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Abstract

Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST) posing one of the main
threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following
mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps,
and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop
and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of
water pollution (copper contamination) and SST. We identify thresholds of temperature and pollution that prevent larval
metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the
concentration of Cu can protect corals from the negative effects of a 2–3uC increase in SST. These results demonstrate that
effective mitigation of local impacts can reduce negative effects of global stressors.
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Introduction

Coral reefs are currently threatened by a range of anthropo-

genic stressors including global climate change [1] and localised

pressures such as overfishing [2] and pollution [3]. Within this

range of stressors, rising water temperature is generally recognised

as the most immediate widespread threat to reef resilience. Under

scenarios projected by the IPCC, ocean temperatures are likely to

exceed the thermal thresholds of vulnerable coral species by the

year 2050 [1]. The threats that climate change pose to coral reefs

may be magnified by elevated levels of nutrients, sediments and

pollutants from terrestrial runoff, or from point sources of

pollution such as ship-groundings and mine tailings [3]. Corre-

spondingly, government programs have been initiated to strength-

en reef resilience by minimising pollution. NOAA [4] recommends

that ‘‘..actions to abate impacts of fishing and land-based sources

of pollution can make coral reefs more resilient to climate

change..’’ while the Australian Federal and Queensland State

Government’s Reef Plan [5] aims to ‘‘halt and reverse the decline

in water quality entering the Reef by 2013..’’ to improve the

resilience of the Great Barrier Reef (GBR) to effects of climate

change. Nevertheless, empirical evidence to support these policies

is lacking as few studies have examined the combined, and

potentially interactive, effects of climate change and pollution.

Increased SST and pollution can both impact upon corals

during the vulnerable early stages of their development. Most

corals reproduce by broadcast spawning, where eggs are externally

fertilised and larvae develop and disperse in the water column for

between 2 and ,100 days before metamorphosing into sessile

polyps [6,7,8,9]. Coral spawning usually occurs during warmer

months at SSTs in the range of 28–30uC throughout reef

environments [10]. Depending on coral species identity, reef

location and the duration of the larval dispersal period, these

temperatures can be close to (within 2 to 4uC of) the thermal

thresholds identified for coral larval settlement [11] and bleaching

in adult colonies [12,13], leaving limited scope for the early life

stages of sensitive coral species to avoid the projected impacts of

climate change.

Trace metal contamination of coral reefs from agricultural

runoff, shipping accidents and operations, mining, and dredging is

well recognised [14,15,16]. Copper (Cu) occurs naturally in the

marine environment and is an essential trace element for all life;

however, redox-active Cu ions can become toxic if they occur at

concentrations above physiological thresholds [17]. In adult corals,

Cu affects both the host tissue and symbiotic algae, reducing

photosynthesis [18] and triggering the breakdown of symbiosis

[19]. Despite this sensitivity of adult corals, it is during the

recruitment phase of the coral life-cycle that pollution by metals

and organometallic compounds can pose the greatest risk [14].

Laboratory experiments have shown that successful metamorpho-

sis requires relatively uncontaminated surfaces for coral larvae to

attach to as they transform into sessile polyps, and that Cu inhibits

this metamorphosis at lower concentrations than any metal tested

so far [20,21].

Temperature exerts control over metabolism and biochemistry

and may therefore enhance, or counteract, the toxicity of

pollutants [22]. Whether or not these two stressors interact is

especially relevant to ectothermic and sessile organisms like corals,

which have no control over their tissue temperature nor their

exposure to pollution [23]. While many factors contribute to the

dynamics of coral communities [24], recent studies indicate that

recruitment is an important factor in determining the response of
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coral populations to bleaching and mass mortality events [25].

Despite the potential for water contamination to exacerbate the

effects of temperature on coral recruitment, the relationship

between temperature, pollution and metamorphosis is poorly

studied. To help fill this critical knowledge gap, we conducted

laboratory exposure studies to assess the response of larvae of two

coral species to different combinations of temperature and

pollution (Cu). The results allowed the development and

implementation of a quantitative framework to assess how

pollution impacts the thermal tolerance of coral larvae.

