JCU ePrints

This file is part of the following reference:

Scott, Jennifer Louise (2006) Cellular and molecular genesis of the cervical-uterine post-insemination inflammatory response in the ewe. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/17505

CELLULAR AND MOLECULAR GENESIS OF THE CERVICAL-UTERINE POST-INSEMINATION INFLAMMATORY RESPONSE IN THE EWE

Thesis submitted by Jennifer Louise Scott BSc. BVMS (Hons) *Murd*. October 2006

for the degree of Doctor of Philosophy in the School of Veterinary and Biomedical Sciences James Cook University

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

Jennifer Louise Scott

27th October 2006

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Jennifer Louise Scott

27th October 2006

STATEMENT ON THE CONTRIBUTION OF OTHERS

Professor Phillip Summers and Associate Professor Natkunam Ketheesan provided supervision for the research carried out in this thesis and were co-authors on all papers resulting from this thesis.

A stipend was provided by the School of Veterinary and Biomedical Sciences for the duration of the research candidature (3.5 years). Project costs were met from a research expenditure allocation associated with the stipend and IRA and Reproduction Service accounts held by Professor Summers.

Statistical knowledge was gained by attendance at generic skills courses in Basic Statistics and Multivariate Statistics run by Professor Danny Coomans and Dr Yvette Everingham in the School of Mathematical and Physical Sciences. Further statistical support was provided by Associate Professor Leigh Owens in the School of Veterinary and Biomedical Sciences.

Jennifer Louise Scott

27th October 2006

DECLARATION ON ETHICS & BIOSAFETY

The research presented and reported in this thesis was conducted within the guidelines for research ethics outlined in the *Joint NHMRC/AVCC Statement and Guidelines on Research Practice* and the *James Cook University Statement and Guidelines on Research Practice* (2001). All research procedures reported in this thesis received the approval of the James Cook University Ethics Review Committee (Animal Ethics Number A 846_03) and the James Cook University Biosafety Committee (Biosafety Number PPR11_06).

Jennifer Louise Scott

27th October 2006

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude and appreciation to my principal supervisor Professor Phil Summers for his patience, guidance and encouragement throughout this project. His ongoing understanding and dedication were invaluable and an inspiration to me. I also wish to express my sincere appreciation to my co-supervisor Associate Professor Ketheesan for his valued assistance and advice.

I would like to sincerely thank Laurie Reilly for his willing assistance and technical advice on histological techniques, digital photography and so much more. My thanks are also extended to Chris Coleman and Scott Blyth for their much appreciated assistance with animal management and sample collections.

I also wish to thank the staff and students who provided me with various forms of assistance and advice during my project, particularly Leigh Owens, Jan Smith, Jo Penny, Vicki Dunk, Ray Layton, Jodie Barnes and Daniella Ciampoli. I also thank the administrative staff Lorraine Henderson, Sandy Coleman, Trish Gorbal and Kylie Bannister for their support. Thanks also to family, friends and colleagues who helped to keep me sane during the dark hours.

I thank Dr Peter McWaters for his kind donation of recombinant ovine IL-8 and an accompanying ELISA protocol, and Dr Gary Entrican for his kind donation of recombinant ovine GM-CSF.

Lastly, a big thankyou to my partner Max for his patience, understanding and support through all the ups and downs.

ABSTRACT

Insemination induces an inflammatory response in the cervix and endometrium, and there is increasing evidence that it plays an important role in the establishment of successful pregnancy. Several different leukocytes and cytokines are involved in the response, but the range of mediators involved, the progression of events and their significance in terms of reproductive success are uncertain. This study examined the temporal development of the inflammatory response in the reproductive tract of the ewe following mating, investigated the components of ram semen responsible and compared the reaction in the oestrogen and progesterone dominated reproductive tract. The central hypothesis of the study was that components of semen induce an inflammatory reaction in the female reproductive tract via the synthesis and secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-8 (IL-8) from endometrial and cervical epithelial cells.

In initial studies, reproductive tracts were collected from ewes at three, six, 18, 24 and 48 hours following mating or the onset of oestrus without mating. Leukocytes in the vagina, cervix and uterus were identified and quantified. In non-mated ewes, numbers of neutrophils and mast cells in the uterus were highest at three hours then declined by 48 hours following the detection of oestrus, whereas the number of macrophages increased in most tissues. Luminal macrophages were highest at 18-24 hours but had declined by 48 hours after oestrus. Neutrophil and macrophage numbers increased in the posterior cervical and uterine tissues following mating and neutrophils also increased in the cervical and uterine lumen. In uterine tissues numbers of neutrophils peaked at six hours and macrophages at 18-24 hours after mating. The number of mast cells initially decreased after mating but then increased by 48 hours, whereas the number of eosinophils remained constant. It was concluded that leukocyte populations in the reproductive tract of the ewe are influenced by ovarian steroid hormones, and changes after mating vary between different sites. Numbers of neutrophils and macrophages increased in response to mating whereas mast cells decreased and the number of eosinophils did not change.

Tissues and luminal fluid from the reproductive tract of mated and non-mated ewes were also examined for the presence of GM-CSF and IL-8 using monoclonal and polyclonal sheep-specific antibodies. Both GM-CSF and IL-8 were detected in luminal and glandular endometrial epithelium, to a lesser extent in cervical epithelium and neither in vaginal epithelium. There were higher luminal concentrations of GM-CSF at all sites in the reproductive tract of mated compared with control ewes, and the vaginal lumen contained the highest concentration of IL-8 compared with all other sites irrespective of mating status. These findings suggested that an increase in GM-CSF following mating may contribute to the influx of leukocytes which occurs at this time, but the changes in IL-8 following mating were not clear.

