JCU ePrints

This file is part of the following reference:

Carew, Michael John (2004) Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, N.W. Queensland, Australia. PhD thesis, James Coook University.

Access to this file is available from:

http://eprints.jcu.edu.au/17436

REFERENCES

Adshead, N.D., 1995, Geology, alteration and geochemistry of the Osborne Cu-Au deposit, Cloncurry district, NW Queensland: Unpublished PhD thesis: Townsville, James Cook University.

Adshead-Bell, N.S., 1998, Evolution of the Starra and Selwyn high-strain zones, Eastern Fold Belt, Mount Isa Inlier: Implications for Cu-Au mineralisation: Economic Geology, v.93, p.1450-1462.

Alibert, C., and McCulloch, M.T., 1993, Rare earth element and neodymium isotopic compositions of banded iron-formations and associated shales from Hamersley, Western Australia: Geochemical et Cosmochimica Acta, v.57, p.187-204.

Anbar, A.D., and Holland, H.D., 1992, The photochemistry of manganese and the origin of banded iron-formations: Geochemical et Cosmochimica Acta, v.56, p.2595-2603.

Audetat, A., Guenther, D., and Heinrich, C.A., 2000, Causes for large-scale metal zonation around mineralized plutons; fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia: Economic Geology, v.95, p.1563-1581.

Baker, T., 1998, Alteration, mineralisation and fluid evolution at the Eloise Cu-Au deposit, Cloncurry District, NW Queensland: Economic Geology, v.93, p.1213-1236.

Baker, T., and Laing, W.P., 1998, Eloise Cu-Au deposit, East Mt Isa Block: structural environment and structural controls on ore: Australian Journal of Earth Sciences, v.45, p.429-444.

Baker, T., Perkins, C., Blake, K.L., and Williams, P.J., 2001, Isotopic constraints on the genesis of the Eloise Cu-Au deposit, Cloncurry District, NW Queensland, Australia: Economic Geology. v.96, p.723-742.

Banvill, G., 1998, Textural and geochemical investigation of the magnetite species at the Osborne Cu-Au deposit, Cloncurry District, Mount Isa Inlier, NW Queensland, Unpublished BSc (Honours) thesis: Townsville, James Cook University.

Barton, M.D., and Johnson, D.A., 1996, Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralisation: Geology, v.24, p.259-262.

Barton, M.D., and Johnson, J.A., 2000, Alternative brine sources for Fe-oxide (-Cu-Au) systems: Implications for hydrothermal alteration and metals; in Porter, T.M. ed., Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, Australian Mineral Foundation, Adelaide, p.43-60.

Beukes, N.J., and Klein, C., 1990, Geochemistry and sedimentology of a facies transition, from microbanded to granular iron-formation, in the early Proterozoic Transvaal Supergroup, South Africa: Precambrian Research, v.47, p.99-139.

Blake, D.H., 1987, Geology of the Mount Isa Inlier and environs. Bulletin 225: Canberra, Bureau of Mineral Resources, Geology and Geophysics.

Blake, K.L., Pollard, P.J. and Xu, G., 1997, Alteration and mineralisation in the Mount Fort Constantine volcanics, Cloncurry district, northwest Queensland, in Pollard, P.J., ed., AMIRA P438, Cloncurry base metals and gold, Final Report: Townsville, Australian Institute of Mining and Metallurgy.

Blundy, J., and Wood, B., 2003, Partitioning of trace elements between crystals and melts: Earth and Planetary Science Letters, v.210, p.383-397.

Boggs, S., 1995, Principles of sedimentology and stratigraphy, Prentice Hall, New Jersey, p.262-263.

Bohlke, J.K., and Irwin, J.J., 1992, Laser microprobe analysis of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids: Geochimica et Cosmochimica Acta, v.56, p.203-225.

Bookstrom, A.A., 1995, Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry; discussion: Economic Geology, v.90, p.469-473.

Brodie, A.R., 2001, Gold distribution in hypogene ore at the Ernest Henry Cu-Au mine, NW Queensland; Implications for mineral processing and ore deposition: Unpublished (Honours) thesis: Townsville, James Cook University.

Brown, M., 1998, Origin of the sulphide mineralisation in the Tee Tree layered gabbro, Mt Isa Inlier, NW Queensland: unpublished BSc (Honours) thesis: Townsville, James Cook University.

Brown, P.E. and Hagemann, S.G., 1995, MacFlincor and its applications to fluids in Archean lode-gold deposits: Geochemica et. Cosmochimica Acta, v.59, p.3943-3952.

Butler, I.B., and Nesbitt, R.W., 1999, Trace element distributions in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): Earth and Planetery Science Letters, v.167, p.335-345.

Canfield, D.E., 1998. A new model for Proterozoic ocean chemistry: Nature, v.396, p.450-452.

Carmichael, L.S.E., and Nicholls. J., 1967, Iron-titanium oxides and oxygen fugacities in volcanic rocks: Journal of Geophysical Research, p.4665-4687.

