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Abstract

ABSTRACT

Continental margins are dynamic systems where the flux and accumulation of

sedimentary components varies over space and time. Along passive continental

margins, relative changes in sea level and sediment supply to the shelf are the

predominant influences on sediment fluxes to slopes and basins and are incorporated

in generic models of continental margin evolution. Generic depositional models differ

depending on the composition of sediments deposited within the system, and can be

classified as siliciclastic, carbonate, mixed siliciclastic-carbonate, or evaporite

models. The principles governing generic models for end-member siliciclastic and

carbonate systems have been tested widely in modern environments, resulting in the

general acceptance of 'lowstand shedding' to the slope and basin for siliciclastic

systems, and 'highstand shedding' to the slope and basin for carbonate systems.

Conversely, relatively little attention has been afforded modern examples of mixed

siliciclastic-carbonate systems. Nevertheless, generic models for the evolution of

mixed siliciclastic-carbonate margins, developed mostly via the study of ancient

examples in the geological record, are accepted widely, and incorporate the combined

paradigms for end-member siliciclastic and carbonate margins to model off-shelf

sediment accumulations in response to relative sea-level change. Thus, along mixed

siliciclastic-carbonate margins, siliciclastic fluxes to slopes and basins should be

highest during sea-level lowstands, when rivers can incise across exposed shelves,

and carbonate fluxes to slopes and basins should be highest during sea-level

highstands, when flooded shelves provide greatest neritic accommodation space.

Lowest fluxes of both components should occur during sea-level transgressions when

rivers retreat landward and carbonate production is inhibited by proximal fluvial

inputs.

The passive continental margin of northeastern Australia, extending from -7

to 25°S, is the largest extant mixed siliciclastic-carbonate system. Significant

quantities of siliciclastic sediment from rivers draining tropical and subtropical

watersheds in Australia and Papua New Guinea are discharged onto a highly

productive carbonate shelf that includes the Great Barrier Reef (GBR). Sedimentary

successions on slopes east of the GBR are characterised by alternating siliciclastic-

rich and carbonate-rich intervals, originally interpreted as forming during lowstands

and highstands, respectively. However, recent investigations have demonstrated that

PhD Thesis - M. C. Page
iii



Abstract

the uppermost siliciclastic-rich interval offshore the central GBR province around

17°5 formed during the last postglacial transgression. Despite these findings, the late

Pleistocene-Holocene deposition of mixed siliciclastic-carbonate sediments east of the

GBR remains equivocal, because it is unclear if: (1) siliciclastic fluxes to slopes all

along the central GBR province were highest during transgression, (2) off-shelf fluxes

of carbonate sediment were highest during highstand, lowstand, or transgression, and

(3) the depositional response to relative sea-level change is consistent all along the

northeast Australia margin, especially in areas where physiography and climate are

different.

This thesis aims to resolve these issues and to thus develop a more complete

understanding of the latest Quaternary evolution of the mixed siliciclastic-carbonate

margin of northeastern Australia. High-resolution chronostratigraphies were

developed for multiple sediment cores from repositories east of the modern GBR via

the determination of thirty-one accelerator mass spectrometry radiocarbon ages and

stable isotope stratigraphy. Bulk carbonate content, and carbonate mineralogy and

geochemistry, were examined in each of these cores and in other cores with

previously developed age models. These datasets enabled the determination of mass

accumulation rates for siliciclastic and carbonate components of the bulk sediment,

and for individual carbonate minerals down each core. Mass accumulation rates

unequivocally demonstrate that all along the northeast Australian margin from -15 to

21°S, fluxes of both siliciclastic and carbonate sediment to repositories in Queensland

Trough and on Marion Plateau were lowest during the last glacial lowstand, highest

during the postglacial transgression, and moderate to high during the Holocene

highstand, regardless of modern differences in physiography, climate and sediment

supply. The history of off-shelf sediment fluxes on the northeast Australian margin

during the latest Quaternary could be affected by climate change over glacial-

interglacial cycles, but is probably heavily influenced by fluvial aggradation on the

shelf during lowstand, and basin-ward remobilisation of siliciclastic sediment and

subaerially eroded carbonate during transgression. The northeast Australian margin is

an outstanding example of the strong influence margin physiography and physical

processes, in conjunction with relative sea level and climate change, can have on the

development of sedimentary sequences on slopes of mixed siliciclastic-carbonate

margins, and may serve as an analogue for other mixed siliciclastic-carbonate systems

throughout the geological record, especially tropical platforms rimmed by reefs.
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al., 2003) since the Last Glacial Maximum, calculated using the bulk linear

sedimentation rate (Fig. 4.3) to maintain consistency with data from Queensland

Trough. Mass accumulation rates of both components were highest in all cores during

