1.1	The nature of prepared cane	13
		2.1.2	The nature of bagasse	
	2.2	The b	asic physical properties of bagasse	
	2.3	Frictio	on theory	17
		2.3.1	The classical definition of friction	
		2.3.2	A description of contact area between two bodies A and B	
		2.3.3	The concept of friction angle	
		2.3.4	Sliding friction	

			vii
	2.4	Friction in a rolling environment	24
		2.4.1 The bagasse compression mechanism	24
		2.4.2 Contact between fibrous material and grooved roller	25
		2.4.3 Frictional stress at the interface between bagasse and roller	26
		2.4.4 Failure criterion at an interface plane	28
		2.4.5 Drucker-Prager/Cap (DPC) plasticity model	30
		2.4.6 Coulomb wedge analysis	32
		2.4.7 Reaction forces in grooved elements subjected to compressive load	34
		2.4.8 The friction coefficient value on a grooved surface	36
	2.5	The texture of the contact surface between bagasse and a grooved platen	38
		2.5.1 Quantification of hard-facing roughness on a grooved surface	41
	2.6	Dimensional analysis for friction coefficient between bagasse and a re-	olling
		surface	42
	Sun	nmary	51
3	3 Lite	erature review on experimental investigations	52
	3.1	Introduction	53
	Sun	nmary	58
4	Res	earch methodology	59
	4.1	Description of the samples	60
		4.1.1 Weight and number of samples	60
		4.1.2 Collection of samples	61
	4.2	Experimental apparatus and instrumentation	61
		4.2.1 The shear box	61
		4.2.2 The platens	62
	4.3	Description of the experiment	65
		4.3.1 The variables	65
		4.3.2 The experimental procedure	67
		4.3.3 Experimental design	69
		4.3.4 Analytical model describing the experiment	70
		4.3.5 Design of the experimental model	70
		4.3.6 Boundary conditions and restriction for the experiments	72
		4.3.7 Collection of the experimental data	73
	4.4	Research hypothesis	74
	4.5	Statistical technique of evaluation	74

		viii
		4.5.1 The empirical model
	~	4.5.2 The best response curve
	Sun	1 mary
5	Res	ults 81
	5.1	The response of the friction coefficient value to roughness, groove angle and
		compaction
	5.2	The friction coefficient model
	5.3	Optimization of the friction coefficient
	5.4	Bagasse shear failure analysis
	5.5	The influence of liquid in bagasse on the interface friction and shear coefficient
		values 107
	5.6	Liquid content in bagasse versus friction coefficient 108
	5.7	The effect of roughness, compaction and groove angle on bagasse dewatering
	Sun	117 mary
6	Disc	cussion
	6.1	The response of the friction coefficient to roughness, groove angle, and
		compaction
	6.2	The maximisation of the friction coefficient
	6.3	The dewatering of bagasse
	Sun	129
7	Con	clusions
	7.1	Future investigations
Re	feren	ces
Ar	ppend	ices
r	P	Appendix A Example of calculations 140
		Appendix B Calculation of samples 146
		Appendix C. Shear box design 148
		Appendix D. Set of steel grooved platens used for the experiments 150
		Appendix E Miscellanea
		Appendix E aboratory maggyrements 155
		Appendix r Laboratory measurements