Cartwright, I., Power, W.L., Oliver, N.H.S., Valenta, R.K., and McLatchie, G.S., 1994, Fluid migration and vein formation during deformation and greenschist-facies metamorphism at Ormiston Gorge, Central Australia: Journal of Metamorphic Geology, v.12, pp.373-386.

Clark, G.M., 1972, The structure of non-molecular solids: Applied Science, London.

Cliff, R.A., Rickard, D., and Blake, K., 1990, Isotope systematics of the Kiruna magnetite ores, Sweden; Part 1, Age of the ore: Economic Geology, v.85, p.1770-1776.

Cook, N.J., and Chryssoulis, S.L., 1990, Concentrations of "invisible gold" in common sulphides: Canadian Mineralogist, v.28, p.1-16.

Coward, M., 2001, Structural controls on ore formation and distribution at the Ernest Henry Cu-Au deposit, NW Queensland, Unpublished BSc (Honous) thesis: Townsville, James Cook University.

Craske, T.E., 1995, Geological aspects of the discovery of the Ernest Henry Cu-Au deposit, northwest Queensland: Australian Institute of Geosciences, v.16, p.95-109.

Dare, E.M., 1995, The textural and geochemical variation of the central Mt Angelay igneous complex, Cloncurry, Northwest Queensland, Australia, Unpublished BSc (Honours) thesis: Townsville, James Cook University.

Dasgupta, H.C., 1967, Intracrystalline element correlation in magnetite: Economic Geology, v.62, p.487-493.

Davidson, G., 1994, Host rocks to the stratabound iron-formation-hosted Starra gold-copper deposit, Australia. I. Sodic lithologies: Mineralium Deposita, v.29, p.237-249.

Davidson, G.J., 1998, Variation in copper-gold styles through time in the Palaeozoic Cloncurry Goldfield, Mount Isa Inlier: a reconnaissance view: Australian Journal of Earth Sciences, v.45, p.445-462.

Davidson, G.J. and Davis, G.H., 1997, Characteristics of the Monakoff Cu-Au-F-Ba-Mn deposit, Mt. Isa Eastern Succession, in Pollard, P.J., ed., AMIRA P438, Cloncurry Base Metals and Gold, Final Report: Townsville, Australian Institute of Mining and Metallurgy.

Davidson, G.J., and Dixon, G.H., 1992. Two sulphur isotope provinces deduced from ores in the Mount Isa Eastern Succession, Australia: Mineralium Deposita, v.27, p.30-41.

Davidson, G.J., Large, R., Kary, G., and Osborne, R., 1989, The BIF-hosted Starra and Trough Tank Au-Cu mineralisation: a new stratiform association from the Proterozoic Eastern Succession of Mt. Isa, Australia: Economic Geology Monagraph 6, p.135-150.

Davis, B.K., Pollard, P.J., Lally, J.H., McNaughton, N.J., Blake, K., and Williams, P.J., 2001, Deformation history of the Naraku Batholith, Mt Isa Inlier, Australia: implications for pluton ages and geometries from structural study of the Dipvale Granodiorite and Levian Granite: Australian Journal of Earth Science, v.48, p. 113-129.

Davis, J.C., 1986, Statistics and data analysis in geology, Wiley, New York.

De Jong, G., and Williams, P.J., 1995, Evolution of metasomatic features during exhumation of the mid-crustal Proterozoic rocks in the vicinity of the Cloncurry Fault, NW Queensland: Australian Journal of Earth Sciences, v.44, p. 281-290.

Derrick, G.M., Wilson, I.H., and Hill, R.M., 1976, Revision of stratigraphic nomenclature in the Precambrian of northwestern Queensland, Soldiers Cap Group: Queensland Government Mining Journal, v.77, p. 600-604.

Deer, W.A., Howie, R.A., and Zussman, J., 1992, An introduction to the rock-forming minerals -2^{nd} edition. Cambridge, Harlow, Longman Scientific Technical..

Drabsch, B., 1998, The relationship between mafic skarn development, microdiorite intrusion and alteration and mineralisation in the Corbould Zone of the Mount Elliott Cu-Au deposit, Eastern Fold Belt, Northwest Queensland, Unpublished BSc (Honours) thesis: Townsville, James Cook University.

Eugster, H.P., and Chou, I.M., 1979, A model for the deposition of Cornwall-type magnetite deposits: Economic Geology, v.74, p.763-774.

Evans, A.M., 1993, Ore geology and industrial minerals: Blackwell Science Ltd, Australia, p.253-256.

Faure, G., 1998, Principles and applications of geochemistry: Prentice Hall Inc, Upper Saddle River, New Jersey, p.99-108.

Fleet, M.E., MacLean, P.J., and Barbier, J., 1989, Oscillatory-zoned As-bearing pyrite from strata-bound and stratiform gold deposits: An indicator of ore fluid evolution: Economic Geology Monograph 6, p.356-362.

Foster, D., 1995, Paragenesis, fluid inclusions and stable isotope characterisation of mineralising fluids at the Brumby Cu-Au Prospect, Eastern Fold Belt, Northwest Queensland. B.Sc. (Honours) thesis: Townsville, James Cook University.

