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1. Introduction  
The ability to predict rainfall with adequate certainty and lead time is beneficial to both 
industry and public.  Periods of high or low seasonal rainfall can have many follow on 
effects to agriculture, industry, public health and, water supply and management.  In order 
to implement decisions, planning and management strategies to contend with these issues, 
the ability to predict seasonal rainfall quantities is of great importance (Klopper et al., 2006).  
Climate conditions are known to influence the cultivation of Sugarcane influencing planting, 
harvesting and milling (Muchow and Wood, 1996; Everingham et al., 2002; Jones and 
Everingham, 2005). Unforeseen climate events such as excessive rainfall, can adversely effect 
the agricultural practices related to Sugarcane cultivation. The Australian Sugarcane harvest 
period commences in May/June and aims to finish by November/December before the start 
of the rainy season (Everingham et al., 2002). The risk of excessive rainfall disrupting 
harvest operations is greatest towards the end of the sugarcane harvest period (Muchow 
and Wood, 1996; Everingham et al., 2002). Therefore, improved seasonal rainfall prediction 
during the October-December period is beneficial.   
Statistical prediction of seasonal rainfall can be performed using a variety of techniques 
including: regression (Singhrattna et al., 2005), classification methods (Drosdowsky and 
Chambers, 2001), canonical correlation analysis (Landman and Mason, 1999) and neural 
networks (Mason, 1998).  All statistical models require predictor variables which act as 
proxies for describing the behaviour of response variables (Hastie et al., 2001).  When 
considering a seasonal forecast model, it is useful to draw predictor variables from a climate 
data set that is both historically and spatially complete (Washington and Downing, 1999).  
One of the most temporally and spatially resolute climate parameters is sea surface 
temperature (SST) data. Consequently, SST data are often used as an empirical measure of 
the ocean-atmosphere interaction in statistical climate models. However, a vast proportion 
of potential SST predictors may be redundant.  Therefore employing data mining methods 
for the purpose of feature extraction and data reduction is advantageous.  
Principal component analysis (PCA) is a commonly used feature extraction method that 
reduces data dimensionality whilst retaining the majority of the variability (Jolliffe, 1986).  
As sea surface temperature data sets are large, it is useful to perform PCA data reduction 
such that the bulk of the variability is contained in a small subset of variables (Wilks, 1995).  
PCA also referred to as empirical orthogonal function (EOF) analysis is commonly used 
throughout climate research (Wilks, 1995). PCA is popular because it is available in most 
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statistical software packages; is easy to self-program and can be applied to a variety of 
multivariate data from many disciplines.  However, there are some disadvantages to PCA. 
In situations where there is ordering associated with the independent variables, then this 
ordering is ignored by PCA. This is pertinent when considering application of PCA to SST 
data where the variables are ordered in both a latitudinal and longitudinal direction. In 
order to perform PCA on a SST dataset, the spatial structure is reduced by “stringing-out” 
each 2D monthly piece of SST data into a one dimensional (1D) vector whose element order 
has no significance (Wilks, 1995).  The 1-D vector then becomes a row in a large matrix to 
which the PCA is applied as illustrated in Fig. 1.   
When analysing image type data, methods that extract information whilst maintaining the 
spatial structure are favourable.  A method of image analysis known as the 2D discrete 
wavelet transform (DWT) has the ability to extract high and low frequency information 
from the image, and can perform dimension reduction whilst maintaining the spatial 
structure of data (Mallat, 1989a; Mallat, 1989b; Antonini et al., 1992).  Within this chapter it  
is proposed that SST data be considered an image and analysed using a 2D DWT to 
maintain the spatial integrity of the dastaset.  However, the literature involving the 
application of 2-D DWT methods to spatial climate data for the purpose of extracting useful 
features is scant. 
Although feature extraction methods assist in mining useful features from data, they can 
still output high dimensional and collinear datasets. For the purposes of statistical 
modelling, a larger number of predictor variables than observations results in an ill-posed 
situation. A large number of variables can also have practical implications upon 
computational speed.  Therefore, it is useful to employ data mining techniques to produce a 
smaller sub-set of predictor variables. Random forests (RF) analysis is a non-parametric 
approach which has emerged from classification and regression tree theory (Brieman, 2001). 
The RF method is robust to outliers, noise and is ideal for datasets of large dimension.  The 
RF method is also useful for identifying variables of importance and hence can be used for 
data reduction.  Firth et al. (2005) found RF to be a useful method for predicting the onset of 
the winter rain season for the wheat growing region of southwest Western Australia using 
climate indices including: SST data, mean sea level pressure (MSLP) and the southern 
oscillation index (SOI).  Furthermore, Firth et al. (2005) found the RF method was able to 
locate regions of SST which were deemed to be important predictor variables.  
Within this chapter we have developed a statistical model for the prediction of above 
median rainfall for Tully, in the northern part of the Australian sugarcane growing region.  
Data mining methods were explored for the purposes of feature extraction and variable 
reduction of SST data.  The 2D DWT and PCA were both used for comparitive purposes of 
feature extraction upon SST data. We examined the RF algorithm for the purposes of 
variable reduction. Classification was performed using regularised discriminant analysis 
(RDA) and model performance was assessed based upon a 10-fold cross validated (CV) 
correct classification rate (CCR).  