Results and Discussion

Functional relationship between metamorphosis success,
temperature and copper

For a range of taxa, growth and/or development rates decrease

when metal contamination reaches a threshold level [26,27]. If

contaminant concentrations exceed this threshold, development is

increasingly inhibited and eventually declines to zero. This type of

functional response can be generally characterised by a 3-

parameter sigmoid equation, as:

M~Mx{
Mx

1zexp
{(x{EC50)

w

� � , ð1Þ

where, in the case of coral larval metamorphosis, M is the proportion

of larvae that metamorphose at a given copper (Cu) concentration

(x), Mx is the maximum achievable metamorphosis percentage, EC50

is the copper concentration at which metamorphosis is half of its

maximum value and w is proportional to the width of the region over

which metamorphosis declines from Mt to zero. This equation is a

simplification of the 4-parameter logistic equation commonly used to

model dose-responses [28] - because in this case the fourth

parameter (minimum level of metamorphosis success) is zero. In

the present study, a range of copper concentrations of up to 70 mg

l21 (above the maximum reported in the field) was used to ensure

precise estimation of model parameters and full characterisation of

the functional relationship between Cu and metamorphosis success.

To incorporate temperature into this general model, we hypothe-

sised that the shape of the functional relationship between

metamorphosis and Cu concentration (i.e., the values of the

parameters of Equation 1) depend on temperature.

Metamorphosis success of aposymbiotic Acropora millepora and A.

tenuis larvae was inhibited by Cu in the laboratory, and a sigmoidal

relationship adequately captured the variation in the data

(Equation 1, Fig. 1). In the majority of cases, the goodness-of-fit

(R2) of Equation 1 to metamorphosis data at each temperature

ranged between 0.88 and 0.94 and the estimated parameters of

Equation 1 were significantly different from zero. However, at

high incubation temperatures (i.e., above 33uC) the Cu-metamor-

phosis relationship was more variable, with 0% metamorphosis

observed in a large number of the experimental replicates, and the

R2 values for these model fits decreased to 0.57 (A. millepora at

33uC), 0.76 and 0.25 (A. tenuis at 33uC and 34uC respectively).

These results demonstrate that the thermal optimum for larval

metamorphosis in the laboratory was less than 32uC for both coral

species, consistent with other reports that coral larvae are almost as

susceptible to high SSTs as adult corals [11,29,30]. However,

whereas adult corals are primarily susceptible to thermal stress due

to the accumulation of oxygen radicals in their photosynthetic

symbionts [31], most coral larvae (including A. millepora and A.

tenuis) do not contain significant numbers of acquired symbionts

and the cause of impaired function (metamorphosis) is unclear.

Like adult corals, Acropora larvae infected with photosynthetic

symbionts are more susceptible to thermal stress, exhibiting higher

levels of antioxidant defences and oxidative cellular damage than

those without symbionts [32]. A recent study revealed complex

molecular responses of azooxanthellate A. millepora embryos and

larvae to high SST [33]. In that study, the genes regulating

metabolic rate (respiration) were more affected by thermal stress

than those involved in protection from oxidative stress, indicating

that oxidative stress may not be the primary factor affecting the

success of larval settlement at high SST.

The parameters describing the shape of the relationship

between Cu concentration and metamorphosis success changed

clearly and consistently with temperature (Fig. 2). For both species,

the parameter describing maximum metamorphosis (Mx) success

declined when temperatures exceeded 32uC, but was approxi-

mately constant at temperatures below this value (Fig. 2A). The

Cu concentration at which metamorphosis success had decreased

to half of its initial value (EC50) also decreased with temperature

(Fig. 2B, Table 1). This parameter was more sensitive to

temperature than Mx: EC50 began to decline at temperatures over

30uC. The rate at which metamorphosis success declined with

increasing Cu, (indicated by the effect region parameter, w) did not

vary consistently with temperature (Fig. 2C).

