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INTRODUCTION

Mortality plays a crucial role in shaping animal
populations, but accurately quantifying this parameter
has proven difficult for many aquatic organisms.
Long-term approaches that allow the fate of individu-
als to be followed (e.g. conventional tagging, acoustic
monitoring and cohort analysis) are used, but the
logistics of data collection mean that they are rarely
implemented (Xiao et al. 1999, Gruber et al. 2001,
Heupel & Simp fendorfer 2002). In lieu of direct esti-
mation, indirect methods based on relationships
between directly measured mortality of other species
and life-history parameters are often used (Simpfen -
dorfer et al. 2005a). Although widely used, these indi-
rect methods are less accurate and different methods
produce estimates that vary dramatically (e.g. Simp -
fen dorfer 1999).

Many factors are known to affect mortality rates,
including environmental effects (e.g. temperature,

salinity and habitat), ecological effects (e.g. competi-
tion, predation) and life-history effects (e.g. growth
rates and reproductive strategies). Habitat appears to
play a key role in determining mortality rates of fish
populations. For example, use of nursery areas or spe-
cific habitat structures is suggested to improve survival
of various fish species (Beck et al. 2001, Wigington
et al. 2006, Hook et al. 2007, Gallaway et al. 2009).
Despite inroads in understanding survival of juvenile
fishes, little data are available regarding directly esti-
mated mortality rates of juvenile sharks and what role
habitat may play in their survival.

Many shark species are known to use nursery areas
(Springer 1967, Castro 1993, Simpfendorfer & Milward
1993) and it has been assumed that these areas provide
habitats where predation rates are low and as such
provide an environment conducive to low rates of
 mortality (Bass 1978, Branstetter 1990). However, re-
 analysis of the shark nursery area paradigm of low
mortality and high food availability has shown that in
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some instances these conditions are not met (Heupel et
al. 2007). For example, Manire & Gruber (1993) esti-
mated that the mortality rate of 0+ lemon sharks Nega -
prion brevirostris in a Bahamian lagoon was 40 to 60%
over their first year. Similarly, Heupel & Simpfendorfer
(2002) estimated that blacktip sharks Carcharhinus
limbatus born in a small Florida bay suffered mortality
levels of 61 to 91%, including significant levels of fish-
ing, during their first 6 mo of life. In both cases the
 mortality levels were considered high and predation
was thought to be a significant factor in the high levels
of mortality, whereas in other nursery areas limited
food resources are also known to cause mortality
 (Duncan & Holland 2006).

If habitat selection can improve survival of juvenile
sharks, differing ecological strategies may produce dif-
fering results for the populations that use them. Previ-
ous studies of mortality rates in shark nursery areas
(e.g. Manire & Gruber 1993, Heupel & Simpfendorfer
2002) have examined marine habitats. However, not
all sharks use marine nurseries. For example, bull
sharks Carcharhinus leucas use nursery areas charac-
terized by low salinity and often inhabit rivers after
they are born (Thorson 1971, Snelson et al. 1984,
Blackburn et al. 2007). Heupel & Simpfendorfer (2008)
demonstrated that this species has a preference for
salinities between 7 and 20 PSU and actively move
within estuarine systems as freshwater inflows change.
This salinity preference would exclude most other
shark species and may substantially reduce the risk of
interspecific predation. It could thus be hypothesized
that survival of juvenile bull sharks in these habitats

would be higher than those of species that occupy
marine nursery areas where a wide range of potential
predators exist.

The purpose of this research was to (1) determine the
level of mortality that occurs within a riverine nursery
of bull sharks, and (2) compare the mortality rates of
juvenile bull sharks with those of other shark species to
test the hypothesis that the use of a habitat that
excludes interspecific predation will lead to increased
survival rates.

MATERIALS AND METHODS

Field methods. This study was completed in the
estuarine portion of the Caloosahatchee River, Florida,
USA, and encompassed approximately 27 km of river
habitat (Fig. 1). The Caloosahatchee River connects
Lake Okeechobee to the southwest coast of Florida
and has been substantially altered over the past 100 yr
(Doering & Chamberlain 1998). Habitat alterations
include an artificial link to Lake Okeechobee, intricate
canal systems connected to the main river channel, 3
locks to allow boat passage and dams to regulate flow.
Upper reaches of the Caloosahatchee River estuary
have natural shoreline and native vegetation, primarily
red mangroves Rhizo phora mangle. Closer to the
mouth of the river the habitat has been largely altered
by urbanization, as evidenced by extensive canal
developments and shoreline modifications (Fig. 1).