2. Principal component analysis 
PCA performs a linear transform on an n-by-d data matrix X to produce a matrix P  
containing a set of d uncorrelated, independent variables of which the first few will contain 
the bulk of the variability exhibited in the original data (Jolliffe, 1986).   
The complete n by d matrix of principal components P  is given by  
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 T=P X A   (1) 
where A is a d-by-d matrix with columns being eigenvectors obtained by performing an 
eigenvalue decomposition (Jolliffe, 1986) on the covariance matrix Σ  of X , on the case of 
standardized variables, the eigen-decomposition will be on the correlation matrix.  The 
columns of A  are arranged such that the corresponding set of eigenvalues are in 
descending order  (Jolliffe, 1986).  As a consequence of arranging the columns of A , the first 
principal component retains the largest amount of variability from the original data with the 
second principal component containing the next largest proportion of variability and so on 
(Jolliffe, 1986).  Thus the bulk of the variance contained in the untransformed data comes to 
be contained in the first few PCs (Jolliffe, 1986). 
In order to perform a PCA on a time series of 2D grided data, the dataset must be 
restructured into a single matrix (Wilks, 1995).  For example, a time series of j 2D SST data 
observations must be rearranged into a single matrix X in order to perform a PCA.  
Typically the first 2D SST matrix of size n-by-d is reshaped into a single row vector which 
has the size 1-by-(nxd). The same method is followed for the jth 2D SST data within the time 
series. The newly created row vectors are arranged to form the matrix X with the 
dimensions j-by-(nxd). Thus, a single row reprents all the SST data from a point in time.  
Whereas, a column represents a time series of SST observations for a single geogrpahical 
location (see Fig. 1).   
 

 

 
Fig. 1. A schematic diagram indicating the steps in preparing monthly 2-D spatial data for 
analysis in principal component analysis (PCA).  Step 1 monthly spatial data matrices are 
arranged then in Step 2 are disassembled or “strung out” in the same manner to produce a 
1-D vector.  These vectors representing monthly data are then arranged as the rows of a 
large matrix as illustrated in Step 3.  
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3. 2-D discrete wavelet transform 
An image can be considered a finite energy/intensity matrix of components I(x,y), where x 
and y represent the horizontal and vertical directions respectively (Mallat, 1989a; Mallat, 
1989b). The theory of the 2-D discrete wavelet transform closely follows the formulation of 
1-D discrete wavelet transforms using multiresolution analysis (Mallat, 1989a; Mallat, 
1989b).   
A 1-D wavelet transform is similar to a Fourier transform, enabling the underlying 
frequencies within a signal to be identified. The Fourier transforms treats a signal as a whole 
or globally which can often cause small perturbations in the signal to be overlooked (Mallet 
et al., 2000).  A 1-D wavelet transform allows a localised analysis of the signal using a window 
function which translates across the signal analysing discrete sections (Mallet et al., 2000).  
The continuous wavelet transform performed on a signal f(t) can be given as 

 ( ) ( ) ( )1/2
,,CWT a bS a b a f t t dtψ

∞−

−∞
= ∫  (2) 

where ( ),a b tψ  is the window analysing function and a and b are the dilation and translation 
parameters, respectively.  The window function is referred to as the mother wavelet and has 

the form  ( ),a b
t bt

a
ψ ψ −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (Antonini et al., 1992).  The wavelet transform is unique because 

the mother wavelet function has the ability to contract and dilate, allowing high and low 
frequencies in the signal to be well represented (Mallet et al., 2000).  There are a number of 
families of wavelet functions including: Daubechies, coiflets and symlets each having its 
optimum use upon different signal types (Mallet et al., 2000).  The symlet family however, 
has properties which lend themselves ideally to image analysis (Mallet et al., 2000). 
An image I(x,y), can be decomposed using a 2-D discrete wavelet transform (DWT) similar to 
how a 1-D signal f(t) can be analysed using a 1-D wavelet transform.  The 2-D DWT analysis 
decomposes the image I(x,y) into four sub images, one smooth image and the three detailed 
images (Mallat, 1989a; Antonini et al., 1992; Mallet et al., 2000).  The smooth image is 
representative of low frequency information and the three detailed images represent high 
frequency information from the original image (Mallat, 1989a; Antonini et al., 1992).  The 
smooth image created is denoted as jS I  and the three remaining detailed images 