Figure 1. Relationship between larval metamorphosis and
copper concentration for Acropora millepora (a) and Acropora
tenuis (b). Points represent the mean and standard error of measured
% metamorphosis at each of two temperatures. Lines are the best-fit
non-linear regressions of Equation 1 to each set of data.
doi:10.1371/journal.pone.0019703.g001
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The completed analysis resulted in a fully parameterised model

of larval metamorphosis success incorporating both the Cu and

temperature responses. A strength of this approach is that it allows

full characterisation of thresholds for larval metamorphosis success

together with a robust quantification of how sensitive these

thresholds are to uncertainty in parameter estimates. Metamor-

phosis thresholds were identified by evaluating the fitted model for

each species over a range of temperature and Cu concentrations,

and plotting contours lines corresponding to 0%, 10%, 50% and

80% metamorphosis (Fig. 3). The temperature and Cu values

corresponding to each metamorphosis threshold were robust with

respect to the uncertainty in parameter estimates. The 95%

confidence interval (thin gray lines in Fig. 3) around the

metamorphosis thresholds were narrow and parallel to the

threshold based on the (mean) best-fit parameter values. In

general, larval metamorphosis success of both Acropora millepora and

A. tenuis was similarly inhibited by temperature and Cu

contamination (Fig. 2, Fig. 3). However, A. tenuis larvae were

slightly more resistant to both variables: the EC50 value was higher

at all temperatures for A. tenuis (Fig. 2B, Table 1) and

metamorphosis thresholds were broader for this species (contour

lines in Fig. 3). The full Cu and temperature model demonstrates

that, if seawater Cu concentrations are maintained below 15 mg l21,

maximum metamorphosis success is greater than 80% at temper-

atures up to 32uC (Fig. 3). However, an increase in Cu

concentration to 30 mg l21 reduces maximum metamorphosis

success for A. millepora to 20%, with a subsequent decrease in

metamorphosis by 5% for every 1uC increase in temperature

(Fig. 3A). For A. tenuis at the same Cu concentration, maximum

metamorphosis success was 50% and decreased, on average, by

10% for every 1uC increase in temperature (Fig. 3B). The Cu

thresholds identified in these laboratory exposures lay within the

range of values reported for oceanic waters. At background

environmental levels, Cu concentrations in seawater are generally

less than 1 mg l21. Nevertheless, concentrations of 5 mg l21 have

been reported in tropical coastal waters [34], with the highest

concentration reported reaching 30 mg l21 [35]. While runoff from

mine tailings, industry and urban sources can introduce metals such

as Cu into reef ecosystems, ship groundings are a direct source of

extreme Cu concentrations on coral reefs (up to 4270 mg g21

Figure 2. Temperature dependence of the parameters of the
relationship between larval metamorphosis and copper con-
tamination for Acropora millepora (filled points, dashed line)
and Acropora tenuis (open points, solid line). Lines are fits of
Equation 2 to data for each parameter and points represent the mean
and standard error of the best-fit parameter estimates from the fits of
Equation 1 to metamorphosis data at each temperature.
doi:10.1371/journal.pone.0019703.g002

Table 1. Copper concentrations (EC50s) and temperatures
(IT50s) that inhibit 50% metamorphosis in Acropora millepora
and A. tenuis.

Level A. millepora A. tenuis

Temperature EC50 (mg l21) EC50 (mg l21)

28 26.03 (0.98) 32.10 (0.86)

30 25.60 (1.29) 35.76 (0.83)

31 18.97 (0.60) 26.86 (0.93)

32 10.67 (0.39) 16.97 (1.19)

33 7.21 (1.56) 11.79 (1.31)

34 nd 7.49 (13.44)

Cu concentration IT50s (uC) IT50s (uC)

0.37 32.77 (0.06) 33.17 (0.09)

1.43 32.73 (0.07) 34.62 (1.53)

2.37 32.72 (0.09) 33.09 (0.08)

4.13 32.69 (0.08) 32.91 (0.08)

9.4 32.23 (0.09) 32.92 (0.06)

13.8 31.52 (0.15) 32.33 (0.09)

17.8 31.56 (0.15) 32.07 (0.09)

26.2 31.27 (0.08) 31.46 (0.11)

35 nd nd

72 nd nd

Standard error in brackets.
doi:10.1371/journal.pone.0019703.t001
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sediment) due to the antifouling paint containing Cu being crushed

onto the reef structure [36,37].