Foster, D.R.W., and Runenach, M.J., 2001, Low-pressure, high temperature metamorphism of the Eastern Fold Belt Mount Isa Inlier in Mark, G., Oliver, N.H.S., Foster, D.R.W., and others, eds., Mineralisation, alteration and magmatism in the Eastern Fold Belt, Mount Isa Block, Australia: Townsville, Geological Society of Australia, p. 15-29.

Francis, G., 2001, Introduction to SPSS for Windows, 3rd edition: Pearson educational Australia Pty Ltd, p. 135-142.

Freitsch, R and Perdahl, J.A., Rare earth elements in apatite and magnetite in Kirunatype iron ores and some other iron ore types: Ore Geology Reviews, v. 8, p. 489-510.

Freitsch, R., Tuisku, P., Martinsson, O.L., and Perdahl, J.A., 1997, Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia: Ore Geology Reviews, v. 12, p. 1-34.

Frost, B.R., 1991, Introduction to oxygen fugacity and its petrological importance, in Lindsley, D.H., eds., Oxide minerals: petrologic and magnetic significance, Reviews in mineralogy, v.25, p. 1-8.

Garret, S.J.M., 1992, The Geology and Geochemistry of the Mt Elliott Cu-Au Deposit, Northwest Queensland: Unpublished Masters thesis, Hobart, University of Tasmania. **Giles, D., and Nutman, A.P.,** 2002, SHRIMP U-Pb monazite dating of 1600-1580 Ma amphibolite facies metamorphism in the southeastern Mt Isa Block, Australia: Australian Journal of Earth Science, v.49, p. 455-465.

Goldshmidt, V.M., 1958, Geochemistry: Oxford university press, Amen house London.

Gow, P.A., Wall, V.J., Oliver, N.H.S., and Valenta, R.K., 1994, Proterozoic iron oxide (Cu-U-Au-REE) deposits: Further evidence of hydrothermal origins: Geology, v.22, p.633-636.

Grant, J.A., 1986, The isocon diagram- a simple solution to Gresens' equation for metasomatic alteration: Economic Geology, v 81, p.1976-1982.

Gresens, R.L., 1967, Composition-volume relationships of metasomatism: Chemical Geology, v.2, p.47-65.

Grevenitz, P., Car, P., and Hutton, A., 2003, Origin, alteration and geochemical correlation of late Permian airfall tuffs in coal measures, Sydney Basin, Australia: International Journal of Coal Geology, v.55, No.1, p.27-46.

Gribble, C.D. and Hall, A.J., 1992, A Practical Introduction to Optical Mineralogy: George Allen and Unwin, England.

Gross, G.A., and McLeod, C.R., 1980, A preliminary assessment of the chemical composition if iron formation in Canada: Canadian mineralogy, v.18, p.223-229.

Hand, M., and Rubatto, D., 2002, The scale of the thermal problem in the Mt Isa Inlier, Geological Society of Australia, Abstracts, v.67, p. 173.

Harmsworth, R.A., Kneeshaw, M., Morris, R.C., Robinson, C.J., and Shrivastava, P.K., 1990, BIF-derived iron ores of the Hamersley Province, in Hughes, F.E., ed., Geology of the mineral deposits of Australia and Papua New Guinea, Australasian Institute of mining and Metallurgy Monagraph 14, p.617-642.

Harris, D., 1997, Structural controls on Cu-Au mineralisation at Osborne Mine, Queensland: Etheridge Henley Williams, Consultant's report.

Hatton, O.J., and Davidson, G.J., 2004, Soldiers Cap Group iron-formations, Mt Isa Inlier, Australia, as a window into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin: Australian Journal of Earth Sciences, v.51, p.85-106.

Haynes, D.W., 2000, Iron oxide copper (-gold) deposits: their position in the ore deposit spectrum and modes of origin, in Porter, T.M., ed., Hydrothermal iron oxide copper-gold & related deposits: a global perspective, Adelaide, Australian Mineral Foundation, p.71-90.

Heinrich, C.A., Bain, J.H.C., Fardy, J.J., and Waring, C.L., 1993, Bromine/chlorine geochemistry of hydrothermal brines associated with Proterozoic metasediment-hosted

copper mineralisation at Mount Isa, Northern Australia: Geochimica et Cosmichimica Acta, v.57, p.2991-3000.

Helvaci, C., 1994, Apatite-rich iron deposits of the Avnik (Bingol) region, southeastern Turkey: Economic Geology, v 79, p.354-371.

Hemley, J.J., Cygan, G.L., Fein, J.B., Robinson, G.R., and D'Angelo, W.M., 1992, Hydrothermal ore-forming processes in the light of studies in rock-buffered systems. I. Iron-copper-zinc-lead sulphide solubility reactions: Economic Geology, v.87, p.1-22.

Hildebrand, R.S., 1986, Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada: Economic Geology, v.81, p.640-659.

Hitzman, M.W., Oreskes, N., and Einaudi, M.T., 1992, Geological characterstics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits: Precambrian Research, v.58, p.241-287.