Semen was collected from each of seven rams on three separate occasions by electroejaculation and examined for the presence of cytokines. Transforming growth factorbeta 1 (TGF- β 1) was present in all samples of ram seminal plasma, but neither GM-CSF nor IL-8 were found. Concentrations of seminal TGF- β 1 ranged between 0.12 and 1.5 ng/ml and approximately 90% was present in a latent form. It is still not certain what role TGF- β 1 has in contributing to the inflammatory reaction to semen.

Oestrous and luteal stage ewes were anaesthetised and their uterus surgically ligated into five sections. Whole semen, washed spermatozoa, seminal plasma, modified Tyrode's albumin-lactate-pyruvate (TALP) and normal saline were injected into the ligated uterine sections and the reproductive tracts collected 22 hours later. Selected ewes had antibiotics added to the treatments. Whole semen, seminal plasma and spermatozoa caused an increase in neutrophil numbers in uterine tissues and increased luminal IL-8, but including antibiotics in treatments reduced this response. An increase in luminal GM-CSF occurred in response to spermatozoa and whole semen but only when antibiotics were not used. Eosinophils increased in the midand deep endometrial stroma when antibiotics were not used, whereas fewer mast cells were present in the deep endometrial stroma after all treatments and numbers were reduced further in the presence of antibiotics. More macrophages were present in uterine tissues in response to whole semen, spermatozoa and seminal plasma than other treatments and antibiotics reduced this response. These results indicate that spermatozoa, seminal plasma and possibly bacteria or bacterial products such as

vi

lipopolysaccharide (LPS) all contribute to leukocyte and cytokine changes during the post-insemination inflammatory response in the uterus of the ewe.

Neutrophils, GM-CSF and IL-8 underwent greater increases in response to insemination at oestrus compared to during the luteal phase, whereas numbers of eosinophils were higher at oestrus but unaffected by insemination. Total macrophage numbers were not influenced by the stage of the oestrous cycle, however their distribution within uterine tissues was affected, with more located in the superficial endometrial stroma at oestrus. These results suggest that leukocytes, GM-CSF and IL-8 in the ovine uterus are under the influence of ovarian hormones and oestrogen enhances and/or progesterone suppresses aspects of the post-insemination inflammatory response in the ewe.

It was concluded that the post-insemination inflammatory response in the reproductive tract of the ewe involves an increase in numbers of neutrophils and macrophages and a reduction or degranulation of mast cells. These changes are likely to be driven, at least in part, by the concurrent increase in GM-CSF and IL-8 which occurs in response to a combination of spermatozoa, seminal plasma and bacteria or bacterial products. These leukocyte and cytokine changes may be involved in preparing the ovine endometrium for pregnancy.

TABLE OF CONTENTS

Statement of Access	i
Statement of Sources	i
Statement of the Contribution of others	ii
Declaration on Ethics	iii
Acknowledgements	iv
Abstract	v
Table of Contents	viii
List of Tables	XV
List of Figures	xvii
List of Abbreviations	xxvi
Publications	xxviii
Conference Proceedings	xxviii

CHAPTER 1		1
GENERAL I	NTRODUCTION	1
1.1 Bacl	sground	1
1.2 Wor	king Hypothesis	4
1.3 Aim	s and Objectives of the Research Project	5
CHAPTER 2		6
LITERATUR	E REVIEW	6
2.1 Ana	tomy and Histology of the Ewe Reproductive Tract	6
2.1.1	Anatomy	6
2.1.2	Histology	6
2.2 Cycl	lical Changes in the Endometrium and Cervical Mucosa	8
2.2.1	Endometrial leukocyte populations	8
2.2.1.1	Rodents	8
2.2.1.2	Rabbits	9
2.2.1.3	Pigs	9
2.2.1.4	Horses	10
2.2.1.5	Humans	10
2.2.1.6	Ruminants	11

2.2.	1.7 Origin of endometrial leukocytes	
2.2.2	Resistance to infection	
2.3 C	omponents of Semen	
2.3.1	Spermatozoa	
2.3.2	Seminal plasma	
2.3.2	2.1 Immunosuppressive effects of seminal plasma	
2.3.2	2.2 Immunostimulatory effects of seminal plasma	
2.3.2	2.3 Pro- and anti-inflammatory effects of seminal plasma	
2.4 G	eneral Features of Inflammation and Leukocyte Migration	
2.5 T	he Post-insemination Inflammatory Reaction	
2.5.1	Cellular changes during the inflammatory reaction	
2.5.	1.1 Cell types involved	
2.5.	1.2 Cellular changes within uterine and cervical tissues	
2.5.	1.3 Cellular changes in the uterine and cervical lumen	
2.5.2	Cytokines involved in the inflammatory reaction	
2.5.2	2.1 Transforming growth factor beta	
2.5.2	2.2 Granulocyte-macrophage-colony stimulating factor	
2.5.2	2.3 Interleukin-1	
2.5.2	2.4 Interleukin-6	
2.5.2	2.5 Interleukin-8	
2.5.2	2.6 Interleukin-10	
2.5.2	2.7 Monocyte chemotactic protein-1	
2.5.2	2.8 Tumor necrosis factor alpha	
2.5.2	2.9 Prostaglandins	
2.6 In	duction of the Post-insemination Inflammatory Reaction	
2.6.1	Rodents	
2.6.2	Rabbits	
2.6.3	Pigs	
2.6.4	Horses	
2.6.5	Humans	
2.6.6	Ruminants	
2.6.7	Discrepancies in induction of the inflammatory reaction	
2.7 P	urpose of the Post-insemination Inflammatory Reaction	
2.7.1	Maternal immunomodulation post-insemination	