transgression, however, the magnitude generally decreases with distance from the

shelf. Note that in GClO, carbonate mass accumulation rates were comparable to
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those in cores at a similar distance from the shelf in Queensland Trough, but mass

accumulation rates of siliciclastic material were lower. WD-water depth. Dist-

distance from the 120 m isobath. Lat-latitudinal position in degrees south 121

Figure 4.7: Mass accumulation rates of low-Mg calcite, aragonite, and high-Mg

calcite in core FR03/99 GClO (shaded) compared to cores from Queensland Trough

(modified from Fig. 3.7) since the Last Glacial Maximum, calculated using the bulk

linear sedimentation rate (Fig. 4.3) to maintain consistency with data from

Queensland Trough. Note that mass accumulation rates of all components are lowest

and highest during lowstand and transgression, respectively, and generally decrease

with distance from the shelf. WD-water depth. Dist-distance from the 120 m isobath.

Lat-Iatitudinal position in degrees south 122

Figure 4.8: Conceptual model for the evolution of the southern GBR province over

the last 130 kyo Bathymetric information modified from Shipboard Scientific Party

(2002). Sea-level reconstructions based on the eustatic curve of Lambeck and

Chappell (2001). Course of the paleo-Fitzroy River and cross-sections of the shelf

adapted from Maxwell (1968). Dark shaded areas on the shelf indicate areas of

possible siliciclastic deposition 123

Appendix A

Figure A.l: The continental margin of northeastern Australia. Circles indicate the

position of cores FR03/99 GClO, 51GC43, FR4/92 PC16, FR4/92 PCIl, FR4/92

PC12, and FR5/90 PC27a. Bathymetry of the western Coral Sea is indicated in

metres 160

Figure A.2: Generalised temperature profile and water mass boundaries in the

western Coral Sea (modifed after: Correge, 1993a; Hearty et ai., submitted). Circles

indicate the modern seabed depth at the location of cores FR03/99 GClO, 51GC43,

FR4/92 PC16, FR4/92 PCll, FR4/92 PC12, and FR5/90 PC27a. SLW - Subtropical

Lower Water; SPCW - South Pacific Central Water; AAIW - Antarctic Intermediate

Water; UDWM - Undefined deep water mass 161

PhD Thesis-M.e. Page
xviii



List ofFigures

Figure A.3: Age/depth relationships in cores FR03/99 GClO, 51GC43, FR4/92

PCI6, FR4/92 PCll, FR4/92 PCI2, and FR5/90 PC27a, based on calibrated

radiocarbon dates, and derived age models using least squares polynomial

functions 162

Figure A.4: Covariance relationships between the DIL ratios of Asp and Glu for all

samples from core FR03/99 GClO (left) and for the mean D/L ratios of all intervals

from cores FR03/99 GClO, 51GC43, FR4/92 PCI6, FR4/92 PCII, FR4/92 PCI2, and

FR5/90 PC27a (right). Black circles - GClO samples. Grey circles - samples from

Queensland Trough cores. Grey squares - rejected ratios 163

Figure A.5: The relationship between time and the D/L ratios of Aspartic acid in

foraminifera from cores FR03/99 GClO, 51GC43, FR4/92 PCI6, FR4/92 PCII,

FR4/92 PCI2, and FR5/90 PC27a 164

Figure A.6: Variations in 0180 and Ol3C in benthic foraminifera from core 51GC43,

relative to sea-level changes on the northeast Australian margin over the last glacial-

interglacial cycle. H/Stand - sea-level highstand. Trans - sea-level transgression.

Lowstand - sea-level lowstand 165

Figure A.7: The relationship between time and the D/L ratios of Aspartic acid in

foraminifera from cores FR03/99 GClO, 51GC43, FR4/92 PC16, FR4/92 PCll,

FR4/92 PC12, and FR5/90 PC27a, modelled using power functions. Correlation

coefficient and equation shown in brackets indicate modelling results for FR03/99

GClO with one outlier removed 166

Figure A.S: Comparison of the modelled kinetic pathways for Aspartic acid in cores

FR03/99 GClO, 51GC43, FR4/92 PC16, FR4/92 PCIl, FR4/92 PC12, and FR5/90

PC27a, over the last 20 to 25 kyo GClO: solid line - all data, dashed line - outlier

removed. Grey dashed lines indicate the estimated position of temperature gradients

for racemization rates of Aspartic acid in the western Coral Sea 167
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Figure B.l: Major physiographic and bathymetric features of Marion Plateau and the

location of ODP Site 1198A 180

Figure B.2: Variations in bulk carbonate content from 0 to 23.69 mbsf in ODP Hole

1198A 181

PhD Thesis - M. C. Page
xx


	COVER SHEET
	TITLE PAGE
	STATEMENT OF ACCESS
	STATEMENT OF SOURCES
	ABSTRACT
	STATEMENT OF THE CONTRIBUTION BY OTHERS
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES



