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INTRODUCTION

Knowledge of species’ diets is a core issue in both
fundamental and applied ecology. Indeed, most eco -
system modelling approaches, such as Ecopath with
Ecosim (Pauly et al. 2000, Christensen & Walters 2004)
or Loops (Levins 1975, Bodini 1998), require integra-
tion of the trophic links in food webs. Other quantita-

tive approaches rely on knowledge of the trophic level
of species, which necessitates investigation of their
diet composition (e.g. Cortes 1999). More generally,
gathering species into guilds or functional groups
according to their prey items has been recognized as
useful in simplifying and modelling highly complex
ecosystems (Garrison & Link 2000, Vander Zanden &
Vadeboncoeur 2002, Coll et al. 2006) and in develop-
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We compared linear discriminant analysis and random forest (RF) classifiers in their ability to predict
trophic guild. We used generalized dissimilarity modelling to predict diet overlap from functional dis-
tances between species pairs. All models were evaluated using the same cross-validation procedure.
We found that fish trophic guilds were accurately predicted by an RF classifier, even with a limited
number of traits, when no more than 7 guilds were defined. Prediction was no longer accurate when
finer trophic guilds were created (8 or more guilds), whatever the combination of traits. Furthermore,
predicting the degree of diet dissimilarity between species pairs, based on their ecomorphological
traits dissimilarities, was profoundly unreliable (at least 76% of unexplained variation). These results
suggest that we can predict fish trophic guilds accurately from ecomorphological traits, but not diet
overlap and resource partitioning because of inherent versatility in fish diets. More generally, our sta-
tistical framework may be applied to any kind of marine organism for which feeding strategies need
to be determined from traits.
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ing biotic indicators relevant to human impacts (Sosa-
Lopez et al. 2005). In addition, overlap in diet composi-
tion and resource partitioning between species is a key
element of interspecific competition that can deter-
mine stable coexistence (Sala & Ballesteros 1997, Col-
loca et al. 2010). Determining the level of diet overlap
among species is, therefore, also a major tool in pre-
dicting extirpations of species as a result of competitive
interactions with invasive species (Karlson et al. 2007,
Glen & Dickman 2008, Arismendi et al. 2009, Gregory
& Macdonald 2009, Zeug et al. 2009).

In practice, identifying the diet composition of spe-
cies is a very time-consuming and demanding task
with many potential biases. Indeed, a complete know -
ledge of prey items targeted by omnivorous species is
unrealistic in prey-rich communities (Araújo et al.
2008). Diet composition is often assessed using stom-
ach contents, which are influenced by many temporal
(Lehikoinen 2005, Horppila 2009) and spatial factors
(e.g. opportunistic behaviors; Link & Garrison 2002).
Hence stomach content analysis is a time-consuming
method that can only provide a fragmentary image of a
species’ diet.

An alternative approach to investigate dissimilarity in
diet composition among species is to study ecomorpho-
logical traits used for feeding. This approach has been
particularly favoured in fish ecology since the seminal
papers of Keast & Webb (1966) and Gatz (1979) but also
in the study of benthic invertebrates (Bremner et al.
2003, Danovaro et al. 2008). Reliable morphological
 indicators of food consumption have been gathered in
both empirical (e.g. Ibanez et al. 2007) and laboratory
studies (e.g. Winemiller & Taylor 1987). For example,
intestine lengths and gill raker morphology are known
to be discriminant features among herbivorous, carni -
vorous and omnivorous fishes (Gatz 1981, Bowen 1983,
Castillo-Rivera et al. 1996). Apart from these classical
examples, however, evidence of a clear relationship be-
tween ecomorphological characteristics and fish diets
has been mixed, and even when statistically significant,
is often rather weak and of questionable biological
 importance (Ibanez et al. 2007). Thus, previous studies
have reported significant relationships between eco-
morphological characteristics and fish diets (Norton
1991, Wainwright & Richard 1995, Ward-Campbell et
al. 2005, Maldonado et al. 2009) whereas others have
failed to find such relationships (Labropoulou &
Markakis 1998, Barnett et al. 2006, Bellwood et al.
2006).

