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ABSTRACT 

 
Principal objective 
 
Tropical cyclones periodically cross the Great Barrier Reef (GBR), generating large 
waves that cause structural damage to reef communities, ranging from broken corals 
to removal of entire sections of substrate.  Over time, repeated impacts can 
significantly alter coral reef community structure.  Thus, effective management of the 
GBR requires an understanding of the cyclone disturbance regime (which reefs are 
likely to be affected and how often).  The primary objective of this study was to 
characterise the tropical cyclone disturbance regime in the GBR over the past three 
and one-half decades (1969-2003). 
 
 
Methods 
 
The spatial distribution of cyclone damage over time across even single reefs for most 
of the GBR is poorly known.  Though cyclone disturbance patterns operate over 
century time scales and 100s of km space scales, most studies have examined single 
storm events across a few reefs or many storm events for a single reef.  Further, 
detailed observations of cyclone damage to reefs in the GBR are rare.  Examining the 
impacts of cyclones over time thus required reconstructing a likely disturbance history 
from what information was available.  Meteorological models were used to hindcast 
the likely magnitude and distribution of cyclone winds from the meteorological 
record. This hindcast energy, along with measures of the spatial patterning of reefs, 
was linked statistically to field observations of reef damage to predict the distribution 
of cyclone disturbance of areas not surveyed.  This was done for eight types (coral 
breakage, debris scars, soft coral stripping, trenching, sand movement, removal of 
intact slabs, dislodgement of massive corals, and exfoliation) and seven severities 
(presence versus absence of: damage of any type, damage of each type, severe 
damage of any type, total damage score, maximum severity of damage, total damage 
score across low-energy damage types, total damage score across high-energy damage 
types) of damage.  Of these models, those that were successful were then used to 
predict the spatial distribution of cyclone damage of various types across the GBR for 
each of the 85 cyclones that passed nearby from 1969-2003.  The timing of predicted 
cyclone damage was then examined at each of 24,224 individual reef sites across the 
region, and trends were summarized by one-degree latitude by one-degree longitude 
blocks. 
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Results and conclusions 
 
Four types / severities of cyclone wave damage (coral breakage, dislodgement of 
massive corals, exfoliation and severe [widespread] damage of any type) were 
successfully modeled using a mix of cyclone energy (maximum and duration of high 
winds) and reef vulnerability (geomorphologic type, slope, normal wave exposure) 
parameters.  For these, on average, the most recent predicted cyclone damage event 
(measured from 2003) occurred less recently that what was typical over the entire 
time series.  This suggests that coral communities have had more time to recover 
since the last cyclone disturbance than would normally be the case, which could mean 
that present measures of broad community structure are not indicative of past 
conditions (i.e. coral coverage may be higher at present than normal).  Overall, the 
timing of predicted damage indicates that cyclone disturbance of the GBR is most 
likely intermediate in nature – coral communities at most reef sites would have had 
time to recover between subsequent cyclone disturbances only some of the time over 
the period 1969-2003.  Finally, reefs in the far northern GBR were generally disturbed 
less frequently than elsewhere. 
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Figure A3.2:  Sites surveyed by Done et al 1991 following cyclone Ivor 
(1990). 

 
Figure A3.3:  Track of cyclone Joy (December 1990). 

 
Figure A3.4:  Sites surveyed by Ayling 1991 following cyclone Joy (1990). 

 
Figure A3.5:  Track of cyclone Justin (March 1997).   

 
Figure A3.6:  Sites surveyed offshore from Townsville following cyclone 
Justin as part of this thesis. 

 
Figure A3.7:  Sites surveyed in the Whitsunday Islands region following 
cyclone Justin (1997) as part of this thesis. 

 
Figure A3.8.  Reefs at which questionnaire respondents searched for wave 
damage from cyclone Justin (1997). 

 
Figure A3.9:  Track of cyclone Althea (December 1971).  Reef sites for 
which cyclone wave damage was noted during crown-of-thorns starfish field 
surveys are located within the thick grey boxes. 

 
Figure A3.10:  Reefs at which impacts from cyclone Althea (1971) were 
incidentally noted during crown-of-thorns starfish surveys, as reported in 
COTSBASE 1.0 (Hartcher 2001).  The cyclone moved in the direction of the 
arrow. 

 
Figure A3.11:  Track of cyclone Celeste.  Reef sites surveyed by Malcolm et 
al (1996) are located within the thick grey box.  The cyclone moved in the 
direction of the arrow. 