2.7.1.	1 Role of GM-CSF in maternal immunomodulation	44
2.7.1.	2 Immunological role of neutrophils post-insemination	45
2.7.1.	3 Immunological role of macrophages post-insemination	
2.8 Su	nmary and Conclusion	
CHAPTER	3	48
GENERAL	MATERIALS AND METHODS	48
3.1 An	imals	
3.2 Oe	strus Synchronisation	
3.3 Ma	ting	49
3.4 Co	llection of Ram Semen	50
3.5 Eut	hanasia	50
3.6 Co	llection of Samples	50
3.6.1	Luminal secretion collection	51
3.6.2	Tissue samples	51
3.6.2.	1 Additional tissue samples from preliminary work	52
3.7 Sila	anised Slides	53
3.8 Init	tial Processing and Fixation of Samples	53
3.8.1	Luminal secretions	53
3.8.2	Tissue samples	54
3.8.2.	1 Frozen tissues	54
3.8.2.	2 Formaldehyde fixed tissues	54
3.9 His	stology	55
3.9.1	Haematoxylin and Eosin stain	55
3.9.2	Toluidine Blue stain	55
3.10 His	tological Examination	56
3.11 Bu	ffer Solutions	57
3.11.1	Immunohistochemistry buffers	57
3.11.2	ELISA buffers	58
3.12 Im	munohistochemistry	59
3.12.1	Primary antibodies	59
3.12.1	.1 Macrophages	59
3.12.1	.2 GM-CSF	59
3.12.1	.3 IL-8	60
3.12.2	Secondary antibodies	60

3.1	2.3	General immunohistochemical techniques	60
-	3.12.3	1 Macrophage immunohistochemistry protocol for tissues	61
-	3.12.3	2 Macrophage immunohistochemistry protocol for smears	61
-	3.12.3	3 GM-CSF immunohistochemistry protocol	62
-	3.12.3	4 IL-8 immunohistochemistry protocol	
3.1	2.4	Controls	64
-	3.12.4	1 Macrophage positive control	64
	3.12.4	2 Cytokine positive controls	64
3.13	Imn	nunohistochemical Examination	65
3.1	3.1	Macrophage identification	65
3.1	3.2	Cytokine identification	65
3.14	Cyte	blogy	65
3.1	4.1	Smears stained by Diff Quik	65
3.1	4.2	Smears stained by immunohistochemistry	66
3.15	Dete	ection of Cytokines in Luminal Fluid	67
3.1	5.1	GM-CSF ELISA protocol	67
3.1	5.2	IL-8 ELISA protocol	68
3.16	Prep	paration of Samples for Surgical Insemination	69
3.1	6.1	Spermatozoa diluent (TALP) preparation	69
3.1	6.2	Whole semen preparation	70
3.1	6.3	Seminal plasma preparation	70
3.1	6.4	Washed spermatozoa preparation	70
3.1	6.5	Antibiotic preparation for surgical treatments	71
3.17	Surg	gical Insemination of Ewes	71
3.1	7.1	Anaesthesia of ewes	71
3.1	7.2	Surgical technique	72
3.18	Dete	ection of Transforming Growth Factor-beta in Semen	73
CHAPT	FER 4		
LEUK	DCYT	E CHANGES IN RESPONSE TO INSEMINATION	
4.1	Intro	oduction	76
4.2	Mat	erials and Methods	76
4.2	.1	Neutrophils and eosinophils	76
4.2	.2	Mast Cells	77
4.2	.3	Macrophages	

4.2.3.1	Macrophage antibody optimisation	77
4.3 Stati	stical Analyses	78
4.3.1	Statistical analyses of cell counts in tissues	78
4.3.2	Statistical analyses of cell counts in luminal smears	79
4.4 Resu	ılts	79
4.4.1	Neutrophils	79
4.4.1.1	Neutrophil infiltration of tissues	79
4.4.1.2	Neutrophils in the lumen	
4.2.1	Eosinophils	89
4.4.3	Mast cells	89
4.4.4	Macrophages	94
4.4.4.1	. Anti-macrophage antibody optimisation	94
4.4.4.2	Macrophage infiltration of tissues	
4.4.4.3	Macrophages in the lumen	
4.5 Disc	sussion	
CHAPTER 5		
CHEMOKIN	ES IN REPRODUCTIVE TISSUES AND SECRETION	NS 106
5.1 Intro	oduction	
5.2 Mat	erials and Methods	
5.2.1	GM-CSF	
5.2.1.1	Tissue sections and antibody optimisation	
5.2.1.2	ELISA for GM-CSF in luminal fluid	
5.2.2	IL-8	
5.2.2.1	Tissue sections and antibody optimisation	
5.2.2.2	ELISA for IL-8 in luminal fluid	
5.3 Stati	stical Analyses	
5.3.1	Statistical analyses of cytokines in tissues	
5.3.2	Statistical analyses of cytokines in luminal fluid	
5.3.3	Statistical correlation between cytokines and cell counts	
5.4 Resu	ılts	
5.4.1	GM-CSF	
5.4.1.1	Immunohistochemistry antibody optimisation	
5.4.1.2	CM CSE in tiques	111
	OWI-CSF III USSUES	