Evaluating synergism between temperature and copper
The shape of the relationship between metamorphosis success

and Cu concentration was strongly influenced by temperature

(Fig. 1, Fig. 2). Two-way ANOVAs indicated significant

interactions between the effects of temperature and Cu concen-

tration on metamorphosis success for both coral species (Table 2),

signifying that overall, the combined effects of these stressors were

not additive. The effects of SST and Cu on metamorphosis success

were strongly non-linear making ANOVA inappropriate for

detection of the nature of the interaction [38]. However the

modelling technique and isobologram analysis employed here

were effective tools for identifying regions of the parameter space

which gave rise to synergistic versus antagonistic interactions. The

model was used to calculate expected 10%, 50% and 80%

metamorphosis success contours for additivity. These contours

were almost vertical up to 31uC when plotted as isobolograms for

both species (Fig. 4A and 4B), indicating little or no expected effect

of temperature on toxicity in this region. As temperature started to

affect metamorphosis (.31uC), the additive effects of temperature

and Cu concentration were expected to cause a rapid decrease in

metamorphosis as Cu increased. The strength of interaction

between SST and Cu was quantified by dividing the observed

effect on metamorphosis by the expected additive effect from the

modeled data. The interaction plot (Fig. 4C) indicated sub-

additivity (interaction ratio, IR,1) at low temperature-Cu

combinations for A. millepora, increasing to additive effects at

temperatures less than 31uC and then becoming strongly

synergistic (IR.1) at temperatures between 31uC and 33uC and

Cu concentrations up to 30 mg l21. The response of A. tenuis was

similar; however, there was little apparent sub-additivity and the

range of temperature and Cu concentrations where metamorpho-

sis was reduced by 50% more than expected for additivity

(IR = 1.5) was broader for this species (Fig. 4d). Overall, Cu

contamination and temperature stress had a stronger synergistic

effect in inhibiting metamorphosis of A. tenuis compared to A.

millepora, although the latter species was generally more sensitive to

these stressors. Three other studies have examined the combined

effects of SST and pollution on adult corals but these used fewer

treatment combinations, or a narrower range of treatments,

making interactions more difficult to quantify. Nystrom et al. [39]

found that the combination of elevated SST (ambient and 4uC
above ambient) and Cu (0 and 11 mg L21) did not interact to affect

coral metabolism. Two other studies found that the effect of the

herbicides on photosynthesis of coral symbionts decreased as

temperature increased from 26 to 30uC, indicative of an

antagonistic interaction [40,41]. Nevertheless, the latter study also

showed that two herbicides acted synergistically with higher SSTs

Figure 3. Environmental thresholds for larval metamorphosis
of A. millepora (a) and A. tenuis (b). Color depicts the change in
metamorphosis success from .80% (blue) to 0% (pink) with increasing
copper concentration and temperature. Thick lines show 80%, 50% and
10% metamorphosis contours based on the best-fit parameter
estimates (Table S2) and thin, gray lines depict the 95% CI around
each threshold. CI’s were generated from a Monte Carlo simulation
technique where the model was iterated 1000 times using parameters
randomly drawn from multivariate Gaussian distributions.
doi:10.1371/journal.pone.0019703.g003

Table 2. Summary of analysis of variance testing the mean
effects of experimental copper and temperature treatments
on larval metamorphosis for Acropora millepora and Acropora
tenuis.