Hitzman M.W., 2000, Iron-oxide-Cu-Au deposits: What, where, when and why. in Porter, T.M., ed., Hydrothermal Iron Oxide Copper-Gold and Related Deposits: a Global Perspective, Adelaide, Australian Mineral Foundation, p.9-26.

Holland, D.H., 1973, The oceans, a possible source of iron in Iron-Formations: Economic Geology, v.68, p.1169-1172.

Holloway, J.R., 1981, Compositions and volumes of supercritical fluids in the earth's crust: in Hollister, L.S., and Crawford, M.L., eds., MAC Short Course in Fluid Inclusions, Mineralogical Association of Canada, v.6, p. 13-38.

Huston, D.L., Bolger, C., and Cozens, G., 1993, A comparison of mineral deposits at the Gecko and White Devil deposits: Implications for ore genesis in the Tennant Creek district, Northern Territory, Australia: Economic Geology, v.88, p.1198-1225.

Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R., and Both, R.A., 1995, Trace elements in sulphide minerals from Eastern Australian Volcanic-Hosted Massive Sulphide Deposits: Part 1. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part 2. Selenium levels in pyrite: Comparison with δ^{34} S values and implications for the source of sulphur in volcanogenic hydrothermal systems: Economic Geology, v.90, p.1167-1196.

Ilton, E.S., and Eugster, H.P., 1989, Base metal exchange between magnetite and chloride-rich hydrothermal fluid: Geochemica et Cosmichimica Acta, v.53, p.291-301.

James, A.H., and Dennen, W.H., 1962, Trace Ferrides in the magnetite ores of the Mount Hope mine and the New Jersey highlands: Economic Geology, v.57, p.439-449.

Jaques, A.L., Blake, D.H., and Donchak, P.J.T., 1982, Regional metamorphism in the Selwyn Range area, northwest Queensland: BMR Journal of Australian Geology and Geophysics, v.7, p.181-196.

Jiren, Lu., Chengxin, Z., Guangdi, Z., Guangxian, Gui., Yushu, Liu., and Yuneng, H., 1988, Genetic type of V-Ti magnetite deposits in Panzhihua-Xichang area: Mineral deposits, Kuangchuang Dizhi, v.7, p.1-13.

Kariyanna, H., Vannappa, B., Govindaiah, S., and Pathan, A.M., 1996, Microintergrowths and fabrics of V-Ti magnetites and associated sulphides in Durgagudda-Upper Kaneri layered complex of Joida area, North Kanara District, Karnataka, India: Indian Mineralogist, v.30, p.92-107.

Karkkainen, N.K., 1999, Titanium ore potential of small mafic intrusions based on two examples in western Finland: Unpublished PhD thesis, Houghton, United States, Michigan Technological University.

Khin Zaw., Huston, D.L., Mernagh, T., and Hoffman, C., 1990, A fluid inclusion study of Tennant Creek ironstones: implications for ore genesis and exploration [abs]: Geological Society of Australia Abstracts, v.25, p.290.

Kisvarsanyi, G., and Procter, P.D., 1967, Trace element content of magnetites and hematites, southwest Missouri iron metallogenic province, U.S.A: Economic Geology, v.62, p.449-470.

Klemm, D.D., Snethlage, R., Dehm, R.M., Henckel, J., and Schmidt-Thome, R., 1982, The formation of chromite and titanomagnetite deposits within the Bushveld Igneous Complex, in Amstutz, G.C., et al., ed., Ore genesis-the state of the art: Berlin, Springer Verlag, p.351-370.

Krcmarov, R.L., and Stewart, J.I., 1998, Geology and mineralisation of the Greenmount Cu-Au-Co deposit, southeastern Marimo Basin: Australian Journal of Earth Sciences, v.45, p.463-482.

Kretz, R, 1983, Symbols for rock-forming minerals: American Mineralogist, v.68, p.277-279.

LaBerge, G.L., 1973, Possible biological origin of Precambrian Iron-Formation: Economic Geology, v.68, p.1098-1109.

Laing, W.P., 1998, Structural-metasomatic environment of the East Mt. Isa Block base metal-gold province: Australian Journal of Earth Sciences, v.45, p.463-482,

Leibenberg, L., 1970, The sulphides in the layered sequence of the Bushveld Complex: Geological Society of South Africa Publications, v.1, p.108-207.

Little, G.A., 1997, Structural evolution and paragenesis of alteration and mineralisation at Mount Elliott Cu-Au mine, North west Queensland: Unpublished BSc (Honours) thesis, Townsville, James Cook University.

Looseveld, R.J.H., 1989, The synchronism of crustal thickening and high T/low P metamorphism in the Mount Isa Inlier, NW Queensland, Australia. Part 1: an example, the central Soldiers Cap Group: Tectonophysics, v.159, p. 173-190.

Mark, G., 1998a, Granites and regional alteration in the Cloncurry District, N.W. Queensland, Unpublished PhD thesis, Townsville, James Cook University.