Tables

Table 2.1 R	Relation of relevant variables involved at the interface friction between bagasse
a	nd roller
Table 4.1	Average values of constituents parameters of bagasse used during the tests
Table 4.2	Main characteristics of the platens used during the tests
Table 4.3	Variable measurements and instrumentation applied
Table 4.4	Levels selected for each variable and its measurement units
Table 4.5	Measurement errors of main parameters to measure shear forces
Table 4.6	Mass of bagasse used for the tests as a function of compaction at different
	groove angles
Table 4.7	Randomised order of the samples for the split-split-plot design for shear force
	tests on steel groove platens
Table 4.8	Analysis of variance for 3x3x4 factorial
Table 4.9	Code units and level of the variables selected for the experiment design 78
Table 4.10	The Box-Behnken design for the three variables at two replicates
Table 5.1	Friction coefficient results between bagasse and grooved steel platens 83
Table 5.2	Analysis of variance for friction coefficient under roughness, groove angle and
	compaction factors
Table 5.3	Comparisons among levels within each factor tested which caused a greater
	friction coefficient
Table 5.4	Experimental and predicted value for the friction coefficient
Table 5.5	ANOVA for response surface cubic model
Table 5.6	Data for the shear coefficient at three compaction levels 106
Table 5.7	Analysis of variance for the shear coefficient 106
Table 5.8	Data for shear coefficient under the combined effect of compaction and
	moisture
Table 5.9	Analysis of variance for the shear coefficient versus compaction and moisture

	х
Table 5.10	Results for the friction coefficient, by combining moisture, groove angle and
	compaction, holding 2.25 mm average roughness 109
Table 5.11	Analysis of variance for the friction coefficient versus moisture, groove angle
	and compaction 109
Table 5.12	Data for bagasse dewatering as a function of compaction, roughness, and
	groove angle 111
Table 5.13	The analysis of variance for bagasse dewatering 112
Table 6.1	The effect of the variables roughness, groove angle, and compaction on the
	maximum friction coefficient value 127
Table 6.2	The combination for roughness and compaction for predicted maximum
	friction coefficient at a fixed 35° groove angle 128
Table 6.3	Comparison in percentages of extracted liquid between 35° and 100° groove
	angles at three compaction levels, at 52% moisture bagasse 128
Table B.1	The friction coefficients values for four variables reported by Cullen (1965)
Table B.2	Statistical parameters to calculate the number of samples 147

Figures

Figure 1.1	Typical arrangement of a roughened six-roll mill of a crushing unit
Figure 1.2	Aspect of the interface friction between grooved surfaces (after, Kauppila,
	2003)
Figure 2.1	Microscopic view of a vascular bundle in a sugar cane stem (Gamble, 2003)
Figure 2.2	Magnification of a fibre element and its surface texture
Figure 2.3	Mass-volume components of a prepared cane or bagasse sample: (a) prior to
	juice expression at $t = 0$; (b) at any time during a compression test (Leitch,
	1996)
Figure 2.4	Reacting force generated at the interface of two bodies due to a force applied
	to one of them (Blencoe & Williams, 1997)
Figure 2.5	Real contact areas of two bodies before and after the action of a compressive
	load
Figure 2.6	Diversity of friction coefficients values for different materials (Ludema,
	1996)
Figure 2.7	Definition of friction angle
Figure 2.8	Compression process between fibrous material and a pair of rollers 25
Figure 2.9	Potential void reduction of bagasse between grooved surfaces (after Briton,
	2001)
Figure 2.10	Frictional forces acting in a rolling environment. A mean roller diameter is
	assumed
Figure 2.11	Schematic showing a plane strain view of two roughened rollers
Figure 2.12	Equilibrium of forces on grooved roller surfaces
Figure 2.13	Potential failure planes of a material subjected to shear stress
Figure 2.14	A family of conventional DPC yield limits for different levels of relative
	density
Figure 2.15	The non-conventional DPC model parameters including a family of DPC
-	yield limits for different levels of bagasse compaction (relative densities)
	over a range of compression