Factor
Sum of
squares df

Mean
Square F ratio p value

Acropora millepora

Temperature 55 5 10 365 ,0.001

Copper 43 9 4.7 168 ,0.001

Temperature 6Copper 18 45 0.39 14 ,0.001

Residual 8.4 300 0.03

Acropora tenuis

Temperature 45 5 9.1 285 ,0.001

Copper 43 9 4.7 148 ,0.001

Temperature 6Copper 10 45 0.23 7.1 ,0.001

Residual 9.6 300 0.03

doi:10.1371/journal.pone.0019703.t002
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(31 and 32uC) as demonstrated by a greater than additive effect on

inhibition of symbiont photosynthesis [41]. The current study is

the first to demonstrate synergistic effects of environmentally

relevant SST and levels of pollution that directly affect corals

(rather than their symbionts) at a critical phase during their life-

histories.

Implications of climate and pollution interactions for
coral recruitment

The results from this study demonstrate that the critical early

life stages of coral development, during which corals metamor-

phose from pelagic larvae into sessile polyps, are more sensitive to

high SSTs in the presence of the common anthropogenic pollutant

copper (Cu). We found evidence of strong interactions between Cu

and temperature as determinants of metamorphosis success for

two common coral species. The combined effects of Cu and

increased SST were additive for A. tenuis larvae above 29uC and

became synergistic for both species at sea surface temperatures

(SSTs) above 31uC, with the combined effect of Cu contamination

and excessive SST being stronger than the sum of the independent

effects of each stressor. These findings provide empirical evidence

to support the implementation of environmental policies that aim

to increase the resilience of corals to elevated SSTs by improving

water quality. Although synergistic effects of these two stressors

were only apparent at temperatures above those which would be

presently experienced by the majority of settling larvae on the

GBR, additive effects of Cu and temperature were apparent at

ecologically relevant temperatures.

Molecular techniques indicate that some of the sub-cellular

responses of corals to Cu may be similar to those identified for

thermal stress. Heat-shock proteins (Hsp 70 and Hsp 90), normally

associated with thermal stress, were up-regulated in adult

Montastraea franksi branches exposed to Cu during an 8 h period

[42]. While shared stress response pathways may be partially

responsible for the interactive effects of increased SST and Cu on

metamorphosis, the effects of temperature on larval metabolism or

biochemistry may also influence the toxicity of Cu [22]. Uptake

of Cu by the larvae can increase with temperature due to:

(i) increased active transport (facilitated or via ion channels),

(ii) increased membrane permeability, (iii) increased metabolic

rate, and/or (iv) reduced Cu elimination [23]. Furthermore, each

of these mechanisms can be influenced by the species of Cu, which

is likely to change as the SST increases. In seawater, Cu exists in

equilibrium between a range of species, from the most toxic and

Figure 4. Theoretical additive effects (a, b) of temperature and copper on larval metamorphosis compared with observed
interactive effects (interaction ratio, IR) of these factors (c, d). Additivity was calculated as the sum of the effect of copper at the control
temperature and the effect of temperature at the control (lowest) copper concentration and contours represent metamorphosis success. IR was
calculated from Equation 3: values .1 demonstrate synergy and values ,1 demonstrate antagonism. Shaded regions depict combinations of copper
and temperature for which metamorphosis success was zero.
doi:10.1371/journal.pone.0019703.g004
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bioavailable form of free copper (Cu2+, not measured in the

present study) to less bioavailable carbonate complexes [43,44].

The present study demonstrates that coral larval metamorphosis, a

critical step in the process of coral recruitment, is more sensitive to

Cu as SSTs increase further above current summer temperatures

of $31uC [45]. Copper affected metamorphosis at concentrations

close to or below the US EPA guideline figure of 3.1 mg L21 [46],

at temperatures $32uC. For instance, in addition to the effect of

temperature Cu concentrations of approximately 4.4 mg L21 and

0.4 mg L21 lead to a further 10% reduction in metamorphosis

success for Acropora millepora larvae at 32uC and 33uC respectively,

and Cu concentrations of approximately 14.8 mg L21 and 10.4 mg

L21 caused the same effect for A. tenuis larvae at these

temperatures (Equation 1 and 2). In fact, Acropora larvae tested

in this study were as susceptible to Cu at 32uC deg as Mytilus edulis

embryos, the most sensitive marine organisms previously reported

[46].