5.4.2	IL-8	
5.4	4.2.1 Immunohistochemistry antibody optimisation	
5.4	4.2.2 IL-8 in tissues	
5.4	4.2.3 IL-8 in the lumen	
5.4.3	Correlation between cytokines and cell counts	
5.4	4.3.1 Correlation between IL-8 and cell counts	
5.4	4.3.2 Correlation between GM-CSF and cell counts	
5.5	Discussion	
СНАРТИ	CR 6	
СОМРО	NENTS OF SEMEN THAT CAUSE INFLAMMATION	
6.1	Introduction	
6.2	Materials and Methods	
6.2.1	Ewes	
6.2.2	Semen collection from rams	
6.2.3	Preparation of samples for surgical insemination of ewes	
6.2.4	Anaesthesia of ewes	
6.2.5	Surgical technique	
6.2.6	Uterine sample collection and analysis	
6.2.7	Calculation of total cytokine content in luminal fluid	
6.2.8	Preparation of seminal plasma for cytokine detection	
6.2.9	ELISA protocols for cytokine detection in ram semen	
6.3	Statistical Analyses	
6.3.1	Statistical analyses of leukocytes in response to semen	
6.3.2	Statistical analyses of cytokines in response to semen	
6.3.3	Statistical analyses of TGF-β1 in ram semen	
6.4	Results	
6.4.1	Neutrophil response to different components of semen	
6.4	4.1.1 Neutrophil infiltration of tissues	
6.4	4.1.2 Neutrophils in the lumen	
6.4.2	Eosinophil response to different components of semen	
6.4.3	Mast cell response to different components of semen	
6.4.4	Macrophage response to different components of semen	
6.4.5	GM-CSF response to different components of semen	
6.4.6	IL-8 response to different components of semen	

6.4		141
6.5	Discussion	
СНАРТ	ГЕ R 7	148
HORM	ONAL INFLUENCES ON THE INFLAMMATORY RESPONS	SE IN
THE U	TERUS	148
7.1	Introduction	148
7.2	Materials and Methods	148
7.3	Statistical Analyses	149
7.4	Results	149
7.4	.1 Neutrophil response to different components of semen	149
7.4	.2 Eosinophil response to different components of semen	150
7.4	.3 Mast cell response to different components of semen	150
7.4	.4 Macrophage response to different components of semen	155
7.4	.5 GM-CSF response to different components of semen	157
7	7.4.5.1 GM-CSF in tissues	157
7	7.4.5.2 GM-CSF in the lumen	157
7.4	.6 IL-8 response to components of semen	159
7	7.4.6.1 IL-8 in tissues	159
7	7.4.6.2 IL-8 in the lumen	159
7.5	Discussion	163
СНАРТ	ГЕ R 8	166
GENER	RAL DISCUSSION	166
8.1	Scope of this Research Project	166
8.2	Future Research Directions	171
8.3	Conclusion	174
REFER	RENCES	175
APPEN	DICES	

LIST OF TABLES

Table 4.1	Neutrophil numbers in reproductive tissues of mated and non- mated ewes.	81
Table 4.2	Neutrophil numbers in luminal smears of mated and non-mated ewes.	81
Table 4.3	Eosinophil numbers in reproductive tissues of mated and non- mated ewes.	90
Table 4.4	Comparison of mast cell counts in reproductive tissues of mated and non-mated ewes.	92
Table 4.5	Macrophage numbers in reproductive tissues of mated and non- mated ewes.	99
Table 4.6	Macrophage counts in luminal smears of mated and non-mated ewes.	99
Table 5.1	Staining intensity of GM-CSF and IL-8 in tissues from reproductive tracts of ewes at various times post-oestrus (controls) or post-mating.	113
Table 5.2	GM-CSF and IL-8 concentrations in luminal fluid from reproductive tracts of ewes at various times post-oestrus (controls) or post-mating.	116
Table 6.1	Leukocyte numbers in uterine tissues of oestrous ewes 22 hours after injection of various treatments into the lumen.	131
Table 6.2	Staining intensity of GM-CSF and IL-8 in uterine epithelium from oestrous ewes 22 hours after injection of various treatments into the lumen.	137
Table 6.3	Fluid volumes (μ l) and cytokine concentrations (ng/ml) in uterine luminal fluid from oestrous ewes 22 hours after injection of various treatments.	139

Table 6.4	Active, latent and total TGF- β 1 concentration in ram semen.	142
Table 7.1	Leukocyte numbers in uterine tissues of luteal ewes 22 hours after injection of various treatments into the lumen.	151
Table 7.2	Leukocyte numbers in uterine tissues of oestrous and luteal ewes 22 hours after injection of various treatments into the lumen.	152
Table 7.3	Neutrophil numbers in luminal smears from oestrous and luteal ewes 22 hours after injection of various treatments into the lumen.	153
Table 7.4	Macrophage numbers in luminal smears from oestrous and luteal ewes 22 hours after injection of various treatments into the lumen.	156
Table 7.5	Staining intensity of GM-CSF and IL-8 in uterine epithelium from luteal ewes 22 hours after injection of various treatments into the lumen.	157
Table 7.6	Fluid volumes (μ l) and cytokine concentrations (ng/ml) in uterine luminal fluid from luteal ewes 22 hours after injection of various treatments.	160

