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Abstract. Envisat ASAR Global Monitoring Mode (GM)
data are used to produce maps of the extent of the flood-
ing in Pakistan which are made available to the rapid re-
sponse effort within 24 h of acquisition. The high tempo-
ral frequency and independence of the data from cloud-free
skies makes GM data a viable tool for mapping flood wa-
ters during those periods where optical satellite data are un-
available, which may be crucial to rapid response disaster
planning, where thousands of lives are affected. Image dif-
ferencing techniques are used, with pre-flood baseline im-
age backscatter values being deducted from target values to
eliminate regions with a permanent flood-like radar response
due to volume scattering and attenuation, and to highlight
the low response caused by specular reflection by open flood
water. The effect of local incidence angle on the received
signal is mitigated by ensuring that the deducted image is ac-
quired from the same orbit track as the target image. Poor
separability of the water class with land in areas beyond the
river channels is tackled using a region-growing algorithm
which seeks threshold-conformance from seed pixels at the
center of the river channels. The resultant mapped extents
are tested against MODIS SWIR data where available, with
encouraging results.
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1 Introduction

Over the 2010 monsoon season, Pakistan saw extensive
flooding of the Indus river and its tributaries, which affected
over 20 million people, damaging over 2 million hectares
of crop land and causing the loss of 1985 lives (NDMA,
2011). Heavy rainfall in the northern regions of the Khy-
ber Pakhtunhwa, reaching 280 mm on 29 July, damaged ma-
jor irrigation headworks on the Swat River at Munda, which
were built to a discharge capacity of 4.5 Mls−1 and which
were damaged by the peak discharge of 8.5 Mls−1. Further
rainfall in Gilgit and Jammu and Kashmir and further south
in Balochistan, contributed further to the huge body of wa-
ter which flooded irrigation channels and agricultural land
covering tens of thousands of square kilometers. The UN
Food and Agricultural Organization estimate losses of wheat
stocks at around 450 000 tonnes (Fair, 2011). The Damage
Needs Assessment conducted by the World Bank estimated
that the recovery from the floods would cost between $8.7
and $10.9 billion (WBG, 2011).

To facilitate the international relief effort in such crises,
maps are made available in near real time by facilities such
as NASA’s MODIS Rapid Response System, which makes
use of the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) on board NASA’s Aqua and Terra satellites.
Such instruments are, however, limited by the cloud cover
that is often present for some time after such flood events.
It is largely for this reason that, in recent years, satellite-
borne radar instruments have attracted much research into
their viability as a means to map flooding, due to their abil-
ity to penetrate cloud cover and to their independence from
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the relative position of the sun (Waisurasingha et al., 2007;
Wilson and Rashid, 2005; Rosenqvist et al., 2007).

The classification of water with satellite radar data is prob-
lematic and error-prone, particularly when some of the main
environmental factors affecting the result, such as wind speed
and direction and soil moisture, are unknown. The clear ad-
vantage of the independence from cloud cover may result
in the availability of radar data where more reliable optical
data is not available. Revisit time is an important feature
of remotely sensed data used for disaster management. The
COSMO-SkyMed constellation1 comprises a cluster of four
X-band SAR sensors on the same orbit path which are ca-
pable of a revisit time of less than 12 h. Most radar sen-
sors such as theAdvanced Synthetic Aperture Radar(ASAR)
aboard the European Space Agency’s (ESA) Envisat satel-
lite, and thePhased Array type L-band Synthetic Aperture
Radar (PALSAR) on the Japanese Aerospace Exploration
Agency’s (JAXA) ALOS satellite2 have repeat orbit cycles
of more than a month, but are able to provide a higher repeat
coverage thanks to operation modes which overlap regions
at different incidence angles on adjacent orbits. Here we
take a closer look at data from the ASAR sensor operating
in Global Monitoring (GM) mode, which is systematically
acquired when data in other configurations is not required.
GM data is made available in near real-time for download to
parties with at least a Category-1 fast-track agreement with
ESA. The data is available quickly because it is preprocessed
at the sensor, before being transmitted down to one of two
ground stations in Europe. This is made possible by keep-
ing file sizes and processing requirements low, by using a
coarse resolution (pixel size is 500 m, spatial resolution is
1 km). Such a coarse resolution over the full range of inci-
dence angles (12◦ to 44◦) may prohibit the data’s viability
as an alternative means to map flooding, but we believe that
its temporal frequency and ready availability give the data
potential advantages that warrant further investigation. The
following questions emerge:

– Is the frequency of GM coverage such that it can provide
an alternative source of data to map flooding when cloud
cover prohibits the use of optical data?

– Can effects due to factors such as incidence angle be
eliminated?

– Will the radiometric uncertainty of signals received
from partially and totally inundated areas and non-
flooded areas allow the classification of flooding to a
level of accuracy sufficient to produce useful maps,
given the coarse resolution of GM data?

1http://www.cosmo-skymed.it/
2unfortunately recently defunct

2 Study area

The flood plain of the Indus River occupies nearly half of
Pakistan’s area. Bounded by the Karakoram, Hindu Kush
and Pamir mountain ranges to the north and the Balochistan
Plateau to the west, the Indus and its tributaries flow south-
wards from the northern ranges to the Arabian Sea more than
1000 km to the south (see Fig.1).

Having left the ranges, the river falls only a few hundred
metres across this distance. Outside of the major cities of
Lahore in the north and Karachi in the south, much of Pak-
istan’s population lives close to the Indus and Chenab rivers,
farming wheat, cotton, rice and other crops to sustain its
population of some 170 million. The 2010 monsoon sea-
son saw higher than usual rainfall (Fig.2 refers), contribut-
ing to floods which started affecting populated areas in the
north in July and progressed southwards throughout the fol-
lowing months, remaining in some areas throughout October
and beyond.