The monsoon season poses the greatest challenge to the survival

of nearshore coral communities [3]. During this period heavy rains

transport sediments from land to sea bringing the highest levels of

water contamination that are experienced over the annual cycle

[3]. Coral spawning typically occurs after the full moon in the

month before maximum rainfall and can coincide with high SSTs

[47,48]. The average monthly temperature (October – November

between 2000–2010) during coral spawning in Nelly Bay where

the corals for this study were collected ranged from 26.3 to 29.8uC
[45]. However, synergistic interactions between temperature and

Cu occurred in the present study at and above 31uC for both

species (Fig. 4C, 4D) indicating that greater than additive effects of

these stressors are presently unlikely to be experienced at this site

except for that proportion of larvae that show delayed metamor-

phosis. Peak rainfall in the GBR catchments is from December to

March [49], but early rainfall of the monsoon season in November

and December may also deliver the high loads of pollution into the

GBR lagoon [3]. Although SSTs thresholds for coral larvae and

the highest loads of river-borne pollution do not usually coincide

with the major coral spawning events, they are often only a month

apart and this may become more of a concern as climate change

impacts upon SST and rainfall patterns in the tropics. SSTs are

projected to increase by between 1.8–4.0uC by 2100 (IPCC 2007),

potentially impacting upon the success of coral recruitment,

especially if pollution thresholds are exceeded. Furthermore, some

corals do spawn during the peak SST and rainfall months of

December to February [50] and these late-spawning species and/

or colonies may be at greater risk from the combined effects of

high SST and pollution from flood plumes. To quantify this risk,

both field studies (where unknown factors may impact upon the

interpretation of observations) and laboratory approaches (where

stress-response relationships can be precisely described – but

interpretations may be oversimplified due to the absence of other

environmental influences) are needed to understand the combined

effects of climate change and pollution. A recent field study

indicated that wastewater discharge has increased the susceptibility

of coral communities in the Florida Keys to thermal bleaching

[51]. Similarly, the occurrence of coral bleaching on the GBR can

be more accurately predicted when dissolved inorganic nitrogen

(DIN, a nutrient found in agricultural runoff) concentration is

included in the modelling framework [52]. Such models indicate

that reducing DIN by 50% –80% would help to protect inshore

corals of the GBR by increasing the bleaching threshold by 2uC.

Successful coral recruitment is important for the maintenance

and recovery of coral communities under pressure from climate

change and other anthropogenic influences [25,53]. The profound

effect that Cu has on exacerbating the negative effects of thermal

stress on coral larval metamorphosis in the laboratory illustrates

that water quality can be a particularly pressing issue for the health

of coral reefs as SSTs increase due to climate change. The larval

metamorphosis model developed here from experimental data

demonstrates that reducing water contamination can have positive

effects on coral recruitment. At a seawater temperature of 28uC,

50% of Acropora millepora and A. tenuis larvae successfully

metamorphosed when Cu concentrations were approximately

equal to 25 and 30 mg L21 respectively (Fig. 3). However, halving

Cu concentrations from these values resulted in more than 3.5uC
increase in the temperature threshold for both species (Fig. 3).

Indeed, for each of the percentage metamorphosis thresholds

depicted in Fig. 3, halving Cu concentrations from the value

corresponding to the control temperature (i.e. the x-intercepts of

each contour line) led to an increase in the temperature tolerance

by 3–5uC. This study therefore provides empirical evidence to

support government programs [4,5] that aim to improve water

quality to mitigate the negative effects of increasing seawater

temperatures due to global change.