LIST OF FIGURES

Figure 1.1	A Merino ewe with her 3 day old lamb.	2
Figure 1.2	Hypothetical cytokine/leukocyte interactions following insemination the ewe.	n in 4
Figure 2.1	Diagram of the reproductive tract of the ewe (modified from Miller, 1991).	7
Figure 3.1	Detection of oestrus in two ewes by an androgenised wether. The wether is wearing a crayon harness with an apron attached to prevent intromission.	49
Figure 3.2	Sites of tissue sample collection from ewe reproductive tracts.	52
Figure 3.3	Photomicrograph (H&E stained) and diagram of endometrium showing positions of microscopic examination of high power fields of view. $S =$ superficial endometrium, $M =$ mid-stromal endometrium, $D =$ deep stromal endometrium.	57
Figure 3.4	Staining intensity scoring for cytokines: (A) strong (+++), (B) moderate (++), (C) mild (+) and (D) negative (-).	66
Figure 3.5	An anaesthetised ewe positioned in dorsal recumbency on an operating table. The ewe has an endotracheal tube in place which is connected to a closed circle anaesthetic machine supplying gaseous halothane.	72
Figure 4.1	Neutrophil numbers in reproductive tissues of ewes at 3hrs (n=3), 6hrs (n=4) and 24hrs (n=5) post-mating. Data are presented as the mean + SEM per 1.5mm ² tissue. Sites in the reproductive tract were: V, vagina; PC, posterior cervix; MC, mid-cervix; AC, anterior cervix; BU, uterine body; RM, right mid-uterine horn; RA, right anterior uterine horn; LM, left mid-uterine horn; LA, left anterior uterine horn. Mean values for uterine tissues were from cell counts in the superficial endometrium.	80

- **Figure 4.2** Neutrophil numbers in reproductive tissues of control and mated ewes at various times post-oestrus (controls) and post-mating. Data are presented as the mean + SEM (n=60) in 1.5mm² tissue. ^a P < 0.01, ^b P < 0.05 compared with control ewes; ^c P < 0.01 compared with all other times post-mating; ^d P < 0.05 compared with 3 hours post-oestrus.
- Figure 4.3 Neutrophil numbers in different sites in the reproductive tract of ewes when sites were combined into vagina (n = 60), cervix (n = 90) or uterus (n = 150). Data are presented as the mean \pm SEM in 1.5mm² tissue. Data from different time periods and from both mated and control ewes were pooled. Values for uterine tissues were from cell counts in the superficial endometrium. ^a P < 0.01 compared with other sites.
- **Figure 4.4** Neutrophil numbers in reproductive tissues of (A) control ewes and (B) mated ewes at different sites and different time periods following oestrus or mating. Data are presented as the mean neutrophil percentage of total cells + SEM (n = 3). V, vagina; OC, cervical os; PC, posterior cervix; MC, mid-cervix; AC, anterior cervix; BU, uterine body; IM, ipsilateral mid-uterine horn; IA, ipsilateral anterior uterine horn; CM, contralateral mid-uterine horn; CA, contralateral anterior uterine horn. Values for uterine tissues are from cell counts in the superficial endometrium.
- **Figure 4.5** Photomicrographs of neutrophils in reproductive tissues from a ewe 18 hours post-mating: (A) evenly distributed in a subepithelial location in the superficial endometrium (arrow) and (B) in a deep stromal cluster near a gland in the endometrium (arrow).
- **Figure 4.6** Neutrophil percentages in smears from different sites in the reproductive tract of ewes when sites were combined into vagina (n = 30), cervix (n = 30) or uterus (n = 150). Data are presented as the mean \pm SEM. Data from different time periods and from both mated and control ewes were pooled. ^a *P* <0.01 compared to other sites.
- 87

82

82

84

85

Figure 4.7 Neutrophil percentages in smears from the reproductive tract lumen of control and mated ewes at various times post-oestrus (controls) and post-mating. Data are presented as the mean + SEM (n=21) percentage of total cells in smears. ^a P < 0.01 compared with control ewes.