,  j j
h vD I D I and j

dD I capture high frequencies in the horizontal, vertical and diagonal directions 
respectively (Mallat, 1989a; Antonini et al., 1992).  A 2-D wavelet transform also performs 
dimension reduction, with each sub-image being one quarter the size of the size of I(x,y).  
For further extraction of information, the smooth image jS I  undergoes a successive 
transform, yielding another set of four sub images. The method of applying successive 
transforms is known as multiscale pyramidal decomposition (Mallat, 1989a; Antonini et al., 
1992).  We can consider the transform in a series of stages or levels.  The original image is 
considered to be at the zeroth level of the transform denoted as j = 0.  The first transform 
upon I(x,y) producing four sub-images is referred to as the first level transform (j=1) with 
sub images denoted as 1S I , 1 1,  h vD I D I  and 1

dD I  (Mallat, 1989a; Antonini et al., 1992).  At 
each level of the multiscale pyramidal transform, further information about the horizontal, 
diagonal and vertical components is extracted, the dimensionality of the data is reduced and 
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the spatial structure is maintained (Antonini et al., 1992).  Figure 2 illustrates schematically 
the process of a multiscale transform. 
An example of an image decomposition using the discrete 2-D DWT is shown in Fig. 3.  The 
original image I(x,y) is a Mandrill face from the Matlab® Image Processing Toolbox to which 
2D DWT was applied using a symlet wavelet to the first level (j=1) of a multiscale pyramidal 
decomposition.  The first sub-image 1S I  is the low-pass image and represents the low 
frequencies or smooth details from the original image.  The three remaining sub-images are 
the detailed images 1 1,  h vD I D I  and 1

dD I . The high frequency horizontal and vertical features 
of the Madrill face such as the whiskers and nose ridges are well represented in the images 

1
hD I  and  1

vD I  respectively.  Image 1
hD I  represents the horizontal features of the Mandrill 

face whiskers and nose ridges. 
From a climatology perspective, it is useful to locate regions of high frequencies in sea 
surface temperature anomaly data because temporal changes of frequencies in these regions 
may indicate the onset of a certain meteorological event.  A useful tool for the analysis of sea 
surface temperature anomalies is then the 2-D discrete wavelet transform as it will detect 
high frequencies laterally, longitudinally and obliquely.  An example of a 2D DWT 
decomposion of an SSTA image is given in Fig. 4. 
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Fig. 2.  A flow chart indicating a pyramidal, multiscale 2-D Wavelet transform.  From the 
original image I(x,y), four sub-images are produced one smooth image 1S I  and three 
detailed images 1

hD I , 1
vD I and 1

dD I  at level j=1.  Successive transforms are performed upon 
the smooth image at each level j = 2, 3 in order to produce the multiscale pyramidal 
transform. 
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(A.) Original Image 

 
(B.) Wavelet Transformed Sub-Images 

 
Fig. 3. (A.) Original image of a Mandrill Face.  (B.) A first level, 2-D DWT representation of 
the Mandrill image using the Symlet wavelet with produced four sub-images 1 1 1,  ,  h vS I D I D I  
and 1

dD I .  Notice the horizontal, vertical and diagonal features extracted from the original 
image are emphasised in the sub-images 1 1,  h vD I D I and 1

dD I  respectively. 
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(A.) Original SSTA Image 

 
 

(B.) Wavelet Transformed Sub-images 

 
Fig. 4. (A.) An example image of a single SSTA map from the Indian and Pacific Oceans 
surrounding the Australian continent.  (B.) A first level 2-D DWT representation of the SSTA 
map using a Symlet wavelet. Four sub-images 1 1 1,  ,  h vS I D I D I  and 1

dD I were produced.  Low 
frequency or smooth features are emphasised in the sub-image 1S I  whereas high frequency 
features in the horizontal, vertical and diagonal directions are emphasised in the sub-
images 1 1,  h vD I D I and 1