3 Theoretical basis

Fundamental choices of radar data rest on wavelength, polar-
isation configuration, spatial and temporal frequency. Radar
signals will interact with their target in a manner dictated by
structural, textural and dielectric properties of the target sur-
face. Structural and textural properties are matters of scale,
and must be considered in relation to the wavelength of the
radar signal. When considering the detection of flood water,
we are interested in the radar response from water itself, from
the surrounding land cover and, where partial inundation oc-
curs, a combination of the two. The radar response from each
of these three categories is a complex combination of effects.
In the case of vegetation, C-band radar (wavelengthλ = 3.75–
7.5 cm) will tend to interact with small branches and leaves,
and L-band (λ = 15–30 cm) with larger branches and trunks,
each in a scale of order comparable to their own wavelength.
Where partial inundation occurs, the radar signal may inter-
act multiple times between the emergent structure (vegeta-
tion or buildings, for example), in a phenomenon known as
dihedral scattering (or “double-bounce”), resulting in a very
high return signal. The extent of this occurrence is depen-
dent, therefore, on the relative scale of the emergent struc-
ture with respect to the wavelength of the signal. Where
open water is found, if the surface is smooth, much of the
radar signal is reflected away from the sensor, resulting in a
low backscatter response. The extent of the return signal in
this case has a sinusoidal relationship with the angle that the
radar is incident to the surface of the water. However, where
there are regular waves on the surface of the water, Bragg res-
onance can result in a very high return signal (e.g.Schaber
et al., 1997). The degree to which this occurs depends once
again upon the relationship between the scale of the wave and
the wavelength of the radar signal. C-band radar is sensitive
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Fig. 1. Pakistan and the Indus-Chenab flood plain.

mainly to small capillary waves and L-band to larger “chop”,
as might be expected. The alignment of the waves with re-
spect to the direction of the incident radar wave is also impor-
tant here. The effect is greatest when the incident signal is or-
thogonal to the alignment of the wave (or parallel to the wind
direction), and may not occur at all when the radar signal and
the wave direction are parallel (Liebe et al., 2009).Finally, the
strength of the radar signal returned to the sensor is reduced
by an increasing incidence angle (Monsiváis et al., 2006).
Whilst simple geometry allows us to calculate the theoreti-
cal degree of this effect, its precise value is the combination
of various target characteristics averaged over a pixel-space,
and is therefore not readily known for a given time. The
change in radar signal for a given degree increase in inci-
dence angle is greater for a specular reflector such as smooth
water, than for a diffuse or volume scatterer such as bare
soil or vegetation. The particular environment encountered
in Pakistan presents a further complication in the detection
of flood waters using radar data. Desert areas which remain
dry during the flood event absorb and attenuate microwave
radiation (Robinson et al., 2006; Schaber et al., 1997), re-
turning a low signal which encroaches into the range of that
expected by open water. The difference with the desert re-
sponse is its relative permanency, and so by deducting values

from a GM image taken from the same orbit track prior to the
flood, we are able to discern the water from the desert. Dig-
ital Numbers (DN) in ASAR detected products correspond
to brightness amplitude. The radar backscatter coefficientσ 0

may be calculated from the DN values by:

σ 0
=

DN2

K
·sin α (1)

whereK is the absolute calibration constant (ESA, 2004).
However, the received backscatter is further dependent onα

by some functionF which is peculiar to the target environ-
mental conditions (Baghdadi et al., 2001; Ulaby et al., 1982)
such that

σ 0
0 = σ 0

α ·F(α) (2)

Given a reasonably close temporal separation of images, and
in the absence of flooding, the environmental conditions, and
therefore the nature ofF , are similar for a given pixel in the
target image to the corresponding pixel in thedry baseline
offset.

Converting to decibels and deducting the base backscatter
valuesσ 0

b from the target valuesσ 0
t gives

1σ 0
= 10

[
log(σ 0

t )+ log(F (α))− log(σ 0
b )− log(F (α))

]
(3)
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Fig. 2. Daily rainfall (mm) across the Pakistan region (Lat. 28◦ N–
35◦ N, Long. 70◦ E–74◦ E) in July/August 2009 (above) and 2010
(below). Reproduced fromGESDISC(2011).

Substituting Eq. (1) into Eq. (3) gives

1σ 0
= 20· log

(
DN1

DN0

)
(4)

This assumes that the difference inα between the two im-
ages is negligible. This difference between local incidence
angles for the image pairs was found to have a mean value
of −0.02◦, with a standard deviation across the region of
interest of 0.08◦. Taking an extreme case of MEAN−3×

STDDEV gives a difference of−0.26°, which would result
in an error in the final difference image of 0.02 dB at 44◦ and
0.07 dB at 15◦. Given the radiometric uncertainty in the GM
data of 1.54–1.74 dB (ESA, 2007a), such differences may be
disregarded for our purposes.

Fig. 3. Key map to describe range of1σ0 values derived from
image differencing process.

3.1 Expected values

The range of values encountered in the resultant1σ 0 image
are represented graphically in Fig.3, and may be categorised
as follows:

1. Areas with values common to both the target and the
baseline image are shown in red (values close to zero),
and include permanent water and desert, shown in
Box 1, together with all other unchanged values be-
tween Boxes 4 and 5.

2. Would occur where water were present in the baseline
image and not in the target image (which is unexpected).
Such values are far more likely to represent the surface
of desert or very dry radar-dark soils becoming wet,
which greatly increases backscatter (Robinson et al.,
2006). These values can also represent the occurrence
of Bragg Resonance due to wind effects on permanent
water (Schaber et al., 1997).

3. Flooding. Mid-high values in the baseline image have
become mid-low.

4. These have values below the threshold which may there-
fore be rightly or wrongly classified as flood water. It is
with the intent to capture such errors that the region-
growing algorithm, making spacial association relevant
to the classification decision process, is adopted here.

5. Mid-high baseline values which undergo a small-large
increase in backscatter values between the baseline and
target images. Again, this can represent a dry surface
becoming wet, but could also encompass open flood wa-
ters where conditions are right for wind-induced Bragg
resonance to return a high backscatter signal.
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In the image differencing process, permanent water bodies,
which are common to the baseline and target images, are re-
moved. However, where water bodies are permanent and
semi-permanent, their extents are easily mapped and over-
lain if required. We are interested here in mapping inunda-
tion outside of the current river coarse. The filling-in of per-
manent water after the flood classification and prior to test-
ing would increase accuracy, but the results here are left as
they are, with such limitations remaining exposed. Part of
the reason for this is that the flood dynamics of the Pakistani
rivers are complex, punctuated by sudden effects such as the
breaching of the many levees which regulate their flow, and
we therefore prefer in this instance to make no assumptions
as to any possible deviations to the normal channel flow.

4 Method

4.1 Data acquisition

Data was acquired systematically via download from ESA’s
Kiruna and ESRIN ground stations, made available in a two-
week moving window through the Category 1 Fast Track
Registration agreement.