	Neutrophil percentages in smears of (A) control ewes and (B) mated ewes at different sites and different time periods following oestrus or mating. Data are presented as the mean neutrophil percentage of total cells + SEM ($n = 3$). V, vagina; PC, posterior cervix; MC, mid-cervix; AC, anterior cervix; BU, uterine body; IM, ipsilateral mid-uterine horn; IA, ipsilateral anterior uterine horn; CM, contralateral mid-uterine horn; CA, contralateral anterior uterine horn.	88
Figure 4.9	Eosinophil numbers in different sites in the reproductive tract of ewes when sites were combined into vagina (n = 60), cervix (n = 90) or uterus (n = 150). Data are presented as the mean \pm SEM in 1.5mm ² tissue. Data from different time periods and from both mated and control ewes were pooled. Values for uterine tissues were from cell counts in the superficial endometrium. ^a <i>P</i> <0.01 compared with other sites.	90
Figure 4.10	Photomicrographs of (A) eosinophils (H&E stained) in the superficial endometrium (arrows) and (B) a cluster of mast cells (toluidine blue stained) in the deep endometrial stroma (arrows).	91
Figure 4.11	Mast cells in reproductive tissues of control and mated ewes at various times post-oestrus (controls) and post-mating. Data are presented as the mean + SEM (n=60) in 1.5 mm ² tissue. ^a $P < 0.01$ compared with control ewes.	93
Figure 4.12	Mast cells in different sites in the reproductive tract of ewes when sites were combined into vagina (n = 60), cervix (n = 90) or uterus (n = 150). Data are presented as the mean \pm SEM in 1.5mm ² tissue. Data from different time periods and from both mated and control ewes were pooled. Values for uterine tissues were from cell counts in the superficial endometrium. ^a <i>P</i> <0.01 compared to other sites.	93
Figure 4.13	Photomicrographs of macrophages in positive control tissue (ovine subcutaneous granuloma) with various antibodies: (A) Serotec: MCA874G, (B) VMRD: CAM36A and (C) DakoCytomation: EBM-11.	95
Figure 4.14	Photomicrographs of macrophages stained with EBM-11 (DakoCytomation) and haematoxylin counterstain (A) in the endometrium and (B) in a cervical mucus smear. Large arrow points to a macrophage, small arrow points to a neutrophil.	97

- **Figure 4.15** Macrophage numbers in reproductive tissues of control and mated ewes at various times post-oestrus (controls) and post-mating. Data are presented as the mean + SEM (n=57) in 1.5mm² tissue. ^a P < 0.01 compared with control ewes. 100 Figure 4.16 Macrophage numbers in different sites in the reproductive tract of ewes when sites were combined into vagina (n = 60), cervix (n = 90) or uterus (n = 150). Data are presented as the mean \pm SEM in 1.5mm² tissue. Data from different time periods and from both mated and control ewes were pooled. Values for uterine tissues were from cell counts in the superficial endometrium. ^a P < 0.01 compared to cervix, ^b P < 0.05 compared to vagina. 100 Figure 4.17 Macrophage percentages in smears from the reproductive tract lumen of control and mated ewes at various times post-oestrus (controls) and post-mating. Data are presented as the mean + SEM (n=21) percentage of total cells in smears. ^a P < 0.05101 compared with control ewes. Figure 4.18 Macrophage percentages in smears from different sites in the reproductive tract of ewes when sites were combined into vagina (n = 30), cervix (n = 30) or uterus (n = 150). Data are presented as the mean \pm SEM. Data from different time periods and from both mated and control ewes were pooled. ^a P < 0.01 compared to other sites. 102 Figure 5.1 Photomicrographs of GM-CSF immunohistochemical staining: (A) distribution of GM-CSF in uterine luminal and glandular
 - Figure 5.1Photomicrographs of GM-CSF immunohistochemical staining:
(A) distribution of GM-CSF in uterine luminal and glandular
epithelium, (B) GM-CSF +++ in uterine body epithelium, (C)
GM-CSF +++ in uterine horn epithelium, (D) GM-CSF + in cervical
epithelium, (E) GM-CSF in vaginal epithelium, (F) GM-CSF
negative control in uterine body. Scale bars in (A) = 200 μ m, scale
bars in (B)-(F) = 50 μ m.114
- Figure 5.2 Photomicrographs of IL-8 immunohistochemical staining (A) distribution of IL-8 in uterine luminal and glandular epithelium, (B) IL-8 +++ in uterine body epithelium, (C) IL-8 ++ in uterine horn epithelium, (D) IL-8 + in cervical epithelium, (E) IL-8 in vaginal epithelium, (F) IL-8 negative control in uterine body. Scale bars in (A) = 200 μm, scale bars in (B)-(F) = 50 μm.

XX

Figure 5.3	Staining intensity of GM-CSF and IL-8 in tissues at different sites in the reproductive tracts of ewes. Data are presented as the mean + SEM: vagina (n=30), cervix (n=90), uterus (n=150). ^a GM-CSF $P < 0.01$ compared with other sites; ^b IL-8 $P < 0.01$ compared with other sites.	117
Figure 5.4	Concentration of GM-CSF in reproductive tract luminal fluid at various sites in control and mated ewes. Data are mean concentration $(ng/ml) + SEM (n=15)$. ^a <i>P</i> <0.05 compared with cervix and contralateral mid- uterine horn. V, vagina; C, cervix; BU, uterine body; IM, ipsilateral mid-uterine horn; IA, ipsilateral anterior uterine horn; CM, contralateral mid-uterine horn; CA, contralateral anterior uterine horn.	117
Figure 6.1	(A) Ligated uterine horns and (B) injecting a treatment into a ligated section of an anterior uterine horn.	127
Figure 6.2	Neutrophils in uterine tissues of oestrous ewes 22 hours after injection of various treatments into the lumen. Data are presented as mean + SEM (n=9) in 4.5mm ² tissue (superficial, mid- and deep stroma). ^a $P < 0.01$ compared to TALP; ^b $P < 0.01$ compared to saline. Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.	133
Figure 6.3	Photomicrographs of neutrophils in the subepithelial stroma of the uterus from an oestrous ewe following treatment with (A) whole semen, (B) seminal plasma, (C) TALP and (D) saline.	132
Figure 6.4	Neutrophils in uterine luminal smears from oestrous ewes 22 hours after injection of various treatments with or without the addition of antibiotics into the lumen. Data are presented as mean + SEM percentage of total cells in smears; no antibiotics (n=6), antibiotics added to treatments (n=3). ^a $P < 0.01$ compared to treatment containing antibiotics; ^b $P < 0.01$ compared to saline. Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.	133
Figure 6.5	Mast cells in different depths of the endometrial stroma of oestrous ewes 22 hour after injection of treatments with or without the addition of antibiotics into the lumen. Data are presented as mean + SEM in 1.5mm ² tissue; no antibiotics (n=30), antibiotics added to treatments (n=15). ^a $P < 0.01$ compared to mid- and superficial stroma; ^b $P < 0.05$ compared to treatment containing antibiotics.	135