The accuracy of diet prediction from ecomorphologi-
cal traits is of crucial importance in fish ecology
because it determines the extent to which unknown
diets of some fishes can be predicted from known diets
of functionally similar species. Most of these studies
used linear discriminant analyses (LDA) and retained

only one set of ecomorphological traits to predict diets,
i.e. the set including all of the traits considered a priori
relevant to the analysis. Such analyses are likely to
reveal only a limited proportion of the explanatory
power because particular combinations or subsets of
traits may determine fish diets, and most ecomorpho-
logical traits will not relate linearly with prey item
characteristics (Kramer & Bryant 1995). However, the
relevance of many ecomorphological traits in diet
assessment, such as gill raker morphology, is still de -
bated (Tanaka et al. 2006), and particular subsets of
traits may perform better than extensive collections in
predicting diets. Moreover, because no universal eco-
morphological trait has yet been shown to explain fish
diet, the overlooked question of what represents the
best combination of traits is still open.

Here, we present a statistical framework to study the
links between species diet and functional traits.
Through an extensive analysis including all possible
combinations among 13 ecomorphological traits, used
as predictors for linear as well as non-linear models,
we tested the predictability of trophic guild and diet
overlap for 35 Mediterranean fish species. We discuss
the opportunities and the limitations of the approach
but also the broader perspectives that this framework
could offer to marine ecology.

MATERIALS AND METHODS

Data. Fish collection: The fish species were sampled
in the Bonifacio Strait Natural Reserve (80 000 ha; Cor-
sica Island, France, Mediterranean Sea) in 2004 and
2005 (Mouillot et al. 2008). This marine protected area,
created in September 1999, is characterized by a pre-
dominantly rocky substrate and Posidonia oceanica
seagrass beds at shallow depths (~35 m). Adult speci-
mens were captured by artisanal fishermen within or
near the marine protected area (Mouillot et al. 2008).
Sampling was organized to collect 10 individuals (on
average) of 35 fish species belonging to 17 families and
6 orders (1 Anguilliformes, 1 Clupeiformes, 2 Gadi-
formes, 11 Perciformes, 1 Pleuronectiformes and 1
Zeiformes). Those species cover the full range of tro -
phic guilds: piscivores (e.g. Sphyraena sphyraena and
Scorpaena scrofa), planktivores (e.g. Boops boops),
herbivores (e.g. Sarpa salpa) and benthic invertebrate
feeders (e.g. Mullus surmuletus). The full list of species
is provided in Table S1 in the supplement at www.int-
res.com/articles/suppl/m436p017_supp.pdf.

Diet data and ecomorphological traits: Fish diets were
obtained from published data based on stomach contents
of adult individuals (see Table S1 in the supplement). We
obtained quantitative data, i.e. the percentage of each
item in each fish diet. When the literature provided un-
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defined dietary categories, such as ‘other’ or ‘unidenti-
fied’, data were re-expressed (out of 100%). Unidentified
items were always negligible (generally less than 1%)
compared with other categories.

Thirteen ecomorphomogical traits were estimated
for each individual (see Table S2 in the supplement at
www.int-res.com/articles/suppl/m436p017_supp. pdf),
encompassing a variety of strategies used by fishes for
food acquisition (Table 1). As a first step, 17 morpho-
anatomical measures (Fig. 1) were estimated for each
individual. The 13 functional traits (Table 1) were then
derived from these morpho-anatomical measures. The
second step was to calculate mean trait values for each
species from the individual measurements.

These continuous traits are the most commonly used
in ecomorphological studies on fishes (Sibbing &
Nagel kerke 2001, Dumay et al. 2004, Mason et al.
2007, Villeger et al. 2010). Moreover, our set of traits
was not designed for a restricted family or morphology,
so it could potentially be applied in any study of fish
communities (Mouillot et al. 2007, Mason et al. 2008).
We acknowledge that the list of traits is not exhaustive
and that some more sophisticated traits were not

included (Bellwood et al. 2006). We focused, however,
on traits that were both easily measurable and com-
monly used as proxies of diets.

Statistical analyses. Trophic guild classification:
Classifying species into trophic guilds remains contro-
versial because the level of similarity/dissimilarity
used for defining groups can be very subjective. To
overcome this limitation, we first calculated pairwise
Bray-Curtis dissimilarities between species based on
quantitative diets. Then we used the k-means algo-
rithm to create k guilds such that the fishes within each
guild were more similar to one another than to fishes in
other guilds with respect to their quantitative diets
(Legendre & Legendre 1998). Nine gradually more
precise trophic classifications were tested for the 35
fish species, comprising from 2 to 10 trophic guilds.