Mark, G., 1998b, Albitite formation by selective pervasive sodic-calcic alteration of tonalite plutons in the Cloncurry District, NW Queensland: Australian Journal of Earth Sciences, v.45, p.765-774.

Mark, G., 1999, Petrogenesis of Mesoproterozoic K-rich granitoids, Southern Mount Angelay igneous complex, Cloncurry District, Northwest Queensland, Australia: Australian Journal of Earth Sciences, v.45, p. 933-949.

Mark, G., and Crookes, R.A., 1999, Epigenetic alteration at the Ernest Henry Fe oxide-(Cu-Au) deposit, Australia, in Stanley et al., eds., Mineral deposits: Processes to processing, Society for Geology Applied to Mineral Deposits (SGA), p.185-188.

Mark, G., and De Jong, G., 1996, Synchronous granitoid emplacement and episodic sodic-calcic alteration in the Cloncurry district: Styles, timing and metallogenic significance, in Baker, T., Rotherham, J., Richmond, J., Mark, G., and Williams, P.J., eds., New developments in metallogenic research: The McAuthur, Mt Isa, Cloncurry minerals province. EGRU Contribution 55: Townsville, Economic Geology Research Unit, p.77-80.

Mark, G., and Foster, D.R.W., 2000, Magmatic-hydrothermal albite-actinolite-apatiterich rocks from the Cloncurry District, NW Queensland, Australia: Lithos, v.51, p. 223-245.

Mark, G., Oliver, N.H.S., Williams, P.J., Valenta, R.K., and Crookes, R.A., 1999, Characteristics and origins of the Ernest Henry iron oxide-copper-gold hydrothermal system: Results of the 1999 Collaborative SPIRT research project: Townsville, James Cook University.

Mark, G., Williams, P.J., and Boyce, A.J., Late quartz veining along the Cloncurry Fault, Eastern Fold Belt, NW Queensland, Australia: stable isotope evidence for the incursion of low-latitude meteoric fluids. *In press*.

Marshall, L.J., 2003, Brecciation within the Mary Kathleen Group of the Eastern Succession, Mt Isa Block, Australia: implications for Fe-oxide-Cu-Au mineralisation, Unpublished PhD thesis, Townsville, James Cook University.

McBirney, A.R., and Noyes, R.M., 1979, Crystallisation and layering of the Skaergaard intrusion: Journal of Petrology, v.20, p.487-554.

McCaig, A.M., Tritlla, J., and Banks, D.A., 2001, Fluid mixing and recycling during Pyrenean thrusting; evidence from fluid inclusion halogen ratios: Geochimica et Cosmochimica Acta, v.64, No.19, p.3395-3412.

McCarthy, T.S., Cawthorn, R.G., Wright, C.J., and McIver, J.R., 1985, Mineral layering in the Bushveld Complex: Implications of Cr abundances in magnetite from closely spaced magnetite and intervening silicate-rich layers: Economic Geology, v.80, p.1062-1074.

McPhail, D.C., 1993, The behaviour of iron in high temperature chloride brines: Geological Society of Australia Series, v.34, p.50-51.

Morris, R.C., 1985, Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes, A conceptual model, in Wolf, K.H, ed., Handbook of strata-bound and stratiform ore deposits, Volume 13, Elsevier Amsterdam, p.73-235.

Muller, B., Axelsson, M.D., and Ohlander, B., 2003, Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS: GFF, v.125, p1-5. Nayak, P.K., Das, D., Chinalapudi, S.N., Singh, P., Acharya, S., Vijayan, V., and Chakravortty, V., 2002, Quantitative multielemental analysis of titaniferous

magnetites by PIXE, EDXRF, and their iron mineral characterisation by ⁵⁷Fe Mössbauer spectroscopy: Journal of Radioanalytical and Nuclear Chemistry, v.254, p.351-356.

Neilsen, R.L., and Beard, J.S., 2000, Magnetite-melt HFSE partitioning: Chemical Geology, v.164, p.21-34.

Neilson, R., 2003, Trace element partitioning, <u>http://earthref.org/GERM/tools/tep.htm</u>.

Norman, M.D., Pearson, N.J., Sharma, A., and Griffin, W.L, 1996, Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses, Geostand Newsletter, v.20, p.247-261.

Nystrom, J.O., and Henriquez, F., 1994, Magmatic features of iron ores of the Kiruna Type in Chile and Sweden: Ore textures and magnetite geochemistry: Economic Geology, v.89, p.820-839.

Oakes, C.S., Bodnar, R.J., and Simonson, J.M., 1990, The system NaCl-CaCl₂-H₂0: I. The ice liquidus at 1 atm total pressure: Geochemica et Cosmochimica Acta, v.54, p. 603-610.

Oliver, N.H.S., 1995, Hydrothermal history of Mary Kathleen Fold Belts, Mt Isa Block, Queensland: Australian Journal of Earth Sciences, v. 42, p.267-279.

Oliver, N.H.S., 1996, Review and classification of structural controls on fluid flow during regional metamorphism: Journal of Metamorphic Geology, v.14, p.477-492.

Oliver, N.H.S., and Bons, P.D., 2001, Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure: Geofluids, v.1, p. 137-162.

Oliver, N.H.S., and Dickens, G.R., 1999, Hematite ores of Australia formed by syntectonic heated meteoric fluids, in Standley, C.J. et al., eds., Mineral deposits, Processes to processing, Society of Geology Applied to Mineral Deposits (SGA), p.889-892.

Oliver, N.H.S., Cartwright, I., Wall., V.J., and Golding, S.D., 1993, The stable isotope signature of kilometre-scale fracture-dominated fluid pathways, Mary Kathleen, Australia: Journal of Metamorphic Geology, v.11, p.705-720.

Oliver, N.H.S., Holcombe, R.J., Hill, E.J., and Pearson, P.J., 1991, Tectonometamorphic evolution of the Mary Kathleen Fold Belt, northwest Queensland: a reflection of mantle plume processes?: Australian Journal of Earth Sciences, v.38, p.425-455.

Oliver, N.H.S., Mark, G., Cleverley, J.S., Pollard, P.J., Fu, Bin., Marshall, L.J., Rubenach, M.J., Williams, P.J., and Baker, T. 2004, Modelling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits; Eastern Mt Isa Block, Australia (in press).

Oliver, N.H.S., Mark, G., Rubenach, M.J., and others, 2001, Albitisation as a chemical precursor to ironstone-Cu-Au mineralisation in the Cloncurry District-geochemical and isotopic evidence, in Mark. G., Oliver, N.H.S., Foster, D.R.W., and others, eds., Mineralisation, alteration and magmatism in the Eastern Fold Belt, Mount Isa Block, Australia. Specialist Group in Economic Geology, Publication No. 5: Townsville, Geological Society of Australia, p.64-84.

Oliver, N.H.S., Pearson, P.J., Holcombe, R.J., and Ord, A., 1999, Mary Kathleen metamorphic-hydro-thermal uranium-REE deposit: ore genesis and numerical model of coupled deformation and fluid flow: Australian Journal of Earth Sciences, v.46, p. 467-484,

Oliver, H.H.S., Rawling T.J., Cartwright, I., and Pearson, P.J., 1994, High temperature fluid-rock interaction in an extension-related hydrothermal system, Mary Kathleen, Australia: Journal of Petrology, v. 35, p. 1455-1491

Oliver, N.H.S., Valenta, R.K., and Wall, V.J., 1990, The effect of heterogeneous stress and strain on metamorphic fluid flow, Mary Kathleen, Australia, and a model for large-scale fluid circulation: Journal of Metamorphic Petrology, v.8, p.311-331.

Oreskes, N., and Einaudi, M.T., 1992, Origin of hydrothermal fluids at Olympic Dam: preliminary results from fluid inclusions and stable isotopes: Economic Geology, v.87, p.64-90.

Page, R.W., and Bell, T.H., 1986, Isotopic and structural responses of granite to successive deformation and metamorphism: Journal of Geology, v. 94, p. 365-379.

Page, R.W., and Sun, S.S., 1998, Aspects of geochronology and crustal evolution in the Eastern Fold Belt, Mt Isa Inlier: Australian Journal of Earth Sciences, v. 45, p. 343-361.

Page, R.W., Jackson, M.J., and Krassey, A.A., 2000, Constraining sequence stratigraphy in north Australian basins: SHRIMP U-Pb zircon geochronology between Mt Isa and McArthur River: Australian Journal of Earth Sciences, v.47, p.431-459.

Parak, T., 1975, Kiruna iron ores are not "intrusive magmatic ores of the Kiruna type": Economic Geology, v.70, p.1242-1258.

Pauling, L., 1948, Nature of the chemical bond: Cornell University Press, Chapter 2.

Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element diagrams for the tectonic interpretation of granitic rocks: Journal of petrology, v.25, p.956-983.

Perkins, C., and Wyborn, L.A.I., 1998, Age of Cu-Au mineralisation, Cloncurry District, eastern Mt Isa Inlier, Queensland, as determined by ⁴⁰Ar/³⁹Ar dating: Australian Journal of Earth Sciences, v.48, p. 233-246.

Perring, C.S., Pollard, P.J., Nunn, A.J., and Blake, K.L., 2000, The Lightning Creek sill complex, Cloncurry district, northwest Queensland: A source of fluids for Fe-oxide-Cu-Au mineralisation and sodic-calcic alteration: Economic Geology, v.95, p.1067-1089.

Phillpots, A.R., 1990, Principles of igneous and metamorphic petrology, Prentice Hall, Englewood Cliffs, New Jersey, p.247-250.

Pollard, P.J., 2000, Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Au mineralisation, in Porter, T.M. ed., Hydrothermal iron oxide copper-gold & related deposits: a global perspective, Adelaide, Australian Mineral Foundation, p.27-41.

Pollard, P.J., and McNaughton, N., 1997, U-Pb geochronology and Sm/Nd isotope characteristics of Proterozoic intrusive rocks in the Cloncurry district, Mount Isa Inlier, Australia., Pollard, P.J., eds., AMIRA P438, Cloncurry Bas Metals and Gold, Final Report: Townsville, Australian Institute of Mining and Metallurgy.