4.2 Coverage

Area and frequency of cover of the region of interest was
compared with MODIS Aqua and Terra data. In order to test
comparative coverage, a mask was created by buffering the
Indus river by 50 km. For each day of August, the sum of
pixels covered by GM data for that day were recorded along
with the number of cloud-free pixels contained within the
MODIS Terra and Aqua images, as a percentage of the total
pixels for the masked region.

4.3 Image preprocessing

Incidence angles (θ ), slant-range times (SRT) and geograph-
ical coordinates are provided within the raw GM data file,
corresponding to tie points that form a grid with a spacing of
80–85 pixels across the image. Interpolation ofθ and SRT
was carried out first across the swath, and then the azimuth
direction, to obtain values for each pixel. Terrain correction
was also carried out in the frame of reference of the raw data
file, due to the fact that columns and rows run parallel to
the azimuth and swath respectively, making the geometry in-
volved in the calculation much simpler. For this purpose,
SRTM 7.5 arc-second Digital Elevation Model (DEM) data
(Reuter et al., 2007; Jarvis et al., 2008) were projected into
the local x–y coordinate system. The incidence anglesθ and
the DEM were then used to calculate local incidence angles
(α) for each pixel. Both the orthorectified Digital Number
(DN) and α surfaces were then transformed to geographic
coordinates by third order polynomial transformation.

4.4 Image differencing

For each target image acquired over the study area, a match-
ing image from the same orbit track was chosen as a baseline,
being the latest available image covering all of the azimuth
extent of the target and occurring prior to the commencement
of the flood event. Details of the data used are shown in Ta-
ble 1. The raw data files were registered in a database, at
which time tie point data, including coordinates, incidence
angles and slant-range times were extracted.

4.5 Baseline datasets from MODIS

MODIS data were chosen from the results of the cloud-cover
study described in Sect.4.2, for three dates, with which to
establish GM data classification thresholds and by which to
gauge the accuracy of the classification process.

4.6 Thresholding and classification

In order to obtain a binary map of the inundated regions, a
region-growing function provided as part of the GRASS GIS
package (GRASS Development Team, 2009) was used. The
r.lake function is primarily intended to fill a lake to a target
water level from a given start point, or seed. This starting
point can be a set of coordinates, or a raster map in which the
seed points are represented by non-null values. The function
will grow a region, starting at the seed points, until a speci-
fied water level is reached, as determined by a given DEM.
In our case, the seed was a rasterised line-type shape file of
Pakistan’s river channels, the “DEM” was the1σ 0 image,
and the “water level” was set to the various thresholds tested.
This method allows the use of a threshold value that is well
inside the standard deviation of values for non-flooded ar-
eas, with the provision that the selected pixels are adjacent
to other selected pixels as grown from the river channels. In
order to try to mitigate errors of commission on the outskirts
of the selected regions, a 3×3 modal neighbourhood filter
was then applied to the binary classification.

MODIS band 6 data, representing Short Wave Infra-Red
(SWIR) radiation (λ = 1628–1652 nm), were used to map
flooding and to establish thresholds to use with the radar
images. Light in this short-wave infra-red waveband is ab-
sorbed by all but the most turbid water, and is therefore often
used to map water (e.g.Ordoyne and Friedl, 2008; Dheera-
vath et al., 2010). Whilst MODIS reflectance bands provided
by USGS attempt to achieve surface reflectance values, it is
the case that attenuators such as thin cloud, that vary from
image to image, preclude the use of a single absolute thresh-
old applied to MODIS data in order to establish the bench-
mark. Figure4 shows the density plot of MODIS Band 6
reflectance values over the flooded region from two images,
taken two days apart. There is a clear full-range displacement
of reflectance values of 0.03–0.05.

www.hydrol-earth-syst-sci.net/15/3475/2011/ Hydrol. Earth Syst. Sci., 15, 3475–3494, 2011



3480 D. O’Grady et al.: Flood mapping with ASAR GM Mode

Table 1. GM Data used in this study. TheBaseline Cyclerefers to
the orbit cycle corresponding to the deducted baseline data.

Orbit Orbit Baseline
Date cycle track cycle

1 1 April 2010 88 134 –
2 17 April 2010 88 363 –
3 13 May 2010 89 234 –
4 16 May 2010 89 277 –
5 26 May 2010 89 420 –
6 1 June 2010 90 5 –
7 6 June 2010 90 84 –
8 7 June 2010 90 91 –
9 12 June 2010 90 170 –
10 15 June 2010 90 213 –
11 17 June 2010 90 234 89
12 19 June 2010 90 270 –
13 20 June 2010 90 277 89
14 22 June 2010 90 313 –
15 23 June 2010 90 320 –
16 28 June 2010 90 399 –
17 1 July 2010 90 442 –
18 3 July 2010 90 463 –
19 4 July 2010 90 485 –
20 5 July 2010 90 499 –
21 9 July 2010 91 48 –
22 11 July 2010 91 84 90
23 12 July 2010 91 91 90
24 15 July 2010 91 134 88
25 17 July 2010 91 170 90
26 22 July 2010 91 234 89
27 24 July 2010 91 270 90
28 25 July 2010 91 277 89
29 27 July 2010 91 313 90
30 28 July 2010 91 320 90
31 31 July 2010 91 363 88
32 2 August 2010 91 399 90
33 4 August 2010 91 420 89
34 5 August 2010 91 442 90
35 7 August 2010 91 463 90
36 8 August 2010 91 485 90
37 9 August 2010 91 499 90
38 10 August 2010 92 5 90
39 13 August 2010 92 48 91
40 15 August 2010 92 84 90
41 16 August 2010 92 91 90
42 19 August 2010 92 134 88
43 21 August 2010 92 170 90
44 24 August 2010 92 213 90
45 26 August 2010 92 234 89
46 28 August 2010 92 270 90
47 29 August 2010 92 277 89
48 31 August 2010 92 313 90
49 1 September 2010 92 320 90
50 4 September 2010 92 363 88
51 6 September 2010 92 399 90
52 8 September 2010 92 420 89
53 9 September 2010 92 442 90
54 11 September 2010 92 463 90
55 12 September 2010 92 485 90
56 13 September 2010 92 499 90
57 14 September 2010 93 5 90
58 17 September 2010 93 48 91
59 20 September 2010 93 91 90
60 25 September 2010 93 170 90
61 28 September 2010 93 213 90
62 5 October 2010 93 313 90
63 6 October 2010 93 320 90
64 9 October 2010 93 363 88
65 14 October 2010 93 442 90
66 17 October 2010 93 485 90

Fig. 4. Density plot of MODIS Band 6 reflectance values over the
flooded region on 27 and 29 August 2010. The peaks at reflectance
values of 0.05 and 0.1 represent water, as is seen later in the kappa
analyses.