F ' 0 16	xii
Figure 2.16	Failure of a wall due to a normal applied force
Figure 2.17	Free-body diagram of a wedge under a vertical force F
Figure 2.18	Ratio of normal to compressive force versus angle and friction coefficient
Figure 2.19	Distribution of frictional forces on a grooved surface
Figure 2.20	Relationship friction coefficient and groove angle as a function of shear and
	normal force
Figure 2.21	Components of the contact surface: roughness and waviness making the total
	profile (Anon., 2001)
Figure 2.22	Forms to measure a superficial irregularity: Average roughness, root mean
	square (rms)
Figure 2.23	Surface profiles with different shapes, but similar average roughness value
	(Anon. 2001)
Figure 2.24	Average roughness, R_{a} , for a grooved surface covered with asperities 41
Figure 2.25	Dimensional set matrix for friction coefficient composed of ten
	dimensionless variables
Figure 2.26	Contact of roughened area as a function of bagasse penetration
Figure 3.1	Limiting friction coefficient for different normal pressures for fresh prepared
	cane (Adam, 2004)
Figure 3.2	Friction coefficient versus groove angle for various speeds at low and high
	normal pressure (Adam, 2004) 55
Figure 3.3	Friction coefficient versus rubbing speed for flat and grooved surfaces at low
	and high speed (Adam, 2004) 56
Figure 3.4	Forces acting on an element of material in a roller groove (Adam, 2004) 57
Figure 4.1	Shear box used for the experiment to determine shear forces
Figure 4.2	Fibre machine, apparatus for determining the fibre in bagasse (after Loughran
	et., al , 1988)
Figure 4.3	MTS machine for uniaxial compression tests
Figure 4.4	Diagram of equipments and instrumentation for experimental tests
Figure 5.1	The effect of roughness, groove angle and compaction on the mean value of
	the friction coefficient
Figure 5.2	Plots of the friction mean friction coefficient value for roughness, groove
	angle, and compaction, at three-way interaction
Figure 5.3	Residual plots for the friction coefficient observations

Comparison between the predictive and experimental values for the friction
coefficient
Contour plots for the friction coefficient under a combination of compaction
and groove angle with constant roughness
Surface plots for the friction coefficient under combination of compaction
and groove angle, with constant roughness
Contour plots for the friction coefficient under a combination of compaction
and roughness, holding a 35° groove angle
Surface plots for the friction coefficient under a combination of compaction
and roughness, holding a 35° groove angle
Contour plots for the friction coefficient under a combination of groove angle
and roughness, holding compaction at 400 kg/m ³
Surface plots for the friction coefficient under a combination of groove angle
roughness, holding compaction at 400 kg/m ³
Contour plot for the friction coefficient under the combined effect of groove
angle and compaction, holding roughness held at 2.25 mm
Surface plot for the friction coefficient responses under the factors groove
angle and compaction, holding roughness at 2.25 mm
Contour plot for of friction coefficient under the combined effect of
roughness and compaction, holding a 100° groove angle
Surface plot for the friction coefficient responses under the factors of
roughness and compaction, holding 1000 groove angle
Contour plots for the friction coefficient under the combined effect of groove
angle and compaction, holding compaction 700 kg/m ³ 100
Surface plot for the friction coefficient responses under the factors of
roughness and groove angle, holding compaction at 700 kg/m ^{3} 100
Contour plot for the friction coefficient value versus compaction and groove
angle, holding average roughness at 4.50 mm101
Surface plot for the friction coefficient responses versus compaction and
groove angle, holding average roughness at 4.50 mm 101
Contour plots for the friction coefficient value under the combined effect of
roughness and compaction, holding 180° groove angle102
Surface plot for the friction coefficient value under the conditions of
roughness and compaction, holding groove angle at 180°102

