Environmental impacts of irrigated sugarcane production: Herbicide run-off dynamics from farms and associated drainage systems

Davis, A.M., Thorburn, P.J., Lewis, S.E., Bainbridge, Z.T., Attard, S.J., Milla, R., and Brodie, J.E. (2013) Environmental impacts of irrigated sugarcane production: Herbicide run-off dynamics from farms and associated drainage systems. Agriculture, Ecosystems and Environment, 180. pp. 123-135.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1016/j.agee.2011.06...

Abstract

Irrigation is vital to most of the sugarcane produced in Australia's ecologically sensitive Great Barrier Reef catchment area, although little is known regarding pesticide losses under irrigated sugarcane production. This study determined the dynamics of off-site paddock-scale pesticide movement and subsequent concentrations in local receiving environments in fully irrigated sugarcane farming systems of the lower Burdekin floodplain region, the largest sugar producing area in Australia. Chemical movement (both mass and concentration) in paddock surface run-off followed a similar pattern across sites in the region for several of the commonly applied herbicides such as diuron, atrazine and ametryn. Highest losses (loads and event concentrations) occurred in the first irrigation run-off events following application, with subsequent irrigation losses tailing off rapidly. Significant losses could also occur during wet season rainfall run-off events from paddocks with recent pesticide applications. There was a strong seasonal signal evident in catchment monitoring results. Pesticide concentrations in nearby receiving creek systems were invariably an order of magnitude or more lower than values collected at paddock-scale, highlighting the considerable dilution that takes place over relatively short distances. While the concentrations found in receiving creek systems were considerably lower than direct paddock run-off, they regularly exceeded some ecological guidelines and results of pesticide risk modeling suggested concentrations, particularly under dry season conditions, posed considerable ecological risk to aquatic ecosystems.

Item ID: 20876
Item Type: Article (Refereed Research - C1)
Keywords: Great Barrier Reef, pesticides, water quality, furrow irrigation, run-off
ISSN: 1873-2305
Date Deposited: 13 Mar 2012 04:11
FoR Codes: 05 ENVIRONMENTAL SCIENCES > 0502 Environmental Science and Management > 050204 Environmental Impact Assessment @ 50%
05 ENVIRONMENTAL SCIENCES > 0502 Environmental Science and Management > 050205 Environmental Management @ 50%
SEO Codes: 96 ENVIRONMENT > 9605 Ecosystem Assessment and Management > 960503 Ecosystem Assessment and Management of Coastal and Estuarine Environments @ 50%
96 ENVIRONMENT > 9609 Land and Water Management > 960905 Farmland, Arable Cropland and Permanent Cropland Water Management @ 50%
Downloads: Total: 4
Last 12 Months: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page