dD I  respectively. 
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4. Random forests and classification and regression trees 
Feature extraction methods do not necessarily reduce the dimensionality of the data. In high 
dimensional and low observational settings, model performance can be adversely affected. 
Therefore, following feature extraction, a feature selection method which reduces the 
dimensionality of the data can be applied (Svetnik et al., 2004).  Svetnik et al. (2004) 
investigated a feature selection method based upon the random forest (Brieman, 2001) 
technique.  Random forests (Brieman, 2001) are often used as a method for classifying data 
into groups for the situation where there exists many predictor variables. A favourable 
attribute of the random forest technique is its ability to identify a subset of variables that 
best classify objects into groups (Brieman, 2001).  The variable selection algorithm performs 
a random forest analysis which is  indicative  of the feature variables  most important for 
classifying an observation (Svetnik et al. 2004).  A fraction of the least important variables 
are then removed and the random forest is re-implemented.  This routine is continued until 
an assessment criteria called the out-of-bag error rate (Brieman, 2001) is minimized, at which 
point the variables of most importance for classification are determined. This process of 
variable selection using random forests is contained in a package called varSelRF which 
performs variable selection procedure using R statistical software (Diaz-Uriarte and Alvarez 
de Andres, 2006).  This is a very useful tool for dimension reduction in the situation where 
there exists many predictor variables (Svetnik et al., 2004).  We will now briefly overview 
classification and regression trees, and random forests. 

4.1 Decision trees 
Classification and regression trees (Hastie et al., 2001) are collectively known as decision 
trees and can be used both for classification and prediction.  The benefit of decision trees is 
that they are a non-linear method and have the ability to handle different types of data.  An 
added benefit of classification and regression trees is their ability to handle missing data 
within predictor variables (Hastie et al., 2001).   
 

 
Fig. 5. Decision tree terminology: A parent node in a decision tree is split due to some 
splitting criteria into left and right daughter nodes which are connected to the mother node via 
branches.  Eventually splitting will continue until the terminal nodes are reached, at which 
point the data should be split into distinct classes.  
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Decision tree methodology can be summarised into three steps; (i) splitting criteria, (ii) 
pruning and (iii) tree Selecting (Hastie et al., 2001). 
i. The splitting criterion dictates how data is to be partitioned into new groups at each 

node.  Splitting is performed in a greedy fashion at a parent node from which data is split 
into two daughter groups (Hastie et al., 2001).  Splitting in this manner continues until 
terminal nodes are reached where only a small number of observations of the same 
distinct class reside (Hastie et al., 2001). 

ii. Pruning is carried out to reduce the number of nodes in the large tree that has been 
created (Hastie et al., 2001). Pruning ensures the tree is not overfitted, whilst ensuring 
the tree is large enough to avoid biases occurring when used to make predictions 

        (Hastie et al., 2001). 
iii. Tree selection finds the optimum tree model which is often determined by examining 

the cross-validated error rate (Hastie et al., 2001). The tree that presents the lowest 
cross-validated error rate is often chosen as optimal (Hastie et al., 2001). 

4.2 Tree splitting criteria 
The difference between classification and regression trees is the splitting criteria used for each.  
For classification trees there are several splitting criteria, of which the most commonly used is 
the known as the Gini split criteria and is defined as  

 ( ) � � � �( )
1

1
K

mk mk mk mk
k k k

i k p p p p′
′≠ =

= = −∑ ∑  (3) 

Where �mkp  is the probability that an item in node m is of class k.  The impurity measure i(k) 
is also known as the misclassification error (Hastie et al., 2001).  The optimum split of the 
data from the parent (P) node to the left (L) and right (R) child nodes is based upon the 
impurity measures at each node.  The change in the impurity Δ , is calculated as 

 ( ) ( ) ( )L RP L Ri k p i k p i k⎡ ⎤Δ = − +⎣ ⎦  (4) 

where, ( ) ( ) ( ),  and P R Li k i k i k  are the impurities at the parent node and the right and left 
child nodes respectively (Hastie et al., 2001).  The proportions of data in the left and right 
child nodes are denoted as and L Rp p (Hastie et al., 2001).  The split that produces the 
greatest change in impurity is ultimately chosen ensuring that the impurity at the child 
nodes is much less than that of the parent node (Hastie et al., 2001).  
The splitting criteria in regression trees depends upon the residual sum of squares (Hastie et 
al., 2001).  The split considers all the possible variables as predictors for the split and chooses 
the one which minimises the residual sum of squares error at the child nodes.  The impurity 
measure i(t) for a variable y in a regression tree is given by: 

 ( ) ( ){ }2
  yji t y t= −∑  (5) 

Where, ( )
_
y t  is the mean of an observation in node t and jy  represents thj  observation of 

variable y in node t (Hastie et al., 2001).  The best split at a parent node for a regression tree 
is determined by examining the change in impurity Δ  in terms of residual sum of squares 
error as below 
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 [ ]P L L R RSSE P SSE P SSEΔ = − ⋅ + ⋅  (6) 
where PSSE  is the within groups sum of squares of the parent node and  , L RSSE SSE  are 
the residual sum of squares error of the left and right child nodes respectively (Hastie et al., 
2001).  The best split occurs when the change in impurity is maximised, which means that 
we desire the residual sum of squares error in the child nodes to be minimised for an 
optimal split (Hastie et al., 2001). 