 
Figure A3.12:  Reef sites surveyed following cyclone Celeste by Malcolm et 
al 1996.  The cyclone moved in the direction of the arrow. 
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APPENDIX 4 
 

Figure A4.1:  10 metre surface wind speeds (A) and directions (B) during 
Cyclone Justin (March 1997) at Holmes Reef (latitude: 16.470S, longitude: 
148.870E).   

 
Figure A4.2:  10 metre surface wind speeds (A) and directions (B) during 
Cyclone Justin (March 1997) at Green Island (latitude: 16.760S, longitude: 
145.970E).  Asterisks show measurements taken by the Bureau of Meteorology 
weather station (altitude: 3.0 metres).   

 
Figure A4.3:  10 metre surface wind speeds (A) and directions (B) during 
Cyclone Justin (March 1997) at Hook Reef (latitude: 19.740S, longitude: 
149.170E). 

 
Figure A4.4:  10 metre surface wind speeds (A) and directions (B) during 
Cyclone Justin (March 1997) at the Hamilton Island airport (latitude: 20.350S, 
longitude: 148.950E). 

 
Figure A4.5:  10 metre surface wind speeds (A) and directions (B) during 
Cyclone Justin (March 1997) at Frederick Reef (latitude: 20.940S, longitude: 
154.40E).   

 
Figure A4.6:  10 metre surface wind speeds (A) and directions (B) during 
Cyclone Justin (March 1997) at Gannet Cay (latitude: 21.980S, longitude: 
152.470E).   

 
Figure A4.7:  10 metre surface wind speeds (A) and directions (B) during 
Cyclone Celeste (1996) at Green Island (latitude: 16.760S, longitude: 
145.970E). 

 
Figure A4.8:  10 metre surface wind speeds (A) and directions (B) during 
Cyclone Celeste (1996) at the Hamilton Island airport (latitude: 20.350S, 
longitude: 148.950E).   

 
Figure A4.9:  10 metre surface wind speeds (A) and directions (B) during 
Cyclone Celeste (1996) at Gannet Cay Reef (latitude: 21.980S, longitude: 
152.470E). 
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APPENDIX 5 
 

Figure A5.1:  Classification tree built for the presence versus absence of any 
type or severity of damage for cyclones: A -  Ivor, Joy, Justin, Althea and 
Celeste, and B – Ivor, Joy and Justin, C – Ivor and Joy, D – Ivor, and E – 
Justin. 
 
Figure A5-2:  Classification tree built for severe damage of any type for 
cyclone Ivor.   
 
Figure A5-3:  Regression tree built for maximum severity of damage of any 
type for cyclones: A -  Ivor, Joy and Justin combined, B – Ivor and Joy 
combined, and C - Ivor.   
 
Figure A5-4:  Regression tree built for the total severity of damage across all 
types for cyclones: A - Ivor and Joy combined and B - Joy.   
 
Figure A5-5:  Regression tree built for the total severity of low energy 
damage across all types for cyclones: A - Ivor, Joy and Justin combined, B – 
Ivor and Joy combined, C - Joy. 

 
Figure A5-6:  Regression tree built for the total severity of high energy 
damage across all types for cyclones: A - Ivor, Joy and Justin combined, B – 
Ivor and Joy, and C - Joy.   

 
Figure A5-7:  Classification tree built for the presence versus absence of coral 
breakage for cyclones:  A - Ivor, Joy, and Justin, B – Ivor, and C - Justin.   

 
Figure A5-8:  Classification tree built for the presence versus absence of 
debris scars for cyclones: A - Ivor, Joy, and Justin, B – Ivor and Joy, C – Ivor, 
and D - Joy.   

 
Figure A5-9:  Classification tree built for the presence versus absence of 
dislodged massives for cyclones: A - Ivor, Joy, and Justin, B – Ivor, and C - 
Joy.   

 
Figure A5-10:  Classification tree built for the presence versus absence of 
exfoliation for cyclones: A -  Ivor , and B - Joy.   
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Figure A5-11:  Classification tree built for the presence versus absence of 
fallen slabs for cyclones: A -  Ivor, Joy, and Justin, B – Ivor and Joy, C – Joy, 
and D - Justin. 

 
Figure A5-12:  Classification tree built for the presence versus absence of 
stripped soft corals for cyclone Ivor.  The relative purity of the terminal nodes 
and the classification accuracy indicate the success of the tree.   

 
Figure A5-13:  Classification tree built for the presence versus absence of 
trenching for cyclones:  A -Ivor, Joy, and Justin, B – Ivor, and C - Justin.   
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