Trophic guild prediction: We tested the ability of 2
multivariate classification methods, LDA and random
forest (RF), to predict the partitioning of fish species
into trophic guilds according to their functional traits.

The purpose of LDA is to predict the membership of
statistical units (here fish species) to predefined classes
(here trophic guilds) by building discriminant axes that
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Functional trait Abbreviation Calculation Ecological meaning

Oral gape surface Osf Nature/size of items captured (adapted from 
Karpouzi & Stergiou 2003)

Oral gape shape Osh Method to capture food items (Karpouzi & 
Stergiou 2003)

Oral gape position Ops Feeding position in the water column (adapted 
from Sibbing & Nagelkerke 2001)

Protrusion Pro Pro Relative to capacity and efficiency of the 
capture (Sibbing & Nagelkerke 2001)

Gill raker length GRlst Filter feeding ability or gill protection (adapted 
from Sibbing & Nagelkerke 2001)

Eye size Edst Prey detection (adapted from Boyle & Horn 
2006)

Eye position Eps Vertical position in the water column (Gatz 
1979)

Body transversal shape Bsh Vertical position in the water column and 
hydrodynamism (Sibbing & Nagelkerke 2001)

Body transversal surface Bsf Hydrodynamism (mass distribution along the 
body)

Pectoral fin position PFpsa Pectoral fin use for maneuverability (Dumay et 
al. 2004)

Caudal peduncle throttling CPt Caudal propulsion efficiency through reduction
of drag (Webb 1984)

Gut length Glst Processing of energy poor resources such as 
vegetation and detritus (residence time of 
food) (Kramer & Bryant 1995)

Biomass B B Contribution to environment via metabolism

aFlatfishes were considered without functional pectoral fins, so PFps was fixed to 0 for these species

Gl
Bl

CFd
CPd

PFi
PFb

ln
4

Bw Bd +1

ln B+1

( )( )
( )

π × ×

Bd
Bw

Eh
Hd

Ed
Hd

GRl
Hd

Mo
Hd

Md
Mw

Mw Md
Bw Bd

×
×

Table 1. List of 13 functional traits derived from 17 morphological measures (see Fig. 1 for definitions) with abbreviations 
and calculations
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are linear combinations of the predictor variables (here
functional traits), maximizing the standard deviation of
between-class dispersion and minimizing within-class
dispersion by projection (Fisher 1936). LDA is an effi-
cient method when assumptions for linear discrimina-
tion are met (i.e. classes can be separated by lines in 2
dimensions, by planes in 3 dimensions and by hyper-
planes in higher dimensional spaces). Potential draw-
backs to LDA include weak performance when groups
are strongly nested and a tendency towards overfitting
(Dixon & Brereton 2009).

As an alternative to LDA, we implemented RF classi-
fiers, which represent a powerful tool (Biau et al. 2008),
free of any assumption on data distribution, that has
been applied in various different ecological fields
(Perdiguero-Alonso et al. 2008, Oppel et al. 2009,
Catherine et al. 2010, Mercier et al. 2011). No applica-
tion to trophic guild discrimination has, however, been
performed using this method. Classification with RF is
based on the averaging of a large number of classifica-
tion trees (Breiman 2001). Each classification tree
recursively split a bootstrap data set into binary groups
until the terminal nodes of the tree contain only a
unique species. Group splitting at each node is carried
out by searching among a random subset of predictors
(here functional traits), the one that maximizes homo-
geneity within each of the 2 groups defined by each
node. Five hundred trees were built, each using a dif-
ferent data set obtained by bootstrap re-sampling with
replacement in the original data set. Thus, 2 levels of
randomisation occurred in the building of the RF clas-

sifier: one in the initial selection of indi-
viduals (here fish species) for the build-
ing of each tree, and one in the selection
of the ecomorphological trait used for
group splitting at each node. A final
guild prediction for a given species is
obtained by running that species down
the 500 trees of the classifier (i.e. the for-
est) and using a majority rule to average
this ‘forest’ of votes.

LDA and RF models were constructed
using standardized data (see Fig. S1 in
the supplement at www.int-res.com/
articles/suppl/m436p017_supp.pdf) in
order to assign equal weights to each
functional trait. All possible combina-
tions of traits were created (for trait num-
bers ranging from 1 to 13) in order to
investigate both the influence of the
number of traits and the identity of traits
on LDA and RF predictive accuracy.