Sharks were captured by longline fishing, weighed,
measured, tagged with a dart tag, and surgically fit-

ted with a Vemco RCODE 16 × 65 mm
transmitter. Transmitters produced a
uniquely coded pulse at random inter-
vals between 45 and 90 s. Upon release,
movement patterns of sharks were
recorded by a series of Vemco 25 VR2
acoustic receivers deployed within the
study site (Heupel & Simpfendorfer
2008, Simpfendorfer et al. 2008, Heupel
et al. 2010). The acoustic array allowed
sharks to be continuously monitored for
the entire period they were present
within the study area. Data were down-
loaded from receivers every 2 to 6 wk
and stored in a database. Transmitters
had a battery life of approximately
18 mo.

Defining fates of tagged sharks. The
fate of individuals was determined from
results of the acoustic monitoring data.
Similar to methods defined by Heupel &
Simpfendorfer (2002), sharks were clas-
sified into 3 categories: (1) survivals —
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Fig. 1. Caloosahatchee River and its location on the Gulf coast of Florida. Circles 
represent the locations of acoustic receivers inside the study area
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individuals that maintained continuous movement
within the study site and/or were observed to swim
out of the study site; (2) natural mortalities — individu-
als that ceased movement within the study site or
showed movement patterns more rapid than, and
inconsistent with, previous or typical movements (this
category includes all types of natural mortality, e.g.
predation, starvation, disease); and (3) removals (cen-
sored) — individuals removed from the study site
because of factors other than natural mortality or
swimming out, such as harvest by fishermen. These
individuals were typified by loss of signal detection
from the animal while it was within the acoustic array.
Although removals could include transmitter failure,
based on previous experience it was assumed that
transmitter failure would be negligible (Heupel &
Simpfendorfer 2002). The fate of each individual was
assigned to one of these categories at the end of each
week to construct monitoring histories.

Kaplan-Meier estimation. Survival of juvenile bull
sharks was estimated using the nonparametric Kap -
lan-Meier procedure (Cox & Oakes 1984, Pollock et
al. 1989a,b). This approach computes the proportion
of fish that die within the study period and allows for
animals that are censored from the population (Pol-
lock et al. 1989b, Heupel & Simpfendorfer 2002).
Three forms of survival were calculated. The first
used the number of deaths of animals from all sources
of mortality except fishing (referred to as survival
from natural mortality). The second method used the
number of deaths equal to those censored (re moved
via fishing), and was referred to as survival from fish-
ing mortality. The third method used both natural and
fishing mortalities to calculate survival from total mor-
tality. Differences in survival rates between years
were tested with chi-square analysis. Estimates of sur-
vival rate were made for periods of 6, 12 and 18 mo
after birth. These values allowed for comparison with
other studies, as well as estimating survival over the
life of the acoustic transmitters. To compare the
results from the present study with those of previous
studies, annualized instantaneous rates of natural
mortality were calculated for studies from the litera-
ture that determined mortality in 0+ age classes of
sharks using tagging, telemetry or cohort analysis.

Mortality estimation from life history data. Natural
mortality was estimated using a range of indirect
techniques based on life-history data to provide a
comparison with those estimated from telemetry data.
Six estimators of constant lifetime mortality (Pauly
1980, Hoenig 1983, Jensen 1996) and one method of
age-specific mortality (Peterson & Wroblewski 1984)
were used. All life-history data were taken from
Wintner et al. (2002) and Dudley & Simpfendorfer
(2006).

RESULTS

A total of 59 bull sharks were collected and fitted
with transmitters over the course of 3 yr (2003: 18,
8 female, 10 male; 2004: 18, 7 female, 11 male; 2005:
23, 11 female, 12 male). All individuals collected were
neonate or young of the year ranging in size from 69 to
98 cm stretch total length (mean = 80 cm) and were
monitored within the study site from 1 to 460 d (Heupel
et al. 2010). Although not monitored for the entire time
(individuals moved in and out of the acoustic array),
days at liberty spanned 1 to 552. During the 3 yr,
5 sharks (8.5%) were censored, or removed, from the
study site (1 in 2003, 3 in 2004, 1 in 2005). Eight
(13.6%) cases of natural mortality occurred during the
course of the study (1 in 2003, 2 in 2004, 5 in 2005).
Most natural mortalities occurred in 2005 and these all
occurred within 2 wk of tagging. Natural mortalities in
2003 and 2004 occurred at 8 and 26 wk (in 2004) and
55 wk (in 2003) at liberty.