Pollard, P.J., Blake, K.L., and Guoyi Dong, 1997, Sodic (-calcic) alteration styles in the Cloncurry District, Eastern Mount Isa Inlier, Australia: Fluid inclusion and stable isotope constraints on fluid sources, in Pollard, P.J., eds., AMIRA P438, Cloncurry Base Metals and Gold, Final Report: Townsville, Australian Institute of Mining and Metallurgy.

Pollard, P.J., Mark, G., and Mitchell, L.C., 1998, Geochemistry of post-1540 Ma granites spatially associated with regional sodic-calcic alteration and Cu-Au-Co mineralisation, Cloncurry district, northwest Queensland: Economic Geology, v.93, p. 1330-1344.

Potter, R.W., Clynne, M.A., Brown, D.L., 1978, Freezing point depression of aqueous sodium chloride solutions: Economic Geology, v.73, p.284-285.

Powell, C. McA., Oliver, N.H.S., Li, Z.X., Martin, D. McB., and Ronaszeki, J., 1999, Synorogenic hydrothermal origin for the giant Hamersley iron oxide ore bodies: Geology, v.27, p.175-178.

Reynolds, I.V., 1985, The nature and origin of titaniferous magnetite-rich layers in the upper zone of the Bushveld Complex: A review and synthesis: Economic Geology, v.80, p.1089-1108.

Rhodes, A.M., Oreskes, N., and Sheets, S., 1999, Geology and rare earth element geochemistry of magmatic deposits at El Laco, Chile: Special Publication – Society of Economic Geologists v.7, p.299-332.

Ringwood, A.E., 1955, The principals governing trace element distribution during magmatic crystallisation. Part 1: The influence of electronegativity: Geochemica et Cosmochimica Acta, v.7, p.189-202.

Roberts, I.F., 1982, Trace element chemistry of pyrite: a useful guide to the occurrence of sulohide base metal mineralisation: Journal of Geochemical Exploration, v.17, p.49-62.

Roedder, E., 1984, Fluid Inclusions. Mineralogical Society of America, Reviews in Mineralogy, v.12, p.646.

Rollinson, H.R., 1993, Using geochemical data: evaluation, presentation, interpretation. John Wiley & Sons, New York.

Rotherham, J.F., 1997, A metasomatic origin for the iron oxide Au-Cu Starra orebodies, Eastern Fold Belt, Mount Isa Inlier: Mineralium Deposita, v.32, p. 205-218.

Rotherham, J.F., Blake, K.L., Cartwright, I., and Williams, P.J., 1998, Stable isotope evidence for the origin of the Starra Au-Cu deposit, Cloncurry District: Economic Geology, v.93, p.1435-1499.

Rubenach, M.J., and Barker, 1998, Metamorphic and metasomatic evolution of the Snake Creek Anticline, Eastern Succession, Mount Isa Inlier: Australian Journal of Earth Sciences, v.45, p. 363-372.

Rubenach, M.J., and Lewthwaite, K.A., 2002, Metasomatic albitites and related biotite-rich schists from a low-pressure polymetamorphic terrane, Snake Creek Anticline, Mount Isa Inlier, north-eastern Australia: microstructures and P-T-d paths: Journal of Metamorphic Petrology, v.20, p. 191-202.

Rubenach, M.J., Adshead, N.D., Oliver, N.H.S., Tullemans, F., Esser, D., and Stein H., 2001, The Osborne Cu-Au deposit: geochronology and genesis of mineralization in relation to host albitites and ironstones, in Williams, P.J., eds., 2001: A hydrothermal odyssey, new developments in metalliferous hydrothermal systems research, extended conference abstracts, EGRU contribution 59: Townsville, Economic Geology Research Unit, p.172-173.

Ryan, A.J., 1998, Ernest Henry copper-gold deposit. in Berkman, D.A., and MacKenzie, D.H., eds., Geology of Australian and Papua New Guinean mineral deposits, Australian Institute of Mining and Metallurgy Monagraph Series 22: Melbourne, Australian Institute of Mining and Metallurgy, p. 759-768.

Ryan, C.G., Cousens, D.R., Heinrich, C.A., Griffin, W.L., Sie, S.H., and Mernagh, T.P., 1991, Quantitative PIXE microanalysis of fluid inclusions based on a layered yield model: Nuclear Instruments and Methods in Physics Research Section B, v.54, p.292-297. **Ryan, C.G., Heinrich, C.A., Achterberg, E., van Ballhaus, C., and Mernagh, T.P.,** 1995, microanalysis of ore-forming fluids using the scanning proton microprobe: Nuclear Instruments and Methods in Physics Research Section B, v.104, p.182-190.

Selverstone, J., Franz, G., Thomas, S., and Getty, S.R., 1992, Fluid variability in 2 GPa eclogites as an indicator of fluid behaviour during subduction: Contributions to Mineralogy and Petrology, v.112, p.341-357.