4.3 Random forests 
One way to improve the decision tree method is by creating an ensemble of n decision trees.  
An ensemble classification can then be determined by a majority vote amongst the n trees 
created.  This is the basis for random forests, a technique that can greatly improve data 
classification, does not overfit and is relatively robust to noise and outliers (Brieman, 2001).  
The nth tree within the random forest is unpruned and grown from the nth bootstrap (Hastie 
et al., 2001) sample of the data.  At each node of the nth tree, a sub-set of all variables mtry  is 
selected randomly to determine the splitting criteria.  The parameters n, mtry and number of 
nodes within each tree nodesize are user inputs. 
Random forest performance is assessed using a measure known as the out-of-bag error rate 
(OOB).  The OOB is a form of cross validation.  OOB of the nth tree is determined when those 
data left out of the nth bootstrap are passed down the tree and classification is performed.  
The proportion of times that observations are not allocated to their true groups forms the 
OOB. 

4.4 Variable selection using random forests 
Svetnik et al. (2004) developed a method for feature selection based upon the RF technique.  
The method performs random forest upon the data set ( 1 ,…, px x ; y) and indicates which of 
variables 1 ,…, px x  are of most importance for classifying an observation y  (Svetnik et al., 
2004).  A fraction of the least important variables are then removed and the random forest is 
re-implemented.  This routine is continued until the OOB is minimized.  The result is then a 
reduced subset of predictor variables (Svetnik et al., 2004; Diaz-Uriarte, 2005).  A R statstical 
package known as varSelRF has been developed which determines variables of most 
importance using RF (Diaz-Uriarte, 2005).  Within the package varSelRF, the user must 
define the fraction of least important variables dropped at each iteration. 

5. Discriminant analysis  
Discriminant analysis is a statistical technique used to classify observed data into one of two 
or more discrete, uniquely defined groups using an allocation rule (Duda and Hart, 1973; 
Johnson and Wichern, 2002).  Allocation or discriminant rules are developed from randomly 
sampled “learning” or “training” data drawn from k known populations, 1 ,..., Kπ π  and 
based upon the allocation rules, future observations are placed into groups 1 ,..., Kω ω   
(Johnson and Wichern, 2002; Rencher, 2002; Afifi and Clark?et al., 2004).   
The Regularised Discriminant Analysis (RDA) algorithm formulates a classification score 

( )icf x , for allocation of a test object ( )i 1 , ,
T

i ipx x=x … to class kω  based upon the training 
data set (Wu et al., 1996; Johnson and Wichern, 2002; Afiti et al., 2004).   The observed object 

ix  is assigned to the class kω  which produces the lowest classification score (Wu et al., 
1996).  The classification score for RDA is given by 
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 ( ) ( ) ( )( ) ( ) ( )1ˆ ˆ, ln , 2 lnT
i i k k i k k kcf Pλ γ λ γ ω−= − − + −x x μ Σ x μ Σ   (7) 

where kμ  is the class mean vector and ( )kP ω  is the prior probability of an object belonging 

to class k, and ( )ˆ ,k λ γΣ  is the regularised class covariance matrix which is a function of two 
regularisation parameters are introduced λ  and γ  (Friedman, 1989). 
As the prior values of λ  and γ  are unknown, a training set is required such that optimum 
values of the regularisation parameters can be obtained (Friedman, 1989).  A grid spanning  
0 1λ≤ ≤  and 0 1γ≤ ≤  is formulated creating a two-parameter optimisation problem 
whereby a search for the best values of λ  and γ  is performed (Friedman, 1989).  The best 
regularisation parameters are obtained by minimizing the misclassification risk associated 
with cross-validation (Hastie et al., 2001) of the training data (Friedman, 1989).  
Regularisation parameters of 0λ =  and 0γ =  represent quadratic discriminant analysis 
(QDA), 1λ =  and 0γ =  represent linear discriminant analysis (LDA), and 1λ =  and 1γ =  
represents a nearest mean classifier which assigns an observation to a class with the nearest 
(Euclidean distance) mean (Duda and Hart, 1973; Friedman, 1989). 

