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Abstract 
 
 
Modern factory crushing units process prepared sugar cane through sets of counter-rotating 

grooved rolls. A typical unit in Australia would process in excess of 600 tonnes of material 

per hour. Throughput and extraction performance is strongly dependent on material 

behaviour, the geometry and surface condition at the roll bagasse interface. Factories use 

welding procedures to arc roughen the tips of grooves in an effort to increase friction. 

Although industry procedures appear ad hoc it is clear that some level of roughness is 

crucial to performance. A similar statement can be made in respect to roll grooving given 

the wide variation in adopted practice. This project involved an experimental investigation 

into the effects of interface friction on bagasse compaction between grooved steel platens. 

An apparatus was developed for use in the SOE MTS testing facility. A factorial design 

experiment involving 105 tests randomised in blocks was conducted to discover the 

interaction between friction (the dependent variable) and groove angle, compaction, and 

roughness (independent variables). The results indicate that roughness, groove angle and 

compaction significantly affect friction coefficient. While roughness and groove angle 

contribute to increase friction coefficient, compaction causes a marked decrease. 

Observations on samples of bagasse exhibiting pure shear suggest that the frictional forces 

generated at the interface cannot be sustained by the shear strength of bagasse. 

Comparisons between friction coefficient and shear coefficient showed that the friction 

coefficient values approach the shear coefficient values under particular geometric and 

loading conditions. An empirical model was developed to explore variables. The effect of 

groove angle, degree of roughness (location and size of roughened asperity) and sample 

compaction on friction has been ascertained.  
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