- **Figure 6.6** Mast cells in the deep endometrial stroma of oestrous ewes 22 hours after injection of various treatments with or without the addition of antibiotics into the lumen. Data are presented as mean + SEM in 1.5mm² tissue; no antibiotics (n=6), antibiotics added (n=3). ^a P < 0.05 compared to treatment containing antibiotics. Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.
- **Figure 6.7** Macrophages in uterine tissues of oestrous ewes 22 hours after injection of various treatments with or without the addition of antibiotics into the lumen. Data are presented as mean + SEM in 1.5 mm^2 tissue; no antibiotics (n=18), antibiotics added to treatments (n=9). ^a *P* <0.05 compared to treatment containing antibiotics. Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.
- Figure 6.8 Ranked staining intensity of GM-CSF in uterine tissues from oestrous ewes 22 hours after injection of various treatments without the addition of antibiotics into the lumen. Data are presented as mean ± SEM (n=6). Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride. 138
- Figure 6.9GM-CSF in luminal fluid of oestrous ewes 22 hours after injection
of various treatments into the lumen. Data are presented as mean \pm
SEM; no antibiotics (n=6), antibiotics added to treatments (n=3).

 ^a P < 0.01 compared to treatment containing antibiotics; ^b P < 0.01
compared to SP, TALP and saline. Treatments were: Semen, whole
semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP,
modified Tyrode's medium; Saline, 0.9% sodium chloride.138
- Figure 6.10Ranked staining intensity of IL-8 in uterine tissues from oestrous ewes
22 hours after injection of various treatments into the lumen. Data are
presented as mean \pm SEM (n=9). ^a P < 0.05 compared to TALP and
saline. Treatments were: Semen, whole semen; SP, seminal plasma;
Sperm, washed spermatozoa; TALP, modified Tyrode's medium;
Saline, 0.9% sodium chloride.140

136

Figure 6.11 IL-8 in luminal fluid of oestrous ewes 22 hours after injection of various treatments into the lumen. Data are presented as mean \pm SEM; no antibiotics (n=6), antibiotics added to treatments (n=3). ^a P < 0.01 compared to TALP and saline; ^b P < 0.01 compared to all other treatments. Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride. 140 Figure 6.12 Active and latent TGF-beta 1 in semen from seven rams. Data are presented as the mean + SEM (total) TGF-beta concentration (pg/ml) in semen samples (n=3) for each ram. ^a P < 0.05compared to rams 9,10 and 18; ^b P < 0.05 compared to ram 18. 141 Figure 7.1 Neutrophils in uterine tissues of luteal ewes 22 hours after injection of various treatments into the lumen. Data are presented as mean + SEM (n=7) in 4.5mm² tissue (superficial, mid- and deep stroma). ^a P < 0.05 compared to spermatozoa. TALP and saline. Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride. 152 Figure 7.2 Neutrophils in uterine luminal smears from luteal ewes 22 hours after injection of various treatments with or without the addition of antibiotics into the lumen. Data are presented as mean + SEM percentage of total cells in smears; no antibiotics (n=4), antibiotics added to treatments (n=3). ^a P < 0.01 compared to treatment containing antibiotics; ^b P < 0.01 compared to all other treatments. Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride. 153 Figure 7.3 Mast cells in different depths of the endometrial stroma of luteal ewes 22 hour after injection of treatments with or without the addition of antibiotics into the lumen. Data are presented as mean + SEM in 1.5 mm² tissue; no antibiotics (n=20), antibiotics added to treatments (n=15). ^a P < 0.01 compared to mid- and superficial stroma: ^b P < 0.05 compared to treatment containing antibiotics. 154 Figure 7.4 Mast cells in the deep endometrial stroma of luteal ewes 22 hours after injection of various treatments with or without the addition of antibiotics into the lumen. Data are presented as mean + SEM in 1.5mm^2 tissue; no antibiotics (n=4), antibiotics added to treatments (n=3). ^a P < 0.05 compared to treatment containing antibiotics. Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride. 154