For comparative purposes, LDA and
RF models were both evaluated using
the same cross-validation procedure. For

each combination of traits, the data set was split into 2
parts: 30 randomly chosen species were used to cali-
brate the models whereas the 5 remaining species
were used for model evaluation. Model accuracies
were obtained from confusion matrices with the mean
percentage of correct assignments as a criterion (Ko -
havi & Provost 1998). The procedure was repeated 10
times for each model, to account for the stochastic
aspect of the  algorithm and thus obtain robust esti-
mates of model accuracy.

Diet overlap modeling: We used generalized dissim-
ilarity modeling (GDM) to investigate the relationship
between fish diet dissimilarities (Bray-Curtis distance)
and ecomorphological traits dissimilarities (Euclidean
distance). GDM is a multivariate extension of the pop-
ular Mantel approach (Legendre 1993), and was ini-
tially developed to model patterns of differentiation in
community composition in relation to differentiation in
environmental data (Ferrier et al. 2007). Nevertheless,
GDM is a flexible method that can be adapted to
accommodate a variety of ecological data (Ferrier et al.
2007).

Particularly suitable for ecological studies (Ferrier et
al. 2007), GDM is able to accommodate 2 types of
recurrent non-linearity. First, GDM can take into
account the predicted curvilinear and asymptotic rela-
tionship between fish dietary dissimilarities, measured
with the Bray-Curtis index, and their functional dis-
tances. Indeed, as the functional difference between 2
species increases, these species may feed on progres-
sively fewer common prey until they exhibit totally dif-
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Fig. 1. Morphological traits were measured on fish using electronic calipers.
(A) Side view. (B) Mouth gape. (C) Front view. Bd: body depth; Bl: body stan-
dard length; Bw: body width; CFd: caudal fin depth; CPd: caudal peduncle
minimal depth; Ed: eye diameter; Eh: distance between the bottom of the
head and the eye center along the head depth axis; Hd: head depth along the
vertical axis of the eye; Md: mouth depth; Mw: mouth width; PFb: body depth
at the level of the pectoral fin insertion; PFi: distance between the insertion of
pectoral fin and the bottom of the body; Pro: stretched protrusion length. Also
measured, but not shown in diagrams — GRl: gill raker length; Gl: gut length
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ferent diets; the Bray-Curtis index then reaches an
asymptotic value of 1 that will remain unchanged
regardless of any further increment in the functional
distance. GDM takes into account this non-linear
 relationship by using a link function (Eq. 1) to model
the asymptotic relationship between the predicted
response (diet dissimilarity between fish species), δ
and the ‘multi-predictor combination’ (multivariate
functional distance between fish species, ζ:

(1)

GDM also considers a second type of non-linearity
related to the increasing rate of dietary turnover along
functional trait ranges. This non-linearity is accounted
for by fitting flexible functions (I-spline combinations,
ƒ) to the functional variables, then using distances
between fish species, measured from these functions ƒ,
as predictors of the link-transformed dietary dissimi-
larity. The general form of the model is therefore (see
Ferrier et al. 2007 for more details):

(2)

where P is the number of predictors (functional traits).
α (the intercept) is the estimated value of the link func-
tion for 2 species i and j that have identical values for
all explanatory variables and when back-transformed
with the inverse link function, it gives an estimate of
the expected compositional dissimilarity for 2 species
that do not differ in their functional traits (Overton et
al. 2009). Each of the P functions is defined as a linear
combination of I-splines:

(3)

where K is the number of I-splines estimated for each
functional trait, Ipk is the kth I-spline for functional trait
xp and apk is the fitted coefficient for Ipk, subject to the
constraint apk ≥ 0

The modelling approach was similar to the one
applied for the trophic guild prediction procedure
(exhaustive comparison of models constructed with all
combinations of traits) with the percentage of explana-
tion (deviance) as a criterion (for more details see
Fig. S2 in the supplement at www.int-res.com/articles/
suppl/m436p017_supp.pdf).

Software: LDA and RF model were implemented
using the MASS and RandomForest packages, re -
spectively, in the R statistical environment (R Devel -
opment Core Team 2008). The PCA was performed
using the PCA function in the FactoMineR package.
For GDM, we used a package which has been pro-
posed by Ferrier et al. (2007) and modified to account
for non-integer abundance data (S. Ferrier et al. pers.
comm.).