xiii

	xiv
Figure 5.21	Contour plots for the friction coefficient value under the combined effect of
	groove angle and roughness, holding compaction at 1000 kg/m ³ 103
Figure 5.22	Surface plot for the friction coefficient response versus groove angle and
	roughness, holding compaction 1000 kg/m ³ 103
Figure 5.23	Shear and friction coefficients as a function of the compaction at different
	groove angles and roughness of surface
Figure 5.24	Shear and friction coefficient versus normal force at different groove angles
	and roughness 105
Figure 5.25	Shear and friction coefficient measurements: (a) shear test without scraper;
	(b) friction coefficient test using scraper to avoid internal shear failure 106
Figure 5.26	Comparison of shear coefficient at two different levels of bagasse moisture as
	a function of compaction 108
Figure 5.27	Friction coefficient values versus bagasse moisture and groove angle 110
Figure 5.28	Friction coefficient values versus bagasse moisture and compaction 110
Figure 5.29	Profile plots for extracted liquid versus roughness, groove angle and
	compaction
Figure 5.30	Interaction plots for extracted liquid and roughness, groove angle, and
	compaction effects
Figure 5.31	Contour plots of extraction versus roughness and compaction 114
Figure 5.32	Surface plot of extraction versus compaction and roughness 114
Figure 5.33	Contour plots of extraction versus roughness and groove angle115
Figure 5.34	Surface plot of extraction versus roughness and groove angle115
Figure 5.35	Contour plots of extraction versus compaction and groove angle
Figure 5.36	Surface plot of extraction versus compaction and groove angle 116
Figure 6.1	Traces left by asperities on bagasse after contacting a roughened steel flat
	platen at 1000 kg/m ³ compaction
Figure 6.2	Evidence of the shear failure of bagasse after having been pushed 14 mm
-	
Figure 6.3	The internal friction coefficient of the bagasse as a function of filling ratio
U	(referred to density fibre = 1530 kg/m^3)
Figure 6.4	The friction coefficient tests at 1000 kg/m ^{3} compaction, 60 ^{\circ} groove angle.
	and 2.25 mm average roughness. Slippage seems to occur outside the
	interface

Figure 6.5	XV The friction coefficient test at 1000 kg/m ³ compaction 180° groove angle
I Iguie 0.5	and 2.25 mm average roughness. Potential slippage occurring outside the
	interface 122
Figure 6.6	A typical example of material subjected to direct shear (Atkinson 2002)
I iguic 0.0	122
Figuro 67	A schematic diagram of friction machanism: (a) shear strong rises with the
Figure 0.7	A schematic diagram of friction mechanism. (a) shear suess fises with the increment of normal pressure. (b) Plastic flow alternated with ploughing (a)
	Sheer stress remains constant <i>u</i> decreases with increasing normal pressure.
	Shear stress remains constant, μ decreases with increasing normal pressure
Figure 6.8	(a) Aligned appearance of fibres under 1000 kg/m^3 compaction, smooth, 100°
	groove angle. (b) Randomised appearance of fibre under 400 kg/m ³
	compaction, 2.25 mm height of asperity, and 35° groove angle124
Figure 6.9	A comparison of friction coefficients with respect to Cullen (1965) 125
Figure 6.10	Relation shear/friction coefficient compared to the results of Cullen (1965)
	and Plaza (1997) 126
Figure D.1	Set of smooth steel grooved platens. Roughness assumed zero 150
Figure D.2	Set of roughened steel grooved platens with 2.25 average asperities 150
Figure D.3	Set of roughened steel grooved platens with 4.50 average nodules 150
Figure E.1	Bagasse compacted at 35° groove angle at different levels: (a) 1000 kg/m ³
	and (b) 700 kg/m ³ 151
Figure E.2	Groove platens roughened by nodules. Fibre forming a curvature radius
	around the nodule; (a) 60° and (b) 35°
Figure E.3	(a) Traces of the nodules indented in bagasse without signs of causing
	ploughing. (b) Platen roughened with nodules after being pushed about 14
	mm
Figure E.4	(a) Flat smooth platen pushed at 1000 kg/m ³ . (b) Flat roughened platen
	pushed at 700 kg/m ³ 153
Figure E.5	(a) Flat platen with nodules pushed at 1000 kg/m ^{3} . (b) Platen with asperities
	showing fibre attached around the roughened flank of the tooth 153
Figure E.6	(a) Roughened platen after having taken the bagasse out. (b) Shear test for
-	internal shear coefficient. Test run without scraper
Figure E.7	Mass of bagasse fixed. Platen pushed to cause shear stress at the interface
C	friction. (a) smooth surface, 35° , 1000 kg/m ³ ; (b) smooth surface. 100°. 700
	kg/m ³
	<u> </u>