6. Data 
6.1 Rainfall data 
Sugarcane cultivation is prevalent along the east coast of Australia between the latitudes of 
16° S and 25° S. We have selected Tully (17.56° S, 146.56° E) as a case study location (Fig. 6.).  
Tully is a very wet sugarcane growing region with an annual median rainfall total of 4000 
mm. Tully was selected as a case study location because the authors have engaged 
participatively with industry consultative groups within this region.  Monthly rainfall data 
was obtained from the Australian Bureau of Meteorology (BOM) for the Tully Sugar Mill, 
BOM station number 32042. Total October-November-December (OND) rainfall between 
1950 and 1999 inclusively was calculated and converted into categories of either (i) below 
median rainfall or (ii) above median, rainfall after the rainfall data was median filtered to 
remove any long term trends. 

6.2 Sea surface temperature data 
The sea surface temperature (SST) data used in this investigation was the Extended 
Reconstructed SST dataset (ERSST version 2.0) (Smith and Reynolds, 2004) for the years 
1950 – 1999.   Given that the objective was to predict rainfall for the October-December 
period, sea surface temperatures prior to October are needed if the model is to be 
temporally predictive. We decided to use August sea surface temperatures so that 
industry would have approximately a one month lead-time to react to the prediction.   
Following Drosdowsky and Chambers (2000), a subset of ocean covering 60°N – 55°S and 
30°E – 70°W was selected which encompassed the Indian and Pacific Oceans adjacent to 
the Australian Continent.  The temporal and spatial resolution of the ERSST dataset is 
monthly, with 2° by 2° grid spacing.  A median filter was passed over the data to remove 
any long term trends.  August Sea surface temperature anomalies (SSTA) were calculated 
for a given SST grid point by subtracting the long term August SST average of that grid 
point.  To ensure SSTA at higher latitudes were not overemphasised, SSTA data were 
scaled by the cosine of latitude.  
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Fig. 6. Study location Tully is located on the north east coast of Australia.   

7. Data mining and modelling approach 
A model for the prediction of October-November-December (OND) seasonal rainfall for 
Tully was developed.  The variables used to predict above median rainfall were data mined 
from August SSTA data.  Two models were formulated to assess the performance of the 
PCA relative to the 2D DWT as a feature extraction method.  Model development followed 
five stages as outlined in Fig. 7.: (1) rainfall and SSTA data input, (2) feature extraction, (3) 
feature selection, (4) discriminant analysis and (5) model validatation. 
The data mining approach comprised feature extraction and feature selection steps.  Feature 
selection was performed using the random forest variable selection technique outlined by 
Svetnik et al (2004).  Prior to feature selection, both PCA and 2D DWT were separately 
performed on the  August SSTA data from 1950 – 1999.  Whilst there exists many types of 
wavelet analysing functions, a symlet with four vanishing moments was chosen as it had 
symmetrical properties which are considered suitable for image analysis (Mallet et al., 2000).  
The multiscale 2D DWT was then computed to the 4th level yielding the sub-images 
(matrices): 4 4 4,  ,  h vS I D I D I  and 4

dD I .  The feature selection step was performed using the RF 
variable selection algorithm: varSelRF.  This process identified the optimum variables for 
the PCA and 2D DWT feature extracted SSTA data sets respectively.  The varSelRF model 
parameters used are outlined in Table 1.  The feature extracted subset of SSTA variables that 
best predicted above median rainfall were chosen to train the classification rules for RDA. 
 

varSelRF Parameter Value 
n 5000 

ntree.iterate 2000 
mtry numberof variables  

vars.frac.dropped 0.02 

Table 1. Parameters set for varSelRF variable selection algorithm where, n is the number of 
trees in the original random forest, ntree.iterate, is the number of trees to use for all 
additional forests, mtry is the number of variables to randomly select at each node split and, 
vars.frac.dropped is the fraction of least important variables dropped at each iteration.  
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The final step of model development was model validation.  This was performed using a 10-
fold cross validation approach.  After the feature extraction step of model development, the 
PCA and 2D DWT data were randomised and split into ten equal sized groups for the 
purpose of cross validation.  A single group representing 10% of all data was isolated and 
kept aside as test data.  The remaining 90% of data became the training data set and was 
used in the feature selection and discriminant analysis steps of model development.  After 
model training was complete, the test data set was input to assess predictive skill.  Model 
predictive skill was quantified using the percentage of observations that were correctly 
classified, referred to as the correct classification rate (CCR).  The process of cross validation 
was repeated 10 times (10-fold cross validation) and predictive skill was assessed based 
upon the overall average CCR.  Whilst there exist many measures for comparing forecasting 
performance we elected to use an accuracy measure based on the CCR as it provided a 
direct and intuitive way to compare the data mining approaches. 
 