ƒp p pk
k=

K

pk px a I x( ) ( )∑=
1

= + ƒ ƒx xp pi p pj
p=1

P

∑ ( ) ( )ζ α −

= 1 eδ − −ζ
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Fig. 2. Comparison of performance between linear discrimi-
nant analyses (LDA) and random forest (RF) models, for 3
classifications — (A) 3 guilds, (B) 6 guilds and (C) 10 guilds —
and each combination of traits. RF and LDA are represented
by circles and squares, respectively. Maximum (continuous
line), minimum (dashed line) and mean (dotted line) percent-
age of correct fish assignment are provided for each level of 

combination of traits
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RESULTS

Prediction of trophic guild

The k-means classifications yielded clustering that
corresponded to well-identified trophic guilds such
as piscivores, planktivores and benthic invertebrate
feeders (for more details on guild compositions see
Table S3 in the supplement at www.int-res.com/articles/
suppl/m436p017_supp.pdf). The mean percentage of
correct assignments decreased with increasing num-
ber of guilds (Fig. 2, Table 2): almost all species were
correctly classified into 2 trophic guilds whereas less
than half of species were correctly assigned to 10
trophic guilds.

We evaluated the relative predictive ability of RF
and LDA by comparing their minimum, mean and
maximum rates of correct assignments along the gradi-
ent of the number of traits used as predictors. We
exemplify 3 classifications out of 9 representing in -
creasing degrees of precision in the trophic classifica-
tion (3, 6 and 10 trophic guilds; Fig. 2). For a low num-
ber of trophic guilds (3; Fig. 2A) and 8 traits, the
maximum percentage of correct assignments was 92%
for LDA and RF. For an intermediate number of trophic
guilds (6; Fig. 2B), the percentage of correct assign-
ments decreased to 74% for RF and 64% for LDA.
Considering a larger number of trophic guilds (10;
Fig. 2C) and 6 traits, the maximum percentage of cor-
rect assignments fell below 50% for both modelling

methods. On average, RF predicted
trophic guild slightly more accu-
rately than LDA. Comparing the
maximum percentages of correct
assignments be tween RF and LDA
for each classification (from 2 to 10
guilds), we obtained higher percent-
age values for RF than for LDA
(Table 2).

The best predictive accuracy for
trophic guild was not obtained with
the full collection of traits (Fig. 2). For
example, the maximum percentage
of species correctly classified into 4
trophic guilds was obtained with
only 4 traits (body transversal shape,
caudal peduncle throttling, gill raker
length and oral gape surface) for the
RF model. Some traits, such as body
transversal surface, were more often
present (13 times among 20) in the
best combinations than others, for
example pectoral fin position (4 times
among 20; Table 2).

Prediction of diet dissimilarity

Overall, the percentage of ex plained deviance in
diet dissimilarity increased as the number of functional
traits considered increased. However, for a given size
of the predictors set, there was a substantial variability
in the explained deviance in Bray-Curtis dissimilari-
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Method No. of Correct No. Traits
trophic guild assign- of 
guilds ment (%) traits

Random 2 0.98 ± 0.06 7 B Bsh CPt Edst Ops Osf Osh
forest 3 0.92 ± 0.1 8 Bsf Bsh Eps GRlst Pro Ops Osf Osh

4 0.90 ± 0.11 4 Bsh CPt GRlst Osf
5 0.70 ± 0.24 6 Bsf Bsh Eps Glst Grlst Ops
6 0.74 ± 0.16 7 B Bsh CPt Edst Eps Glst Pro
7 0.74 ± 0.19 9 B Bsh CPt Eps GRlst Glst Osf Pfps Pro
8 0.60 ± 0.25 8 B Bsh Edst CPt GRlst Glst Eps Pro
9 0.56 ± 0.18 6 Bsf Edst Ops Osf Pfps Pro

10 0.48 ± 0.14 6 Bsf Edst Eps Glst Ops Pro
LDA 2 0.96 ± 0.08 3 Bsf Cpt Eps

3 0.92 ± 0.14 7 B Bsf Bsh Cpt Glst Ops Osh
4 0.80 ± 0.19 5 Bsf Edst Ops Osf Osh
5 0.62 ± 0.15 8 B Bsh CPt Eps Glst Ops Pro Bsf
6 0.64 ± 0.21 5 Bsh GRlst Eps Pro Osf
7 0.66 ± 0.16 4 Bsh GRlst Ops Pro
8 0.58 ± 0.18 7 Bsf Edst Eps Ops Osf PFps Pro
9 0.54 ± 0.25 8 B Bsh Edst GRlst Osf Osh Ops PFps