Calculation of Kaplan-Meier survival estimates var-
ied among years (Fig. 2). Survival estimates were low-
est for 2004 because of the higher number of fishing
mortalities in that year (Table 1). The first mortality of
a monitored shark from the 2003 cohort occurred after
more than 12 mo. Fishing mortality was also limited in
this population, with only small numbers of animals
removed in each year (Fig. 2b). The first natural and
fishing mortalities occurred earlier in both 2004 and
2005, but no pattern was apparent in the timing of
those events (Fig. 2c).

Pooling data from all years to estimate survival from
natural mortality revealed that deaths occurred soon
after birth, followed by a levelling off at a rate of
approximately 0.7 after 6 mo (Fig. 3a). Survival from
fishing mortality also showed a decline soon after birth
followed by a level period at a rate of approximately
0.9 after approximately 6 mos (Fig. 3b). The combined
effects of fishing and natural mortality resulted in total
mortality estimates ranging from 0.11 to 0.37 (Table 1,
Fig. 3c). Comparison of mortality rates between years
revealed no significant differences (Table 2).

Bull shark rates of natural mortality from the Kaplan-
Meier method were less than half those of other
neonate sharks in nursery areas (Fig. 4), and in one
case (school shark Galeorhinus galeus) were an order
of magnitude smaller. This indicates a difference in the
life history of bull sharks or some ecological advantage
over coastal species.

Mortality estimates based on life-history characteris-
tics ranged from 0.08 to 0.17 yr–1 (Table 3). Age-inde-
pendent mortality estimates were almost identical for
males and females. Age-specific mortality estimates
from the Peterson & Wroblewski (1984) method
declined from 0.21 yr–1 for newborn individuals to
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0.09 yr–1 at maximum age (32 yr), overlapping the
range identified by the age-independent methods.

DISCUSSION

As concern for exploited marine populations contin-
ues to grow, additional data are needed to define the
life-history parameters and survivorship of those popu-
lations to enable suitable management strategies to be
implemented. The results of this study demonstrate
that the estuarine areas bull sharks use as nursery
habitat provide a low-mortality environment in which
the young can live for periods of at least 18 mo. The
rates of natural mortality were less than half those of
other neonate sharks in marine nursery areas. Some of
this difference may be a result of size differences, with

neonate school sharks about half the length of neonate
bull sharks. However, species such as lemon, tiger and
common blacktip sharks are all a similar size to bull
sharks at birth and so should have comparable rates of
natural mortality if other factors were not important.
The main difference between these species is that they
occupy different habitats: neonate bull sharks occur in
mesohaline estuaries (5 to 18 PSU) whereas the other
species occupy polyhaline estuaries (18 to 30 PSU) and
other coastal marine areas.

The dependence of species on a given habitat has
been a topic of discussion for decades (see Able 2005
for a review), but the function of these habitats to the
life history of populations that use different juvenile
and adult habitats is difficult to define. Beck et al.
(2001) and Heupel et al. (2007) provided guidelines to
define nursery habitats for fish and shark populations,
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Fig. 2. Kaplan-Meier estimation of survival from (A) natural, (B) fishing and (C) total mortality for juvenile Carcharhinus leucas
during 2003–2005. Dashed lines indicate 95% confidence intervals. All graphs use the week of June 20 as Week 1
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respectively. Those studies described
the function of nursery habitats for
their inhabitants, and one of the crite-
ria set forward is that these regions
increase survival. However, nursery
habitats are not always restricted to a
specific habitat type and, therefore,
encompass a broad range of ecotypes.
It is unclear whether one nursery per-
forms better than another or how these
differences could be quantified. Here,
however, we have determined that
survival rates of juvenile bull sharks
were higher than those of coastal
sharks. Each of these species was stud-
ied within a nursery ground and each
had different natural mortality rates.
This result suggests that bull sharks
are at an advantage by utilizing habi-
tats not available to species less toler-
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Age 2003 2004 2005 Pooled Mean Annualized 
(mo) data annualized pooled

mortality mortality

Natural mortality
6 0 0.17 0.22 0.25 0.29 0.58
12 0 0.17 0.22 0.25 0.14 0.29
18 0.06 0.17 0.27 0.29 0.12 0.23

(0.003) (0.009) (0.008) (0.009)

Fishing mortality
6 0 0.17 0.05 0.10 0.15 0.21
12 0 0.23 0.05 0.10 0.10 0.11
18 0.06 0.23 0.05 0.12 0.08 0.08

(0.003) (0.011) (0.003) (0.006)

Total mortality
6 0 0.36 0.26 0.33 0.50 0.80
12 0 0.36 0.26 0.33 0.25 0.40
18 0.11 0.36 0.30 0.37 0.20 0.30

(0.005) (0.011) (0.009) (0.009)

Table 1. Estimates of natural, fishing and total mortality for Carcharhinus leucas
derived from Kaplan-Meier survival analysis. Mortality estimates are absolute
and provided for 6, 12 and 18 mo after birth. Variance estimates are listed in 

parentheses for 18 mo values

Fig. 3. Kaplan-Meier estimates of survival from (A) natural, (B)
fishing and (C) total mortality for juvenile Carcharhinus leucas
combined from all 3 years. Dashed lines indicate 95% confi-

dence intervals. Graphs use the week of June 20 as Week 1

2003–2004 2004–2005 2003–2005

Natural mortality 0.974 0.974 0.999
Fishing mortality 0.976 0.961 0.976
Total mortality 0.965 0.953 0.987

Table 2. p-values from chi-square analysis of Kaplan-Meier
estimates of cohort survival of Carcharhinus leucas across 

years based on natural, fishing and total mortality rates

Annualized instantaneous rate 
of natural mortality (yr–1)
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Fig. 4. Comparison of annualized instantaneous rates of nat-
ural mortality rates of 0+ age classes for 5 shark species in
7 studies. Points indicate mean values where data from multi-
ple cohorts were available or point estimates where single
values were available. Error bars indicate minimum and max-
imum values where averages were used. Data for blacktip
sharks are from Heupel & Simpfendorfer (2002), data for
lemon sharks are from (A) Manire & Gruber (1993), (B) Gru-
ber et al. (2001) and (C) de Freitas et al. (2009), data for school
sharks are from Xiao et al. (1999) and data from tiger sharks 

are from Driggers et al. (2008)
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ant to freshwater influences. Although the results from
the present study were from a single nursery area, the
consistent use of mesohaline nursery areas by bull
sharks (e.g. Blackburn et al. 2007, Heithaus et al. 2009)
suggests that these results are broadly applicable for
this species. Thus the ecological strategy of juvenile
bull sharks using  mesohaline  estuarine regions as
nursery areas may provide an evolutionary advantage
over similar marine species.

There are several potential reasons for increased
survival of bull sharks within the Caloosahatchee
River, but most of these revolve around predation.
Because of the freshwater influence in this system,
most large predators are not able to utilize this system
and, therefore, predation risk by other species is low.
In addition, distribution data for bull sharks along the
coast of Florida revealed size-based segregation with
the largest individuals found in the fully marine waters
of the Gulf of Mexico (Simpfendorfer et al. 2005b).
This, in conjunction with the lack of capture of any
large bull sharks within the Caloosahatchee River,
suggests that cannibalism in this population is rare.
With other large predatory sharks unable to tolerate
freshwater conditions, predation by larger sharks is
unlikely for this population. This scenario contrasts
with that of lemon, tiger and common blacktip sharks,
which would be exposed to predation by larger mem-
bers of their own species as well as other species. For
example, large hammerhead sharks Sphyrna spp.
were observed within the Terra Ceia Bay nursery and,
based on telemetry results, presumed to feed on juve-
nile common blacktip sharks (Heupel & Simpfendorfer
2002). Similarly, lemon sharks in Bimini, Bahamas, are
likely to be preyed upon by larger lemon sharks and
other predators in the region (Cortes & Gruber 1990,
Manire & Gruber 1993). Therefore, predation probably
varies among these locations, but appears to be lowest
in the Caloosahatchee River. A second factor in deter-
mining natural mortality may be competition for
resources. Once again, the bull shark population
appears to be at an advantage because of the lack of

other juvenile sharks and large predatory teleosts.
Neonate sharks in nearshore areas are likely compet-
ing with other shark species and/or large predators
(e.g. barracuda) for food resources. This competition
may reduce the ability of naïve individuals to feed
themselves, ultimately leading to mortality (e.g. Dun-
can & Holland 2006). Therefore, the combination of
predation and competition may form the basis for dif-
ferences in natural mortality rates between different
types of shark nursery habitat.