Materials and Methods

Coral collection and larval cultivation
A total of six gravid colonies of A. millepora and A. tenuis were

collected from 3 to 5 m depths near Magnetic Island, a nearshore,

high-turbidity site off the north east cost of Queensland, Australia

(19u109 S, 146u529 E). These colonies were maintained in flow-

through outdoor aquaria (27uC) at the Australian Institute of

Marine Science (Townsville, Australia) until coral spawning on the

29th (A. tenuis) and 30th (A. millepora) of October 2007. The gametes

were collected and the azooxanthellate larvae cultured in indoor

flow-through aquaria (27uC) using methods described in [54].

Copper solutions and analysis

Stock Cu solutions were prepared individually in MilliQ water

using CuCl2 (Sigma). Secondary stock solutions (106higher than

final concentrations) were then prepared in 0.45 mm filtered

seawater (FSW) and pHs adjusted to 8.2 with NaOH. Identical

solutions were prepared and sampled for Cu analysis at Charles

Darwin University by ICP- MS (Agilent 750ce) using a seawater

standard additions method. Quality control for the analysis

included NASS-5 and CASS-4 Certified Reference Materials, in-

house reference materials and spike recoveries. To control for

potential differences in water quality parameters between

treatments, dissolved oxygen (mg L21) and pH were also measured

at selected temperatures and Cu concentrations at t = 0 and

t = 24h for treatments containing 10 day old A. millepora larvae.

Copper exposures and metamorphosis assays
Assays of metamorphosis success at different copper and

temperature exposures were conducted using 7 day old larvae of

both species. Ten to fifteen larvae were transferred to 6-well cell

culture plates (12 mL, Nunc, NY, USA) in a final volume of 9 mL

0.45 mm FSW at 27uC. Stock Cu solutions (1 mL, prepared as

described above) were added to individual wells to final nominal

concentrations of 0, 1, 2, 4, 8, 12, 16, 24, 32 and 64 mg l21. The

solutions were then transferred into incubators set at 27, 30, 31,

32, 33 and 34uC (range 60.2uC) and 30 mmol quanta m22 s21.

Six replicate wells were used for each of the 60 treatments (10 Cu

concentrations 66 temperatures). The larvae were pre-exposed to

the elevated temperatures and/or Cu for 6 h. After this period,

larval metamorphosis was initiated by the addition of a slightly

sub-optimal concentration (10 mL) of crustose coralline algae

extract to maximise the sensitivity of the assay [55]. This extract

was prepared by extracting 4 g of the crustose coralline algae

Copper Reduces Thermal Tolerance of Coral Larvae
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Neogoniolithon fosliei and Porolithon onkodes with methanol according

to the methods of Heyward and Negri [56]. After a further 18 h,

treatments were terminated by adding 0.5 mL fixative (4%

formaldehyde buffered at pH 7) for later assessment of settlement

and metamorphosis. In addition, identical larval exposures and

assays were performed in each of the incubators using 9 day old A.

millepora larvae to test for differences in metamorphosis due to the

incubators alone (Cu = 0, 16 and 32 mg L21 at 31uC, the median

temperature in the range tested). Water quality parameters were

generally consistent across the experimental treatments. There was

good correspondence between nominal and measured Cu

concentrations (Table S1). Dissolved oxygen (DO) concentrations

were generally between 5.9 and 6.6 mg l21 and pH was

approximately constant across experimental trials (8.1 to 8.2 pH

units). The only exception to this was a slight reduction in DO at

34uC (Table S1). There was no effect of the experimental

incubator (F0.01,5 = 0.5, p = 0.78) on measured larval metamor-

phosis success at 31uC, nor did the effect of Cu concentration on

metamorphosis vary between incubator units (F0.13,10 = 0.32,

p = 0.97).

Modeling effects of temperature and copper
contamination on larval development

To estimate the model parameters, data from the metamor-

phosis assays were converted to percentage metamorphosis success

and analyses were conducted using the R statistical platform [57].