10 0.46 ± 0.19 6 Bsh Edst Eps GRlst Osf Pro

Table 2. Mean (±SD) maximum percentage of correctly classified fish species into
trophic guilds for 2 discriminant methods and different numbers of trophic guilds.
Only the best combination of traits is provided. Trait abbreviations are given in
Table 1. The trait with the highest occurrence in best combinations is in bold,

whereas the one with the lowest occurrence is in italic

Fig. 3. Percentage of deviance explained by all generalized
dissimilarity modelling models for all combinations of traits
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ties. For instance, the explained de vi ance had a mini-
mum of 2.4% for 6 traits but reached a maximum of
24% (Fig. 3) for the combination including the follow-
ing traits: oral gape position, eye position, biomass,
protrusion, gut length and oral gape shape.

This GDM model with 6 traits shows an asymmetric
relation between functional and trophic dissimilarities
(Fig. 4). Two species whose functional attributes were
highly dissimilar (between 1.7 and 2.5) could not have
the same diet (the empty bottom right triangle of
Fig. 4). More generally, most of the species pairs with
highly dissimilar traits, such as Zeus faber and Liza
aurata (point A in Fig. 4), also had highly dissimilar
diets. Conversely, species with small functional differ-
ences in traits (from 0.5 to 1) may have either very sim-
ilar (point B in Fig. 4) or totally different diets (point C
in Fig. 4; observed dissimilarity of 1).

PCA analysis

To illustrate the relationships between ecomorpho-
logical traits and trophic guild, we mapped 2 k-means
trophic classifications (3 and 6 guilds; Fig. 5B,C) on the
first plane of a PCA of ecomorphological traits (45.24%
of inertia; Fig. 5A).

For the classification into 3 trophic guilds
(Fig. 5B), planktivorous fishes such as Sar-
dinella pilchardus, Atherina sp. and Boops
boops and piscivorous fishes such as Den-
tex dentex, Zeus faber and Conger conger
were clearly discriminated. For the classifi-
cation into 6 trophic guilds (Fig. 5C), spe-
cies belonging to different trophic guilds
were not clearly discriminated except the
planktivorous, piscivorous or benthic in ver -
tebrate feeders, for which functional traits
were relatively similar within the trophic
guild.

DISCUSSION

Prediction of trophic guild

The results reveal that both LDA and
RF could discriminate the principal fish
trophic guilds on the basis of functional
traits but only to a certain extent. With a
fine classification (10 groups), the model
predictions were not accurate, regardless
of the combination of traits (Fig. 2). The
ecomorphological traits used in this study
(in any combination) were not effective in
predicting finely defined trophic guilds,

mainly because fishes sharing similar traits may have
very different diets (Figs. 4 & 5). Nevertheless, with a
trophic classification based on 3 guilds (piscivores,
planktivores and others), LDA and RF models correctly
assigned 92% of species when using the optimal com-
bination of traits (Table 2). Some combinations accu-
rately predicted wide trophic guilds, suggesting a link
(albeit weak) between diet and morphology. Interest-
ingly, 90% of correct assignments were reached when
fishes were divided into 4 trophic guilds (to piscivores,
planktivores, benthic invertebrate feeders and others)
using only 4 traits (Bsh, Cpt, Grlst and Osf; see Table 1)
and the RF model.

This result has important implications because it
indicates that we can accurately predict fish trophic
guilds from a few suitable ecomorphological traits in a
model that accounts for complex interaction structures
in the data. Thus, for example, in species-rich assem-
blages where the description of diet items for all the
species is highly demanding, the measurement of a
short set of suitable morpholological traits would allow
an investigator to assign fish species to major trophic
guilds.