Symbols

- A Cross-sectional area
- A_a Apparent area
- A_t true area
- *C* Variable compaction
- C_c Compression ratio
- *C_f* Filling ratio
- D Roller diameter
- D_m Mean Diameter
- *E* Elastic modules
- F Force
- F_c Compressive force, yield function in cap region
- F_n Normal force
- FR filling ratio
- F_s Yield function in Drucker-Prager shear region
- F_t Tangential force, yield function in transition region
- *G* Variable groove angle
- G_b Bagasse shear modules
- *H* Height of bagasse penetration
- *K* Bulk modulus
- *K*_o Plasticity constant
- L Length
- M Mass
- *N* Reacting normal force
- *N_s* Number of responses
- N_x, N_y Reacting normal force components
- *R* Variable roughness, experimental parameter
- R_a Average roughness
- R_q Root mean square
- R_x, R_y Reacting forces components

Т	Time
V_{f}	Volume of fibre
V_{j}	Volume of juice
V_o	Initial no gas volume of cane
W	Gravitational force
С	Cohesion coefficient
C_W	Cohesion coefficient on the wall
d	material cohesion
$d_{ au'}$	Shear stress differential
d_{γ}	Shear strain differential
$d_{\sigma'}$	Normal stress differential
d_{ε_v}	Volumetric strain differential
d au'	Differential of shear strain
$d\sigma'$	Differential of normal stress
ė	Shear strain of liquid film
f	Fibre fraction
f_a	Friction force due to adhesion
f_f	Frictional force
<i>g</i>	Acceleration due to gravity
h	Height of asperity
h_d	Hardness
h_m	Height of bagasse blanket
i	initial condition
k	Number of levels
m_f	Final mass of prepared cane or bagasse
m_i	Initial mass of prepared cane or bagasse
р	Hydrostatic pressure
q	Von Mises equivalent stress
S_t	Tangential speed
υ	Peripheral speed
W	Work opening
α	Angle of nip, cap transition parameter

- α_a Asperity angle
- α_i Initial contact angle
- \hat{a} Treatment number
- β Neutral plane angle, internal friction coefficient
- λ Specific density
- γ Compaction
- γ_{bss} Bagasse shear strain
- γ_{zx} Engineer's strain
- $\dot{\gamma}_{f}$ Liquid film shear strain
- δ Displacement differential
- ε_e Elastic strain
- ε_p Plastic strain
- ε_{ν} Volumetric strain

 $\varepsilon_{xz}, \varepsilon_{zx}$ Pure shear strain

- ζ Asperity tip radius
- η Angle of an inclined wall
- θ Groove angle
- θ_s Shear plane angle
- μ Friction coefficient
- μ_{pp} Porous pressure
- μ_s Static friction
- μ_{w} Friction coefficient on the wall
- v Specific volume
- π Dimensional product
- ρ_c Density of cane
- ρ_f Density of fibre
- ρ_i Density of juice
- ρ_o No gas density of prepared cane
- σ Total normal stress

- σ' Normal effective stress
- σ_{Y} Yield stress
- $\sigma_x, \sigma_y, \sigma_z$ Normal stress components
- $\sigma_1, \sigma_2, \sigma_3$ Normal stress components
- σ_{sd} Standard deviation of asperities heights
- τ, τ' Shear stress
- τ_1, τ_2, τ_3 Shear stress components
- τ_w Shear stress on the wall
- τ_{xy}, τ_{yx} Internal shear stress
- ϕ Angle of friction
- ϕ_w Angle of wall
- ϕ' Effective angle of internal friction
- ψ Plasticity index.