To account for this uncertainty, a bivariate sensitivity anal-
ysis was carried out, matching conformance of a range of
radar backscatter thresholds in the radar images against a
range of thresholds in the contemporaneous MODIS images.
A peak in cross-correlation outside of the extreme thresh-
old values (which would classify the whole image as flooded
or non-flooded) would only likely represent common opti-
mal flooded/non-flooded thresholds, as beyond the low sig-
nal response to water common to SWIR and radar data, the
characteristic responses of each of the wavebands are largely
independent. In order to gauge the performance of classi-
fications under varied thresholds, it is insufficient to simply
determine the percentage of coincidence of allocated classes,
as this gives a distorted result. If, for example, a flooded area
comprises 5 % of the region under study, then a classifica-
tion omitting all the flooding would, with such a method of
assessment, be 95 % correct. For this reason, Cohen’s kappa
statistic is often used as a “coefficient of agreement” between
two classification processes (Cohen, 1960; Tolpekin et al.,
2009; Foody, 2006; Hunt et al., 2010). The kappa statisticκ
is calculated as

κ =
p0−pc

1−pc
(5)

wherep0 is the proportion of pixels in which agreement is
observed andpc is the theoretical proportion expected by
chance selection (Cohen, 1960). It is the latter parameter
which is perceived in certain instances to be problematic, as
the observed proportion of allocation to each class is used as
a basis to calculate random expectation (in effect, assuming
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that the decision process will always allocate the correct pro-
portion of pixels to each class, whether the specific alloca-
tions are correct or not). This is not considered an issue in
our case. Firstly, the assumption of proportion is observed
to be approximately correct. Secondly, we are, while in pur-
suit of an optimal threshold, seeking a relative measure of
classification accuracy rather than an absolute one.

Where good clear MODIS data were available during the
flood event,κ was calculated for a matrix of classifications
made with SWIR reflectance upper thresholds ranging be-
tween 0.05 and 0.25, and GM (difference image)1σ 0 upper
thresholds ranging between−10 and 0 dB. From this, the op-
timal backscatter thresholds could be observed, together with
their sensitivity and inter-image variability. A comparison
was made using the single target GM image, with a ground-
range projected backscatter (γ ) upper threshold range be-
tween−20 and 0 dB. A threshold to be used where MODIS
data were unavailable was decided in this way, and its suit-
ability assessed on a further series ofκ analyses on another
date for which MODIS data were available.

5 Results

5.1 Coverage

During the 98 days between 11 July and 17 October 2010,
the average repeat coverage period by GM data over the re-
gion studied was around 9 days (see Fig.5). Though this
would be insufficient for a complete time series of the flood
dynamics, it can feasibly serve to fill the gaps in informa-
tion gained from optical sensors such as MODIS caused by
the presence of cloud cover. Figure6 shows a comparison
of percentage of the full flood extent captured independently
by MODIS Terra, MODIS Aqua and GM data, for each day
of August 2010. Cloud cover limited the use of MODIS data
through the first week of August, during the build-up of flood
waters north of Sukkur, whilst there were sufficient GM data
to build a picture of the flood extents at this time. Much of
the rain that caused the floods in Pakistan fell on the ranges
to the north, and as such, there were significant periods free
of cloud further down stream where most of the catastrophic
flooding occurred, and so in this respect, as a “dry flood”,
this event enjoyed better coverage than most similar events
with optical data, and in many other flood events, it may be
reasonably assumed that the difference in availability of data
could be far greater.

5.2 Image differencing

It can be seen from the probability density functions shown
in Fig. 7 that attempts to map flooding using a simple thresh-
old would result in large errors of commission and omission,
due to the range of overlap of values. In the non-flooded ar-
eas, as we have chosen a region close to the known flooding,
the slight rise in average backscatter value may be due in part

Fig. 5. Count of frequency of cover by GM data over the 98
day study period. The black outlines represents the maximum
flood extent.

to increased surface soil moisture (Pathe et al., 2009) in the
vicinity of the flood and possibly from dihedral scattering
from vegetation emergent from flood waters at the boundary
of the flooded class regions (Hess et al., 2003). In addition
to native vegetation close to the main river channel, wheat,
cotton, onion, sunflower, rice, pulses and dates are all grown
in the region (Ashraf and Majeed, 2006). The large standard
deviation of1σ 0 values in the non-flooded regions can be
explained by a couple of factors. Firstly the propensity of
radar data to contain noise, most of which is speckle. This
is characterised by high and low valued pixels whose values
represent interference arising from the use of a coherent elec-
tromagnetic radiation source, rather than having anything to
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Fig. 6. Percentage of full flood extent covered on each day of Au-
gust 2010 by MODIS Terra, MODIS Aqua and GM data.

do with the target. Speckle can lead to sharp differences in
values between any two radar images. Secondly, variations
in the immediate recent rainfall history can cause large dif-
ferences in backscatter value. Not only moist soil, but also
wet vegetation tends to give a high backscatter response at
C-band (e.g.Ulaby et al., 1982). A drop in radar value in
non-flooded areas can be seen where smooth specular reflect-
ing alluvial sediments, for example, dry out. Low backscat-
ter also occurs where the signal is absorbed/attenuated by
very dry sand (Robinson et al., 2006; Schaber et al., 1997),
though such a fall from relatively wet to very dry conditions
necessary to produce a low1σ 0 value are unlikely to have
occurred so close to the main channel.