The study of trophic guilds may identify conver-
gence in the trophic structure of fish communities from
different regions (Mathieson et al. 2000, Boyle & Horn

23

Fig. 4. GDM model output summarizing the relationship between diet dis-
similarity and trait dissimilarity (6 traits considered, see ‘Discussion’) for all
pairs of fish species. A (Liza aurata, Zeus faber), B (Diplodus sargus, Diplo-
dus vulgaris), C (Zeus faber, Sphyraena sphyraena) and D (Symphodus
tinca, Diplodus annularis) represent remarkable examples of species 

couples (see ‘Discussion: Prediction of diet overlap’)
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2006, Irz et al. 2007) and thus identify commonalities in
the response of fish communities to various impacts
(Munoz & Ojeda 1997, Garrison & Link 2000). The pre-
diction of trophic guilds could also be very useful for
the creation of trophic groups to be used in ecosystem
modelling approaches. Models such as Loops (Levins
1975) are based on a qualitative approach, whereby
interactions between species are represented by the
nature of predation without a requirement to quantify
the prey ingested. In this context, species could be
assigned to broad trophic guilds without knowing their
precise diets, just by measuring a relevant combination
of easily measurable functional traits.

Our results are in accordance with previous studies
that demonstrated weak relationships between diet
and functional traits in birds (Hormada et al. 2003) and
fish (Wainwright et al. 2002, Boyle & Horn 2006, Ibanez
et al. 2007), and more precisely for apogonid (Bellwood
et al. 2006), chaetodontid (Motta 1988) and cichlid
fishes (Barel 1982).

In the present study, this weak link is illustrated by
members of the Diplodus genus (D. vulgaris and D.
annularis) which have common morphological attrib-
utes (highly oval body, laterally flat body, similar fins;
Miniconi 1994) but are widely divergent in their
diet (Rosecchi 1983, Sala & Ballesteros 1997). Similarly,
Fig. 5 shows that the herbivorous Sarpa salpa is
grouped with other species that are detritivorous (e.g.
Mullus surmuletus).

Prediction of diet overlap

The best compromise between the number of traits
and the percentage of explained deviance by a GDM
model was obtained with 6 traits, which explained up
to 24% of the deviance. This weak relationship tells us
that we cannot rely on ecomorphological traits to pre-
dict the level of competitive interactions driven by diet
overlap, for which the study of fish stomach and gut
contents therefore remains a necessity (Declerck et al.
2002, Mookerji et al. 2004).

Despite the low ability of GDM to predict diet over-
lap, we obtained a clear pattern that revealed the tri-
angular relationship between diet and traits dissimi -
larities: species with very different ecomorphological
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Fig. 5. PCA of 13 traits measured in 35 Mediterranean fish
species. Coloured polygons illustrate the output of k-means
partitioning carried out on diets. (A) Correlation circle of
traits; (B) k-means partitioning into 3 trophic guilds (black:
piscivorous; green: planktivorous; red: others); (C) k-means
 partitioning into 6 trophic guilds (black: piscivorous; green:
planktivorous; red: benthic invertebrate feeders; purple:
 benthic invertebrate feeders; blue: macrocarnivorous; yellow:

other. For trait abbreviations see Table 1
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traits (functional distance > 2) could not have a similar
diet. For instance, Zeus faber, a demersal piscivorous
fish with a very laterally compressed body and rudi-
mentary gill rakers, has a totally different diet from
Liza aurata, a benthic detritivorous fish with an elon-
gated fusiform body (point A in Fig. 4). These 2 fish
species are not in competition for food resources, as
revealed by the high trait dissimilarity linked to a high
diet dissimilarity. By contrast, Diplodus sargus and
D. vulgaris (point B in Fig. 4) are very similar species in
terms of both diet and traits. They share 9 prey items:
gastropods, molluscs, decapods, amphipods/isopods,
polychaetes, echinoderms, cnidarians/sponges, plants
and macroalgae (Rosecchi & Nouaze 1987, Sala & Bal-
lasteros 1997). The strong diet overlap (diet dissimilar-
ity = 0.005) between these 2 species and their potential
competitive interaction for resources (if limiting) can,
therefore, be predicted from their ecomorphological
traits.

We found an overall weak relationship between diet
dissimilarity and trait dissimilarity, which can be illus-
trated with many examples. For instance, Symphodus
tinca and Diplodus annularis have strong morphologi-
cal similarity but rather different diets (point D in
Fig. 4). Indeed, although they share some common
prey items (polychaetes, decapods and molluscs), they
show marked differences for others: S. tinca feeds on
macrophytes whereas D. annularis feeds on small fish
and eggs. Thus, although traits may provide a false sig-
nal of intense competition for resources, diet overlap
may reveal the opposite, with clear partitioning. The
relationship between diet dissimilarity and trait dis-
similarity is asymmetric (Fig. 4), and caution is there-
fore required in predicting diet dissimilarity from trait
dissimilarity because species with similar traits may
have either none or all of their prey items in common.