In this study we characterised the combined effect of copper and

temperature on metamorphosis by fitting Equation 1 to meta-

morphosis versus Cu concentration data at different temperatures

and then analysing how the fitted parameters of the equation (Mx,

EC50 and w) changed with temperature. First, we used a nonlinear

regression routine (‘nls’) to fit Equation 1 to the metamorphosis

versus copper data to quantify Mx, EC50 and w at each

temperature. Second, we again used nls to fit a sigmoid equation

to the set of temperature-specific parameter estimates, as:

Mx(T)~M0{
M0

1zexp
{(T{tM )

wM

� �

EC50(T)~C0{
C0

1zexp
{(T{tC)

wC

� � ,

ð2Þ

where Mx(T) and EC50(T) are temperature-dependent parameters

of Equation 1, M0 and C0 are the maximum values for each of

Mx(T) and EC50(T) respectively, T is temperature, tM and tC are

the temperature values at which Mx(T) and EC50(T) have declined

to 50% of their maximum values respectively and wM and wC are

proportional to the region of temperature values over which Mx(T)

and EC50(T) respectively decline to zero. The values for each

parameter can be found in Table S2. In this second stage of the

analysis, the sigmoid equation was chosen a posteriori because we

had no prior evidence as to how each parameter of the copper

functional response would vary with temperature. To reduce the

number of fitted parameters, we fixed the values of M0 and C0 at

the values observed at 28uC (the control temperature). These

particular parameters were chosen because the Cu and temper-

ature thresholds for larval metamorphosis are strongly dependent

upon the values of tM, tC, wM and wC and w, not on M0 or C0.

There was no relationship between temperature and the value of

the parameter w. Therefore, all subsequent analyses used the

average value of this parameter (averaged across temperatures but

within species).

Uncertainty in parameter estimates was incorporated using

Monte Carlo simulation. To do this we iterated the model 1000

times using parameters randomly drawn from multivariate normal

distributions. These distributions were based on the variance-

covariance matrices of the parameters describing the relationship

between metamorphosis success and Cu concentration at each

temperature. In summary, we randomly generated 1000 sets of

parameter estimates for each metamorphosis versus Cu relation-

ship (Equation 1), re-fit Equation 2 to each parameter set, and

then re-evaluated the fitted model. The simulations were based on

uncertainty in the Cu relationship, rather than uncertainty in the

parameter temperature relationship, because the former is large

relative to the latter.

Two approaches were used to determine whether there effects

of temperature and Cu concentration were additive, synergistic or

antagonistic. First a two-way fixed effects analysis of variance

(ANOVA) was performed on the larval metamorphosis data

(arcsine transformed to meet ANOVA assumptions). In this

analysis, a non-significant interaction term (p temperature x Cu

concentration .0.05) would demonstrate that the effects of

temperature and Cu were additive whereas a significant

interaction indicates the presence of a synergistic (greater than

additive) or antagonistic effect (less than additive) [58]. Where an

significant interaction was identified, we used an isobologram

approach to determine whether the effects were synergistic or

antagonistic [38]. To do this, expected metamorphosis success was

calculated, across the experimental range of temperature and

copper concentrations, assuming additive effects [59]. Additivity

was calculated as the sum of the effect of Cu at the control

temperature (28uC) and the effect of temperature at the control

(lowest) Cu concentration, with these independent effects char-

acterised from the fit of Equation 1 to these data. Subsequently,

the direction and strength of the interaction between temperature

and copper, across the experimental ranges, was calculated by

dividing the observed (modelled) effect (% inhibition, Ex) by the

predicted additive effect (% inhibition, Ep) as described in

Equation 3. Synergy was indicated where the interaction ratio

(IR) was .1 and antagonism (sub-additivity) where the IR,1 [60].

IR~
Ex

Ep
, ð3Þ

We note that the interaction ratio calculated in this study is the

inverse of that in Li et al. [60] because we believe it is more

intuitive that stronger than additive (i.e. synergistic interactions)

have IR vales greater than 1.
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