The distribution of1σ 0 values in the flooded region is
perhaps best explained in terms of what may be observed in
Fig. 8. The images centre on the segment of the Indus river
running between Sukkur and Dadu, where its course changes
from a south-west to a south-east direction. The image on
the left shows radar backscatter values acquired on 20 Au-
gust 2010. The image on the right shows the same values,
with those of a previous cycle deducted. The regions la-
belled D and F represent sections of the river characterised
by a large flood channel superimposed with the meander-
ing and anabranching main Indus channel (see Fig.9). At
the time of acquisition, this large channel was completely
flooded, and appears as radar dark in the first image. How-
ever, due to the fact that alluvial sediment can also act as a
specular reflector in the same way as water, much of the D
region is punctuated with mid-range value pixels in the dif-
ference image, and region F is all but indistinguishable from
non-flooded land. The large area at A with low backscat-
ter values in the first image shows that part of the lowlands
which protrudes into the Sulaiman mountains of Balochistan,
comprising mainly the districts of Bolan and Sibi. This re-
gion is normally dry, with an annual rainfall of 200–250 mm.
The low backscatter is considered to be the result of attenua-
tion and absorption of the signal, rather than of specular re-
flection. The low backscatter values are clearly offset in the
difference image, leaving only those low values representing

Fig. 7. Probability density functions for1σ0 for water and land
over the flooded region on 29 August 2010, as determined by clas-
sification using MODIS SWIR Reflectance Threshold of 0.13.

the rivers that run west below A and then south towards Lake
Manchar below B. Similarly, the dark region in the first im-
age at C is at the western edge of the Thar Desert. The bright
strip running north-south immediately to the right of C shows
the relatively high backscatter from the vegetation bordering
the Nara Canal and its irrigated hinterland. As with A, the
response of both the irrigated strip and the desert are com-
mon to the consecutive orbit cycles, and hence do not appear
in the difference image.

5.3 Thresholding and classification

A comparison of value profiles of1σ 0 and MODIS Band 6
across a section of the flooded Indus, as at 10 August 2010, is
shown in Fig.10. It can be seen that, at this scale, the choice
of threshold of Band 6 to classify water is not particularly
sensitive between around 0.2 and 0.15 units, where the pro-
file crosses the flooded area, with relatively few pixels taking
intermediate values. There is little doubt that where SWIR
reflectance values fall close to zero on all legs, there is open
water. In these areas along legs 1, 2 and 3, the correspond-
ing 1σ 0 values fall below−2 dB, corresponding to a fall in
backscatter values caused by increased specular reflection,
due to the increased presence of water. Along legs 4 and 5,
however, there are large fluctuations of1σ 0 values. This is
mainly due to the fact that, as mentioned before, the alluvial
sediment can also act as a specular reflector in the same way
as water, thus the dry baseline low pixel values are offset
from the target image, producing mid-range difference val-
ues. Areas where a slight rise in SWIR reflectance coincides
with a sharp rise in1σ 0 (such as at 40 km and 120 km on
the x-axis) are believed to represent partial inundation with
emergent vegetation, the high1σ 0 values being the result of
dihedral scatter.
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Fig. 8. The region between Jacobabad and Nawabshah in mid Au-
gust 2010. The image on the left shows backscatter values in deci-
bels. Smooth open water is commonly represented by values of
around−16 dB or below. The image on the right shows the same
data, with the values from the previous cycle along the same orbit
track having been deducted. A better understanding of the true ex-
tent of flooding can be discerned by a difference of around−4 dB
in this image.

These profiles demonstrate the volatility of1σ 0 values,
especially in those areas that show a low backscatter response
under non-flooded conditions, as discussed above. It was
found that the choice of a simple1σ 0 threshold to suit condi-
tions in the main river channel would result in many regions
mapped incorrectly as flooding in areas well away from the
river channels. For this reason it was decided to make con-
tiguousness with other flooded pixels adjacent to the river
channels a condition of the flood class, in addition to the sat-
isfaction of the1σ 0 threshold. Therefore flooded regions
were mapped by growing contiguous areas that satisfied the

Fig. 9. Landsat composite colour image of the Indus and its flood-
plain southwest of Sukkur. The Nara canal is seen running north-
south to the right of the image.

threshold criterion from pixels at the centre of the river chan-
nel outwards, using the technique described in Sect.4.6.

5.3.1 Bivariate sensitivity analysis to determine
threshold

κ statistic values calculated in the sensitivity analysis de-
scribed in Sect.4.6 are shown in Figs.11, 12 and 13. It
can be seen that, while the optimal SWIR reflectance thresh-
old varies between the dates, the optimal1σ 0 threshold of
around−2 dB is common to the three instances. The reasons
for the differences in the MODIS thresholds was discussed in
Sect.4.6 and the difference between the optimal reflectance
thresholds of 0.07 and 0.11 on 27 and 29 August respectively
are manifest in the shift in distribution of values between the
two MODIS images that was shown in Fig.4.

Figure14shows flood extent estimates from MODIS (top),
the single contemporaneous GM image (centre) and the GM
Difference image (bottom), each using thresholds optimized
from the process described above.

With the single image in the centre, there are two processes
resulting in the low backscatter response. To the north-west
of the dashed line, the low response is dominated by specular
reflection from the surface of flood waters. To the south-east
of the dashed line, the low backscatter response is caused
by absorption in desert sands. The wrongly classified desert
area is eliminated in the third image, as this low response
from the desert areas is common to both the target image and
its baseline partner, and is therefore subtracted out.
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Fig. 10. Comparison of value profiles of1σ0 (top-left image, red profile) and MODIS Band 6 (1628–1652 nm) (top-right image, blue
profile) from a section of the flooded Indus on 10 August 2010.

When comparing the MODIS (top) image with the Differ-
ence image (bottom), it can be seen that whilst the bound-
aries of the flood are well defined, areas of permanent water
or radar-dark flood plain regions are also eliminated. In the
central image derived from the single GM data set, such areas
which do fall within the flooded region are more completely
defined. With a priori knowledge of terrain and environmen-
tal conditions, one can mask out desert areas and achieve a
more accurate classification using the single image. Mask-
ing must be very precise, however, as some absorption areas
can lie extremely close to the flooded region, as can be seen
from the area encircled in red in the middle image. Assum-
ing sufficient information is available within the time frame
allowed, the higher accuracy which may be achieved by such
masking is demonstrated in Fig.15, where aκ value of 0.7 is
achieved. Note that the precedence of MODIS SWIR thresh-
olds matches that seen in Fig.12, as expected.

Where a fast indicator of the extent of flooding through
otherwise dry land is urgently required, we propose that
the image differencing technique offers a reasonably stable

means to identify those extents between periods where opti-
cal data are unavailable, enabling a broad scale view of the
flood dynamics with a better temporal resolution than could
otherwise be achieved.

