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ABSTRACT

This thesis is concerned with the application of statistical methods to spectral data. A

major concern which arises from spectral data is that the number of variables or dimen­

sionality usually exceeds the number of available spectra. This leads to a degradation in

performance of traditional statistical methods. There are basically two strategies which

can be implemented for overcoming such situations. It is common practice to first reduce

the dimensionality of the data by some feature extraction preprocessing method, and then

use an appropriate low dimensional statistical procedure. An alternative procedure is to

use a high dimensional statistical procedure which is capable of handling a large number

of variables. This thesis considers both approaches, and investigates the applicability of

wavelets as features for statistical analyses, as well as other feature extraction procedures.

The particular statistical analyses investigated are discriminant and regression analysis.

It is shown that, the wavelet based methods, particularly wavelets which have been

designed to suit a particular task, perform quite adequately when compared to traditional

approaches.
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• y' n' X 1 predicted vector of test response values (regression) or class labels (discrim-

inant analysis)

• z n X 1 discriminant variable

Bold Upper Case Letters

• A wavelet matrix

• Ai sub-matrix of the wavelet matrix A

• B matrix of multivariate regression coefficients

• Bos optimal scoring matrix of regression coefficients

• Cj low pass filtering matrix at level 'j in the DWT

• D j high pass filtering matrix at level j in the DWT

• D}z) high pass filtering matrix at level j in the DWT which contains the zth set of

highpass filter coefficients

• D diagonal matrix whose ith diagonal element is equal to Dii = 1/..jAtfda (1 - AtfdJ

• F i ith factor in the wavelet matrix A

-. L low pass convolution matrix

• 1-l hat matrix 1{ == X T (XXT ) -1X

• H high pass convolution matrix
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• P matrix whose ith column contains the principal component scores vector Pi

• PI is a matrix which augments In to the first column of P

• p x, P x* linear projector matrices

• Q orthogonal matrix used in contruction of the wavelet matrix A·

• R projection matrix used in contruction of the wavelet matrix A

• SB between covariance matrix

• Sw within covariance matri~

• Spooled pooled covariance matrix

• Sr covariance matrix of class r

• T matrix whose ith column contains the it.h latent vector from PLS

• V So matrix whose ith column is Vi for i == 1, ..... , SO"

• X p X n training data matrix

• Xl training data matrix whose first row is equal to 1;

• Xc p X n centered training data matrix

• X' p X n' testing data matrix

• X* p X n data ~atrix which results from some feature selection/transformation

procedure based on X.

• XU] (T) Inatrix containing the coefficients for the objects which would lie in band(j, T)

• Y n X R class indicator matrix

• Zso matrix whose ith column is Zi for i == 1, ... , So
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Greel( Letters

.. f3i ith component in the vector of regression coefficients f3

• b(t) delta function

• bij indicator variable; Oij == 1 if i == j, zero otherwise

• ti ith component in the vector of regression residuals E

• Ii eigenvalue corresponding to the ith principal CQlnponent

• A is a measure of the discriminant criterion A == VTSBV

• Aifda ith element of Afda

• A vVilk's Lambda

• A(i) Wilk's Lambda at the ith iteration of a stepwise routine

• 7J(j, r) discriminatory measure of band(j, r) in the wavelet packet transform

• Vi ith element in v

.. w freq\lency

• <p(t) scaling function

• <Pj,k(t) scaling basis function; <pj,k(i) == 'T7~j/2<p(mjt - k)

• 'lj;(t) mother wavelet function

• 1/Jj,k(t) wavelet basis function; children wavelets; 7Pj,k(t) == mj / 27jJ(mi t - k)

• Pij correlation between the ith principal component and the jth variable

• o-Xi sample standard deviation of Xi

• T band label for the DWT; TEO, 1, ... , m - 1

• fl rank of a matrix

fit f3 vector of regression coefficients
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• {3pcr vector of regression coefficients from a peR model

• (3pls vector of regression coefficients from a PLS model

• Afda vector whose elements are the eigenvalues 'of W*T'lt* In

• L\..fda diagonal matrix whose ith element is equal to Aifda

• 7](x*) vector of fitted values for x*

• fir fitted centroid of all x* objects belonging to class r

• v vector at wavelengths

• 'I'* class indicator matrix used in FDA and PDA

• ~* estimate of the class indicator matrix '1'*

• e matrix whose columns are the eigenvectors of 'IF*T 'l'* / n

Miscellaneous Characters

• li i x 1 column vector whose elements are all equal to 1

• t m downsample by a factor of m
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