The timing of natural mortality during the first year
of life of bull sharks was similar to that of common
blacktip sharks (Heupel & Simpfendorfer 2002), with
most occurring in the first month or two after birth.
This is likely to be the result of naïve neonate sharks
having to learn to find and catch food, and avoid pre-
dation. Once outside of this period there is slow but
steady mortality. The limited fishing mortality ob -
served for bull sharks made it difficult to draw conclu-
sions about changes in susceptibility to fishing. How-
ever, they appear to have a higher susceptibility for a
couple of months after birth before settling into a low
ongoing rate.

The contrast between the natural mortality rates of
neonate bull sharks and those of other species is stark
given that the Caloosahatchee River is a highly urban-
ized river, including canal developments, shoreline
development, treated sewage input, heavily managed
water flow (Heupel & Simpfendorfer 2008) and heavy
boating traffic. The low mortality rates suggest that the
bull shark is able to adapt to urbanized rivers and estu-
aries quite readily. Little other data are available on
the relationship between development and mortality in
shark nursery areas. Jennings et al. (2008) reported a
23.5% decline in survival of neonate lemon sharks in
the North Sound of Bimini following extensive devel-
opment adjacent to this nursery area. As such, bull
sharks may be more adaptable to this type of develop-
ment than other species of sharks.

The low rates of mortality of bull sharks in the
Caloosahatchee River also produced different patterns
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Method Relationship Mortality Mortality 
male (yr–1) female (yr–1)

Hoenig (1983) (fish) ln(Z) = 1.46 – 1.01 ln(tmax) 0.14 0.13
Hoenig (1983) (cetacean) ln(Z) = 0.941 – 0.873 ln(tmax) 0.14 0.12
Pauly (1980) ln(M) = –0.0066 – 0.279 log(L∞) + 0.6543 log(K) + 0.4634 log(T) 0.17 0.17
Jensen (1996) (age) M = 1.65/xm 0.08 0.08
Jensen (1996) (growth) M = 1.5K (theoretical) 0.11 0.11
Jensen (1996) (Pauly) M = 1.6K 0.11 0.11

Table 3. Methods used to calculate mortality rates (M: natural mortality; Z: total mortality) for Carcharhinus leucas based on life-
history parameters. K: Brody growth coefficient (males and females = 0.071 yr–1); L∞: maximum length (males and females = 
230 cm); T: mean temperature (25°C); tmax: maximum age (males = 29 yr, females = 32 yr); xm: age at maturity (males = 21 yr, 

females = 20 yr)
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of similarity between direct and indirect estimates of
mortality when compared with other species of sharks.
For example, Heupel & Simpfendorfer (2002) showed
that both age-independent and age-dependent  me -
thods underestimated natural or total mortality rates
for common blacktip sharks. In contrast, the  present
study found that age-independent indirect methods
produce estimates of a similar magnitude to those from
the direct methods whereas the age-dependent me -
thod produced overestimates. These contrasting pat-
terns demonstrate some of the limitations of indirect
methods for estimating mortality in that they are
unable to incorporate habitat-specific effects. As more
direct estimates of mortality rates are gathered, it will
be possible to model these mortality rates to provide
more realistic indirect estimators of mortality that
include factors that are not currently included (e.g.
habitat type).

Survival of juvenile individuals is crucial to recruit-
ment and maintenance of adult populations (Beck et al.
2001, Gillanders et al. 2003). Although it is intuitive
that varying life-history strategies produce differences
in survivorship and population levels, the role that
habitat use plays in mortality has been more difficult to
define. Here we demonstrate that the habitat use strat-
egy of bull sharks provides an evolutionary advantage
to this species through utilization of areas unavailable
to predators and competitors, which allows increased
juvenile survival and, as such, population fitness.
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