5.4 Inundation dynamics

Figure16 shows instances from the resultant time series of
binary flood maps. The first two images show the build up
of the upper reaches of the Indus. By 7 August, the Chenab
has flooded and the main flood has reached Kashmore. The
image at 12 August shows the situation following the breach-
ing of a bund at Thori in Kashmore. By 20 August the flood
has reached the Hyderabad district. The 29 August image
shows the results of two significant breaches, one at Sukkur,
allowing the flood to split and inundate the Jacobabad region
to the north of the Indus, and another at Sarjani to the south,
where part of a dyke collapsed on 26 August. This resulted
in the extensive flooding in the south which is evident on
11 September. The final two images, set three weeks apart,
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Fig. 11.κ statistic calculated for individual classifications of flood-
ing on 10 August 2010, based upon1σ0 thresholds ranging from
−10 to 0 dB. The series represents corresponding MODIS Band 6
reflectance thresholds used in the reference image, ranging from
0.05 to 0.25.

show the flooded region covering over 7000 km2 between Ja-
cobabad and the Manchar Lake in Dadu, which remained for
many weeks. Beyond 20 October 2010, there followed a pe-
riod in which the Envisat satellite underwent a scheduled pro-
gram change, during which time GM data was unavailable.

Figure 17 shows the duration of flooding over the full
extents, up to 17 October 2010, as derived from the GM
data. Many regions remained inundated for several weeks,
the greatest duration being observed in the area around Ja-
cobabad described above. The greatest flood duration shown
at 97 days represents the enlarged Lake Manchar to the south-
west of this region.

An idea of the propagation speed of flood waves can be
gained from Fig.18, which shows the distance along the In-
dus river channel of the head of the main flood, and the re-
ceding tail end. The initial advance covered some 500 km
in 5 days (about 4 km per hour), with the flood reaching the
southern extents towards the end of the first week in Septem-
ber. The greatest length of flooding occurs where the reces-
sion curve is flattest at around 21 August. The recession rate
is seen to increase at the end of August, following the bund
breaches at Sukkur and Sarjani, flattening off once more in
early September, when the front of the flooding is seen to
retreat back to localised areas.

Figure19 shows the flooded area over the time series, de-
rived from the combination of GM and MODIS data. The
lower curve shows only the flooding around the main Indus

Fig. 12.κ statistic calculated for individual classifications of flood-
ing on 27 August 2010, based upon1σ0 thresholds ranging from
−10 to 0 dB. The series represents corresponding MODIS Band 6
reflectance thresholds used in the reference image, ranging from
0.05 to 0.25.

Channel. The upper curve shows the total area, including
the near-static flooding between Jacobabad and Dadu, which
remained well into October 2010.

5.5 Accuracy

A measure of the classification accuracy of this method was
known throughout from theκ statistic values used to ascer-
tain the optimal thresholds to use. The consequence of fixing
a 1σ 0 threshold of−2 dB based on theκ tests done on 10
and 27 August was further tested on the classification done
for 29 August, the results of which are tabulated in Table2
and shown graphically in Fig.20. Theκ statistics over the
full range of MODIS Band 6 reflectance values and1σ 0 val-
ues were also seen in Fig.13.

The following factors are considered to be the main con-
tributors to inaccuracy:

– As discussed in Sect.5.2, much of the flooded region
covers the immediate flood plain which ordinarily con-
tains large meanders, anabranching and ox bow lakes.
Low backscatter returns from these semi-permanent wa-
ter bodies contribute to to a lower value in a larger area
of the baseline image when averaged to a pixel size of
500 m. This is offset from similar values in the tar-
get image, resulting in mid-range values, incorrectly
interpreted as land.
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Fig. 13.κ statistic calculated for individual classifications of flood-
ing on 29 August 2010, based upon1σ0 thresholds ranging from
−10 to 0 dB. The series represents corresponding MODIS Band 6
reflectance thresholds used in the reference image, ranging from
0.05 to 0.25.

– Semi-submerged vegetation can cause high backscat-
ter values due to multihedral scattering as discussed,
which, again, when averaged with low values from open
water may return a mid-range value.

– Wind conditions may be such that Bragg Scattering oc-
curs, causing relatively high return values. Determina-
tion of the extent of this effect would require detailed
wind speed and direction data, which were not available
for this period.

6 Discussion

6.1 Natural disaster response

For regions which face a high risk of flooding that may be
ever increasing (Schiermeier, 2011), mitigating the impact
of flooding can fall within two broad categories: planning
and organisation based on predicted scenarios, and reactive
response during and after an event. Action under the first of
these requires an understanding of processes which govern
the magnitude and extent of possible floods. Such an un-
derstanding cannot rely exclusively on historical data where
land use and climate are changing, but must instead require
predictive modelling. Fig. 14.Flood extent estimates from MODIS (top,κ = 1), the single

contemporaneous GM image (centre,κ = 0.3) and the GM Differ-
ence image (bottom,κ = 0.6), using optimised thresholds.
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Fig. 15.κ statistic calculated for individual classifications of flood-
ing on 27 August 2010, based uponγ thresholds ranging from−20
to 0 dB, following precise masking of radar-dark dry land estab-
lished from the image differencing process. The series represents
corresponding MODIS Band 6 reflectance thresholds used in the
reference image, ranging from 0.05 to 0.25.

Remote sensing has played an increasingly important role
in this process in recent years. The establishment of pa-
rameters in hydrological models have called upon, for ex-
ample, leaf area index calculations or on surface water ex-
tents using data from optical sensors such as Landsat Ther-
mal Mapper (Chen et al., 2004; Stisen et al., 2008; Milzow
et al., 2009a) and have increasingly incorporated soil mois-
ture values gained from Envisat ASAR in such modelling
(Decharme et al., 2009; Liu et al., 2010; Saux-Picart et al.,
2009). Radar-derived DEM’s have been assessed and used
in hydrological modelling widely (e.g.Ludwig and Schnei-
der, 2006). More directly, hydraulic processes involved in
flooding have been modelled to estimate flood magnitudes
(Conesa-Garcia et al., 2010; Hostache et al., 2009) and to
develop flood inundation models (Schumann et al., 2007).
Coupled models using SAR data have been employed in the
last few years to useful effect.Montanari et al.(2009) in-
vestigate the usefulness of SAR data to gauge flood extents
and stage heights in deriving soil saturation values.Milzow
et al. (2009b) seek to verify hydrological models by com-
paring simulated flood patterns with flood maps derived us-
ing AVHRR and ASAR data.Pauwels et al.(2009) calculate
soil hydraulic conductivity values through a combination of
SAR-based moisture maps and land surface modelling.