 
Fig. 7. A schematic diagram showing the steps for the construction of a seasonal rainfall 
forecast model.  Data is first collected and processed with useful features/information 
extracted in step 2.  A feature selection method is then implemented in step 3 to reduce the 
dimensionality of the data set.  Step 5 implements a statistical learning model establish rules 
from previous data allowing for future prediction.  Finally the model is validated to assess 
its performance in step 5 and feedback loop indicates the modelling process is repeated and 
augmented if model is deemed unskilful. 

8. Results and discussion 
Results displayed in Table 2 detail the 10-fold CCR for predicting above median rainfall 
during OND for Tully. Two different methods of feature extraction: PCA and 2-D DWT 
were used, whilst the best predictor variables were selected using a RF algorithm: varSelRF.  

1. Data Input

2. Feature Extraction

3. Feature Selection

4. Implement Discriminant 
Analysis 

5. Model Validation
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The model developed using 2D DWT feature extraction produced a 10-fold CCR of 82 % 
whereas, the the model developed using PCA feature extraction yielded a 10-fold CCR of 67 
%.  Therefore, the combined data mining approach of using 2D DWT and RF was found to 
give a predictive skill 20% higher than the the combined PCA and RF data mining approach.  
Table 2 also details the average number of variables selected using the varSelRF algorithm 
from each cross validation training set. The number of PCs selected was significantly less 
than the subset of wavelet coefficients selected. On average, only 3 PCs were selected as best 
predictor variables. Conversely, the the average number of wavelet coefficients selected as 
best predictors was 46.  This may explain, in part, the improved predictive skill of the 2D 
DWT – RF method relative to the PC – RF method.   
 

Feature Extraction Method PCA 2D-DWT 
10-Fold Cross-Validated CCR 67 % 82 % 

AverageNo.of RF-Slected Variables 3 46 

Table 2. Correct classification rates (CCR) indicating predictive skill of two of the model 
contrasting the feature extraction methods of PCA and 2D-DWT.  The average number of 
variables selected from each cross validation training set using varSelRF method is also 
detailed. 
For data reduction purposes, the number of PCs selected is usually determined by 
examining a scree plot. The first few PCs that explain the largest proportion of the total 
variance are typically selected. However, within this investigation we allowed the RF 
algorithm varSelRF to select the PCs of most importance for prediction from each cross 
validation set.  It was found that during the cross validation process, PCs 4 and 8 were 
consistently among the set of best predictor variables.  PCs 4 and 8 explained 5.7 and 3.9 % 
of the total variance respectively. Noteworthy was that the PCs that exlained more of the 
total variance (ie. PCs 1 – 3) were never selected using varSelRF. The number of PCs selected 
from each cross validation training set using varSelRF is shown in a bar chart (Fig. 8).  The 
bar chart also indicates that the cummulative amount of the total variance explained by the 
selected subset of PCs. In a previous model for the prediction of Australian seasonal rainfall 
(Drosdowsky and Chambers, 2000) used PCs of SSTA data computed over the same 
geographical domain as we have used in this chapter. Drosdowsky and Chambers (2000), 
used the first two variamax rotated SSTA PCs as predictor variables which explained 11.5 
and 4.3 % of the total vriability respectively. Spatial loadings plots of the first two PCs 
indicated they were related to the El Nino – Souther Oscillation (ENSO) and Indian Ocean 
SST patterns respectively (Drosdowsky and Chambers, 2000).  To give some climatological 
understanding to the variables slected using varSelRF, we have examined the spatial 
loadings of PCs 4 and 8. 
Spatial loadings plots of PCs 4 and 8 and are presented in Fig. 9A and 9B respectively.  The 
loading plots indicated that PC 4 explains variability in the central-equatorial and northern 
Pacific Ocean, the equatorial and southwestern Indian Ocean, and the west coast of Central 
America.  The loadings plot of PC 8 indicated it explains variability in the Southern Ocean to 
the east and west of the Australian contient, and also the western Pacific Ocean.  From this 
we can assume that these regions are likely to be of importance to OND seasonal rainfall in 
Tully. In contrast, a spatial loadings plot of PC 1 has been included (Fig. 9C). Although PC 1 
was never selected by the varSelRF algorithm, we see it strongly related to variability in the 
ENSO region which agrees with results of Drosdowsky and Chambers (2000).  These results 
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thus, suggest that SST variability wihin the ENSO region of the eastern tropical Pacific 
Ocean may not be strongly related to OND season rainfall in Tully. 
It was also of interest to investigate the spatial significance of each 2D DWT coefficient 
selected using varSelRF.  In order to do this, an inverse wavelet transform was performed.  
Binary matrices (0,1) of equal size to the fourth level, 2D DWT coefficient matrices 