Sources of unexplained variation

The relative lack of explanatory power in the present
study may derive in part from our collection of traits.
Although the list is widely used in the literature, it may
need to be extended to include other traits that are
more directly related to food acquisition. This issue of
trait choice has been debated by ecomorphologists for
many decades, particularly for birds (James 1982) and
fishes (e.g. Gatz 1979), without reaching a consensus.
Barnett et al. (2006) and Bellwood et al. (2006) pro-
posed more  sophisticated ecomophological traits such
as the lower jaw length and head length (tip of pre-
maxilla to posterior margin), but were nonetheless
unable to find a clear match between these traits and
diet. Qualitative traits, such as the structure of the
teeth (Portz & Tyus 2004), could also be used to in -

crease the ability to discern diet overlap. Even with
these ‘simple’ traits, we obtain similar levels of predic-
tion to those found in previous studies that included
more sophisticated traits.

The limited success of models in correctly assigning
fish species to the correct guild, when these are more
finely defined and their number increases, could be
due to at least 3 sources of variation that were un -
testable in our study. Firstly, the boundaries between
guilds are less clear (Table S2 in the supplement) and
the uncertainty in associating fishes to guilds increases
as guild number increases. Secondly, fewer species
can be assigned to each guild and the sampling for
traits associated with each diet category is therefore
less effective. Thirdly, our study ignores potential vari-
ation in diets caused by differences in foraging pat-
terns, habitat partitioning and other behavioural fac-
tors (Wainwright & Reilly 1994, Luczkovich et al. 1995).

CONCLUSIONS

Many studies have tried to predict species’ diets
from functional traits or phylogeny, for both applied
and theoretical objectives. The weak relationships that
have typically been found (e.g. Bohning-Gaese &
Oberrath 1999, Boyle & Horn 2006) indicate an intrin-
sic unpredictability of diets caused by a degree of ver-
satility (Bellwood et al. 2006) that cannot be modelled
and/or suffers from methodological limitations, includ-
ing non-linear effects and large numbers of trait com-
binations. The present study on 35 species comprised
much of the dietary diversity among Western Mediter-
ranean fishes, for which precise diets and ecomorpho-
logical traits related to food acquisition were known.
We showed that the RF modelling technique, which
can account for complex interaction structures in the
data, can accurately predict fish trophic guilds when
these are quite general (up to 7 groups), even with a
limited number of traits. The accurate prediction of
fine trophic guilds (8 groups and more) cannot, how-
ever, be achieved, regardless of the combination of
traits considered. In a similar manner, we were not
able to predict the level of diet overlap between fish
species pairs based upon similarity in ecomorphologi-
cal traits. Therefore, our study reinforces the versatility
hypothesis of Bellwood et al. (2006), but also reveals
that general trophic guilds can be predicted from just a
few functional traits, which may be very useful in sim-
plifying the modelling of complex aquatic systems. 

Beyond the scope of fish ecology, our study exempli-
fies a statistical framework that may be relevant for
other marine organisms. For example, the functional
diversity of benthic invertebrate fauna, which is impor-
tant for both coastal and deep-sea ecosystem function-
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ing, can be measured as the number of different
trophic roles played by the benthic species and can be
inferred from the diversity in morphofunctional traits
(Danovaro et al. 2008). Furthermore, the recovery of
benthic communities from trawling or pollution could
also be investigated through a guild approach (Col -
vard & Edmunds 2011, Rimet & Bouchez 2011), where
the assignment of individuals to feeding guilds, using
functional traits, may be less time-consuming and
financially costly than individual species identification.
One might also be able to monitor the temporal recov-
ery of a damaged benthic community by looking at
changes in the types or guilds of fish that feed in the
area. For instance, some fish species might feed on the
normal, undamaged, surface deposit-feeding worm
community. If these fish species are absent for a period
of time that coincides with the time period over which
the benthic community was damaged and then later
reappear, it might be because the surface deposit-
feeding worms have returned to the benthic commu-
nity that has recovered from its damaged state.
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