Table 2. Error matrix andκ statistic for the flood map on 29 August
2010 when compared with MODIS flood classification.

MODIS
Category Flooded Non-Flooded Row Sum

1 Flooded 34761 10464 45225
σ0 Non-Flooded 18662 228902 247564

Col Sum 53423 239366 292789

Cats % Commission % Omission Est.κ

Flooded 23.1 34.9 0.71
Non-Flooded 7.5 4.4 0.59

κ κ Variance

0.65 0.000004

Obs Correct Total Obs % Observed Correct

263663 292789 90.1

Predictive modelling has significant limitations in certain
instances. An example of this can be observed in the case
of the floods in Pakistan. There are limitations to ascertain-
ing water volumes for the modelling process in large areas
of very low gradient, necessitating a spatially and radiomet-
rically high resolution DEM (Sanyal and Lu, 2004). Fur-
ther to this, the use of levees on a large and small scale
is widespread throughout the floodplain, many of which
are built “privately” and therefore remain unmapped3. In
this case, therefore, the importance of flood mapping based
on observation, increases. So too does the significance of
data availability, speed of acquisition, spatial coverage and
temporal resolution.

6.2 Use and limitations of the GM data for flood
mapping

The swath width of GM data is∼405 km and permits a syn-
optic assessment of large flood events at the basin scale. Cap-
turing the onset of a flooding event as early as possible is
critical for emergency response. ENVISAT ASAR GM was
one of the few sensors capable of capturing the full extent
of the flooding in Pakistan during the first week and a half
(e.g. MODIS data were unavailable from 2 to 9 August 2010
due to high cloud cover). ENVISAT ASAR GM acquisi-
tion is not systematic but will depend on other modes being
switched off. Hence the coverage of a particular region can
be variable. Across Asia, we found from September 2009 to
May 2011 an average of 2–3 weekly observations at a sin-
gle location. Over the same period there were no GM data
acquired over New Zealand and 8 per week in parts of North
America. Average frequency of land coverage per week by
GM data over this 600 day period is shown in Fig.21. The

3see http://tribune.com.pk/story/219602/
private-dykes-on-public-land-may-lead-to-another-bout-of-floods/,
for example
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Fig. 16. Selected instances from the time series showing the build-up of flooding and much of its recession. Flooding is still evident in the
third week of October 2010, at which time data temporarily ceased to be available, due to ESA’s scheduled preparations for Envisat’s project
extension program.
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Fig. 17. Map showing the extent and duration of inundation sur-
rounding the Indus and Chenab rivers as derived from satellite radar
data acquired between July and October 2010.

temporal distribution is not evenly spread. Southeast Asia,
for example, received virtually no coverage for the first four
months of the study period.

In Pakistan, we found the coverage of the ENVISAT
ASAR Global Mode data was adequate to capture the dy-
namics of the propagation of the 2010 flood across the entire
Indus Basin (Figs.5and6). However, a lower acquisition fre-
quency from 17 August 2010 onwards only allows for partial
coverage of the recession of the flood.

A major limitation of the ASAR GM mapping tech-
nique used here is that inundated area with emergent vege-
tation can be confused with land area of high soil moisture.
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Fig. 18. Distance of the flood head and tail along the Indus channel
from the foot of the northern ranges at 71◦ N, 32◦ S.

Wind-induced waves can also generate a roughening of the
water surface which increases the scattering of the radar sig-
nal due to Bragg resonance; a phenomenon that is more pro-
nounced in C than L-band over inland water bodies (Alpers,
1985; Alsdorf et al., 2007). Finally, partial flooding inside
a pixel can be a common feature at this scale (spatial reso-
lution of ∼1 km) especially along braided channels and will
result in mixed pixels composed of land, water and flooded
vegetation, which can return a wide range of signals.

The original mapping presented here was carried out in
response to a request for a timely indication of the extent
of flooding by a UN emergency response team when the
event was in full throw, when expediency and simplicity
competed with sophistication of technique as priorities. The
methods lend themselves to seek greater accuracy by further
analysis, building on thresholding and region-growing tech-
niques by, for example,Yu and Clausi(2007); Matgen et al.
(2011); Galland et al.(2009) andSilveira and Heleno(2009).
Other successful segmentation methods for SAR images in-
volving texture and shape (van der Werff and van der Meer,
2007), active contours (Ben Ayed et al., 2005; Chakraborty
et al., 2009; Fu et al., 2008) and multi-objective algorithms
(Collins and Kopp, 2008) may be suitable. However, it
is felt that the basic premise of same-track image differ-
encing (to mitigate incidence-angle effects and ambiguous
low-backscatter response due to absorption), coupled with a
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Fig. 19.Area of inundation over time, of the Indus Channel and the
total flood.

robust region-growing segmentation technique (e.g.Matgen
et al., 2011) to account for the small inter-modal range in
the probability density functions of flooded and non-flooded
areas, is well suited to map flooding in arid regions using
SAR data.

6.3 A complement to other mapping techniques

Optical sensors, such as Landsat TM and MODIS, can easily
detect open water using the strong absorption of solar energy
by water in the near and middle infra-red. Shallow depths
and turbid waters, are better detected at greater wavelengths
(> 1 µm; short-wave infra-red) where the illumination of the
suspended materials or of the shallow bottom of a water col-
umn is considerably reduced (Li et al., 2003; Bukata, 2005).
However during storm events the use of optical data can
be severely limited by cloud cover. Radar imaging is less
affected by cloud cover and can penetrate vegetation at a
depth which depends on the wavelength used and the struc-
ture (density and height) of the vegetation (Hess et al., 2003;
Martinez and Le Toan, 2007; Rosenqvist et al., 2007; Als-
dorf et al., 2007). The use of L band data from the JERS and
ALOS PALSAR sensors for flood monitoring is mainly re-
stricted by acquisition times and limited archives, rather than
by weather or vegetation condition. ALOS PALSAR data in
the wide swath mode are particularly attractive to cover large
regions, but unfortunately the system failed in April 2011

Fig. 20.Comparison of the1σ0-derived flood map on from 29 Au-
gust 2010 against MODIS flood classification.

and this resource is therefore no longer available for data be-
yond that time4. Passive microwave data (e.g. SSM/I and
ISCCP) are helpful for delineating inundated areas (e.g.Sip-
pel et al., 1998; Hamilton et al., 2002), in particular when
used in conjunction with other sensors to limit confounding
factors such as atmospheric condition and vegetation (Pri-
gent et al., 2007), but their use in natural disaster response
is limited by their low spatial resolution (tens of km). The
geosynchronous weather satellites (e.g. Meteosat II, GOES,
GMS) may often be able to bypass clouds with their high
temporal resolution allowing for the mapping of open water
at ∼1 km spatial resolution. In the specific case of flooding
events occurring in semi-arid and arid regions, such as the
Pakistan flood studied here, water under flooded vegetation
can also be mapped using composite data from the thermal
bands of these weather satellites (Leblanc et al., 2003, 2011).