4 4 4,  ,  h vS I D I D I  and 4
dD I  were constructed.  Wavelet coefficients identified as best predictors 

were given a value unity, an all other coefficients were set to zero.  The inverse 2D wavelet 
transform was then performed upon the binary wavelet coefficient matrices to derive an 
image I(x,y) with the same dimensions as the original SSTA data.  The inverse wavelet 
derived image (Fig. 10.), revealed regions of importance lay in: the central Indian Ocean, 
Southern Ocean, the Coral Sea adjacent to Papua New Guinea, the Northern Pacific Ocean, 
and the west coast of the Central America. A region of most of importance was also 
identified in the equatorial eastern Pacific Ocean. Strikingly, the regions identfied as best 
predictors from 2D DWT coefficients were very similar to the spatial loading plots of PC 4 
and PC 8.   
These results suggest that the combined 2D DWT and RF approach was a useful tool for 
data mining teleconnections between seasonal rainfall and SST data. The results also suggest 
that the PCs that explain most variance in the data may not necessarily form the best set of 
predictor variables.  As, such a variable selection method such as the RF or similar may be of 
benefit when choosing a sub-se tof PCs.   
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Fig. 8. Number of PCs selected using varSelRF algorithm for each cross validation set of 
August SSTA PCs.  The cumulative percentage of total variance explained by each set of PCs 
is also given. 



 Knowledge-Oriented Applications in Data Mining 

 

124 

20 40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

20 40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

 

20 40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

 
Fig. 9. Loadings plots of (A.) PC 4 and (B.) PC 8 which explained 5.7 and 3.9 % of the total 
variance respectively.  (C.) The loadings plot of PC 1, which explained 18.2 % of the total 
variance respectively.  Within the spatial loadings plots, warm colours indicate regions of 
high positive loading. Cool colours indicate regions of negative loadings. 
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Fig. 10. Regions of most importance for prediction of Tully OND seasonal rainfall.  Regions 
of importance were identified from an inverse wavelet transform of coefficients identified as 
of importance using the varSelRF algorithm.  Points of colour against the green background 
indicate predictor locations. 

9. Conclusion 
The purpose of this chapter was to investigate methods of data mining sutiable for 
developing a seasoanl rainfall predictive model for Tully, Australia.  Two data mining 

(A.) (B.) 

(C.) 
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approaches were used to determine a subset of predictor variables from SSTA data: (i) PCA 
feature extraction with RF variable selection and, (ii) 2D DWT feature extraction with RF 
variables selection.  Two separate models were then developed to predict above median 
OND rainfall for Tully, Australia using RDA. A 10-fold cross validation was performed 
upon each model to assess performance.  The CCR scores were 67 % and 82 % for the PCA - 
RF, and 2D DWT – RF data models resepectively.  The results indicated that 2D DWT –RF 
data mining approach typically produced a larger subset of predictor variables than the 
PCA – RF method.  This extra degree of information may explain the enhanced predictive 
skill of the 2D DWT – RF predictor data set.   
The RF algorithm consistently chose PC 4 and PC 8 as predictor variables, which together 
explained 9.5 % of total variance.  Typically, variable selection is performed by selecting the 
first few PCs which explain the largest proportion of total variance.  However, within this 
study PCs 1 – 3 were never selected using RF variable selection.  This suggested that the 
spatial loadings of the PCs may have been of greater importance than the proportion of 
variance explained by the PC.  Inverse 2D DWT allowed the wavelet variables of most 
importance to be spatially mapped. Interestingly, the spatial loadings of PC 4 and PC 8 were 
very similar to the spatial locations identified from the inverse 2D DWT.  This provided 
further evidence to suggest that the spatial location of predictors was of greater importance 
than the amount of variance explained. 
This research concerned constructing forecast models for the prediction of above median 
rainfall for OND seasonal rainfall for a single case study location: Tully, with a lead time of 
one month. It would be useful to extend the modelling and data mining methods of this 
work to other sugar growing regions across Australia and assess predictive skill.  Moreover, 
the technique outlined in this paper need not be limited to sugarcane growing regions, but 
may be applicable to other locations and agricultural industries where knowledge about the 
future climate is paramount for enhancing forward planning activities. 
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