xxiii

Figure 7.5	Mast cells in the deep endometrial stroma of oestrous and luteal ewes 22 hours after injection of treatments with or without the addition of antibiotics into the lumen. Data are presented as mean + SEM in 1.5 mm ² tissue; oestrus no antibiotics (n=6), oestrus antibiotics added (n=3), luteal no antibiotics (n=4), luteal antibiotics added (n=3). ^a <i>P</i> <0.05 compared to luteal ewes.	155
Figure 7.6	Macrophages in uterine tissues of luteal ewes 22 hours after injection of various treatments with or without the addition of antibiotics into the lumen. Data are presented as mean + SEM in 1.5 mm^2 tissue; no antibiotics (n=12), antibiotics added to treatments (n=9). ^a <i>P</i> <0.01 compared to whole semen. Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.	156
Figure 7.7	Ranked staining intensity of GM-CSF in uterine tissues from oestrous and luteal ewes 22 hours after injection of various treatments. Data are presented as mean + SEM; oestrus (n=9), luteal (n=7). Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.	158
Figure 7.8	GM-CSF in luminal fluid of luteal ewes 22 hours after injection of various treatments into the lumen. Data are presented as mean ± SEM; no antibiotics (n=4), antibiotics added to treatments (n=3). Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.	158
Figure 7.9	GM-CSF in luminal fluid of oestrous and luteal ewes 22 hours after injection of various treatments without antibiotics into the lumen. Data are presented as mean + SEM; oestrus (n=6), luteal (n=4). Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.	159
Figure 7.10	Ranked staining intensity of IL-8 in uterine tissues from luteal ewes 22 hours after injection of various treatments into the lumen. Data are presented as mean ± SEM (n=7). Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.	161

- Figure 7.11 Ranked staining intensity of IL-8 in uterine tissues from oestrous and luteal ewes 22 hours after injection of various treatments. Data are presented as mean + SEM; oestrus (n=9), luteal (n=7). Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.
- 161

162

- Figure 7.12 IL-8 in luminal fluid of luteal ewes 22 hours after injection of various treatments into the lumen. Data are presented as mean \pm SEM; no antibiotics (n=4), antibiotics added to treatments (n=3). ^a P < 0.01 compared to TALP; ^b P < 0.01 compared to saline. Treatments were: Semen, whole semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP, modified Tyrode's medium; Saline, 0.9% sodium chloride.
- Figure 7.13IL-8 in luminal fluid of oestrous and luteal ewes 22 hours after
injection of various treatments without antibiotics into the lumen.
Data are presented as mean + SEM; oestrus (n=6), luteal (n=4).

 ^a P < 0.01 compared to luteal ewes. Treatments were: Semen, whole

 semen; SP, seminal plasma; Sperm, washed spermatozoa; TALP,

 modified Tyrode's medium; Saline, 0.9% sodium chloride.162

XXV

LIST OF ABBREVIATIONS

AC	Anterior cervix
AEC	3-amino-9-ethylcarbazole
ANOVA	Analysis of variance
BSA	Bovine serum albumin
BU	Body of the uterus
С	Celcius
CA	Contralateral anterior uterine horn
CD	Cluster differentiation
CIDR	Controlled intravaginal drug releasing device
CM	Contralateral mid-uterine horn
CSF	Colony-stimulating factor
D	Deep endometrial stroma
DAB	3-3 diaminobenzadine tetrahydrochloride
DPBS	Dubecco's phosphate buffered saline
DPX	Dibutylnhthalate nolystyrene xylene
FLISA	Enzyme linked immunosorbent assay
σ	Gig (reciprocal centrifugal force)
s G-CSE	Granulocyte colony-stimulating factor
GM_CSF	Granulocyte colony-stimulating factor
	Haematoxylin & Fosin
HDE	High power field
	Horse radish perovidase
	Insilateral anterior uterine horn
IA	Interferen
	Interleukin
	Incidental mid atoring horn
	in with fortilization
	<i>In vitro</i> tertifisation
	L off ontoning storing home
	Lett anterior uterine norm
	Latency associated peptide
	Leukaemia innibitory factor
	Left mid-uterine norm
M	Mid-endometrial stroma
MCAE	Mild-cervix
MCAF	Monocyte chemotactic and activating factor
MUC	Monocyte chemotactic protein
MHU	Major histocompatibility complex
MIP	Commission activity
OC OCT	Cervical ostium
	Optimum cutting temperature
0D OS	Optical density
05	
PBS	Phosphate buffered saline
PC	Posterior cervix
PCK	Polymerase chain reaction
PGE	Prostaglandin of the E series
KA	Right anterior uterine horn
KANTES	Regulated upon activation normal T-cell expressed and secreted

RM	Right mid-uterine horn
RT	Room temperature
S	Superficial endometrial stroma
SEM	Standard error of the mean
TALP	Tyrode's albumin-lactate-pyruvate
TBS	Tris buffered saline
TGF	Transforming growth factor
TMB	3,3',5,5'tetramethylbenzidine
TNF	Tumor necrosis factor
V	Vagina

PUBLICATIONS

Scott, JL, Ketheesan, N. and Summers, P.M. (2006) Leucocyte population changes in the reproductive tract of the ewe in response to insemination. *Reproduction, Fertility and Development* **18** 627-634

Submitted to Reproduction, Fertility and Development:

Scott, JL, Ketheesan, N. and Summers, P.M. (2007) Granulocyte-macrophage colony-stimulating factor and interleukin-8 in the reproductive tract of ewes following oestrus and mating.

CONFERENCE PROCEEDINGS

Scott, JL, Ketheesan, N. and Summers, P.M. (2006) Presence of TGF-β but not IL-8 or GM-CSF in ram seminal plasma. *Reproduction, Fertility and Development* **18** (Suppl): Abstr 205

Scott, JL, Ketheesan, N. and Summers, P.M. (2005) The post-insemination inflammatory response in the ewe. *Reproduction, Fertility and Development* **17** (Suppl): Abstr 288