Amongst the most promising potential developments in
remote sensing of surface water is the future Surface Wa-
ter and Ocean Topography (SWOT) mission. It is currently
planned to be launched in 2020 and will provide significant

4http://www.palsar.ersdac.or.jp/e/
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Fig. 21. Average frequency of terrestrial coverage per week by GM data between September 2009 and May 2011.

improvements in our abilities to map inundated areas from
space5. Using wide-swath altimetry technology, SWOT will
provide temporal and spatial variations in water volumes
stored in rivers, lakes, and wetlands at unprecedented res-
olution (Biancamaria et al., 2010). SWOT will generate a
global 3-D mapping of all terrestrial water bodies whose sur-
face area exceeds 250 m2 and rivers whose width exceeds
100 m (Biancamaria et al., 2010). The principal instrument
of SWOT will be a Ka-band Radar Interferometer (KaRIN),
which will provide heights and co-registered all-weather im-
agery of water over 2 swaths, each 60 km wide, with an ex-
pected precision of 1 cm km−1 for water slopes, and abso-
lute height level precision of 10 cm km−2. ESA will also be
extending and improving C-band SAR capabilities with the
launch of the Sentinel-1 system, expected in 2013. This pair
of satellites is planned to provide data with a spatial resolu-
tion of 20 m, with a revisit time of between 1 and 3 days for
Europe and Canada6.

6.4 Other applications of GM data

Space borne technologies are increasingly found to be a key
source of information for wetlands conservation and man-
agement, as many of the World’s wetlands have insufficient
on-ground data in part due to their size, number and lim-
ited accessibility (Jones et al., 2009). Even at such a time
when technological advancement in data processing, storage
and communication enables ever higher spatial resolutions
from airborne and satellite sensors, the use of coarser reso-
lution data still has a very firm place in the remote sensing
field where broad-scale monitoring is required, such as the
monitoring of algal blooms (Ahn and Shanmugam, 2006),

5http://swot.jpl.nasa.gov/mission/
6http://www.esa.int/esaLP/SEMBRS4KXMFLPgmes0.html

assessing risks of fire (Chéret and Denux, 2007; A. and R.,
2008) or drought (Rojas et al., 2011), the development of
land surface models (Jarlan et al., 2005), the assessment of
animal stocking rates (Hunt and Miyake, 2006) and the map-
ping of shorelines (M.-Muslim et al., 2007). The perceived
role of GM data was primarily in the monitoring of sea
ice (ESA, 2007b), to which field it has indeed contributed
(e.g.Quincey and Luckman, 2009). However, its coverage
and availability have already been identified as useful advan-
tages in other areas, and have been put to good use, partic-
ularly in the areas of relative soil moisture (Bartsch et al.,
2008, 2009), surface soil wetness (Pathe et al., 2009; Scipal
et al., 2005) and in wetness dynamics (Scipal et al., 2005).
The implication of GM data’s sensitivity to surface wetness
has recently led to the interesting extension to its potential
use in the monitoring of freeze-thaw cycles in permafrost
regions (Park et al., 2011).

The need for coarse scale inundation mapping has
been identified and acted upon, resulting in, for example,
the 25 km resolution surface water product described by
Schroeder et al.(2010) which tests favourably against finer
resolution products, and the 0.25◦ global inundation map
produced byPrigent et al.(2007).

This study aims to contribute to this latter group at a res-
olution that falls between those global-oriented scales and
the finer river-channel-scale resolutions that can be achieved
with other sensor-mode configurations such as JERS, ALOS
PALSAR or ASAR in its finer modes. It is felt that ENVISAT
ASAR GM data could be used to monitor inundation patterns
over large wetlands in complement to estimates from other
sensors (e.g.Sakamoto et al., 2007).
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7 Conclusions

It is clear that during periods of cloud cover, in which optical
satellite data with which to map a flood event is not avail-
able, GM data may be available to varying degrees that cover
the region of interest. Much of the rain (and the cloud) that
affects flooding in Pakistan occurs in the mountains away
from the flood plain, and so it is fair to say that the rela-
tive availability of GM data with optical data may be greater
in flood events elsewhere, making the use of GM data of
greater value.

Ambiguity resulting from low backscatter values from
non-flooded areas have been shown to have been reduced
greatly by the image differencing process, as these low
backscatter values are reasonably consistent between orbit
cycles. A greater challenge is presented by the ambigui-
ties in origin of data values, where effects such as dihedral
scattering, Bragg resonance and speckle can raise and lower
pixel values and prohibit the accurate classification of water.
Where the objective is to ascertain the extent of flooding in
near real time, there is little that can be done about Bragg
resonance unless precise wind conditions are known, other
than to hope that temporal frequency of data is sufficient to
allow us to understand where this effect may have occurred
and to rectify it in an updated image. The effects of speckle
can be reduced with filtering. Dihedral scattering can, to
some extent, be managed by acceptance that only open water
is being mapped, or by further analysis using textural mea-
sures. Where, for example, dihedral scattering is dominant in
a pixel, we expect the1σ 0 value to be high, and would ex-
pect such areas of partial inundation to surround areas of total
inundation. Further analysis could therefore encompass such
regions into the flooded class and improve the overall accu-
racy. The coarse spatial resolution of GM data compounds
all of the above problems, where adjacent regions of low and
high backscatter values return an averaged mid-range value.

It has been shown, however, that a reasonable level of
overall accuracy can be achieved using GM data which al-
lows an understanding of the dynamics and broad-scale ex-
tents of a large flood during periods when there are no other
means by which to judge these parameters. In the interests
of flood mitigation planning, where thousands of lives are at
stake, we feel that the potential use of GM data for this pur-
pose is significant.
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