Sha, L.K., and Chappell, B.E., 1999, Apatite chemical composition, determined by electron microprobe and laser ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis: Geochimica et Cosmochimica Acta, v.63, p.3861-3881.

Shepherd, T.J., Rankin, A.H., and Alderton, D.H.M., 1985, A practical guide to fluid inclusion studies, Glasgow, Blackie Son Ltd., p.239.

Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in: A.D. Saunders and M.J. Norry., eds., Magmatism in the Oceanic Basins: Geological Society Special Publication 42: p.313-345.

Taylor, D., Dalstra, H.J., Harding, A.E., Broadbent, G.C., and Barley, M.E., 2001, Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia: Economic Geology, v.96, p.837-873.

Tolman, J.L., 1998, Origin and formation of complexly textured albite-, actinolite-, apatite-rich rocks within the Central Mount Angelay igneous complex, Cloncurry district, Northwest Queensland, Unpublished BSc (Honours) thesis, Townsville, James Cook University.

Toplis, M.L., and Corgne, A., 2002, An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium: Contributions to Mineralogy and Petrology, v.144, p.22-37.

Twyerould, S.C., 1997, The geology and genesis of the Ernest Henry Fe-Cu-Au deposit, NW Queensland, Australia: Unpublished PhD thesis, University of Oregon.

Ulrich, T., Gunther, D., and Heinrich, C.A., 2001, The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina: Economic Geology, v.96, p.1743-1774.

Ulrich, T., Golding, S.D., Kamber, B.S., Zaw, K. and Taube, A., 2002, Different mineralisation styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mount Morgan Cu-Au deposit, Australia: Ore Geology Reviews, v.22, p.61-90.

Van Achterburgh, E., Ryan, C.G., Jackson, S.E., Griffin, W.L, 2001, Data reduction for LA-ICP-MS, Laser-ablation-ICPMS in the earth sciences; principles and applications, Short Course Handbook v.29, p.239-243.

Van Baalen, M.R., 1993, Titanium mobility in metamorphic systems a review: Chemical Geology, v.110, p.233-249.

Vanko, D.A., and Bishop, F.C., 1982, Occurrence and origin of marialitic scapolite in the Humboldt Lopolith, N.W. Nevada: Contributions to Mineralogy and Petrology, v.81, p.277-289.

Vinayaka, S., Govindaiah, S., and Pathan, A.M., 1999, Textural features of chromite and V-Ti magnetite layers in the ultramafic-mafic complex of Nuggihalli schist belt, Dharwar Craton, India: Indian Mineralogist, v.33, p.113-123.

Waychunas, G.A., 1991, Crystal chemistry of Oxides and Oxyhydroxides, in Lindsley, D.H., eds., Oxide minerals: petrologic and magnetic significance, Reviews in Mineralogy, v.25, p.11-61.

Wager, L.R., Brown, G.M., and Wadsworth, W.J., 1960, Types of igneous cumulates: Journal of Petrology, v.1, p.73-85.

Wagner, P.A., 1928, The iron deposits of the Union of South Africa: South Africa Geological Survey, v.26, p.21-41.

Walker, J.C.G., 1984, Suboxic diagenesis in banded iron formations: Nature, v.309, p. 340-342.

Wang, S., and Williams, P.J., 2001, Geochemistry and origin of Proterozoic skarns at the Mount Elliott Cu-Au (-Co-Ni) deposit, Cloncurry district, NW Queensland, Australia: Mineralium Deposita, v.36, p.109-124.

Webb., 2003, From banded iron-formation to iron ore: geochemical and mineralogical constraints from across the Hamersley Province, Western Australia, Unpublished PhD thesis, James Cook University, Townsville.

Webb, A.D., Dickens, G.R. and Oliver, N.H.S., 2003, From banded iron-formation to iron ore: geochemical and mineralogical constraints from across the Hamersley Province, Western Australia: Chemical Geology, v.197, p.215-251.

Wedekind, M.R., Large, R.R., and Williams, B.T., 1989, Controls on high-grade gold mineralisation at Tennant Creek, Northern Territory, Australia: Economic Geology, Monagraph 6, p.168-179.

White, W.H., Bookstrom, A.A., Kamilli, R.J., Ganster, M.W., Smith, R.P., Ranta, D.E., and Steininger, R.C., 1981, Character and origin of Climax-Type molybdenum deposits, in Skinner, B.J., ed., Economic Geology 75th Anniversary Volume, p.270-316.

Williams, P.J., 1994, Iron mobility during synmetamorphic alteration in the Selwyn Range area, NW Queensland: Implications for the origin of ironstone-hosted Au-Cu deposits: Mineralium Deposita, v.29, p. 250-260.

Williams, P.J., 1998, Metalliferous economic geology of the Mt Isa Eastern Succession, Queensland: Australian Journal of Earth Sciences, v.45, p. 329-341.

Williams, P.J., and Blake, K.L., 1993, Alteration in the Cloncurry District, James Cook University Economic Geology Research Unit Contribution, v. 49, pp. 75

Williams, P.J., and Pollard, P.J., 2001, Australian Proterozoic iron oxide Cu-Au deposits: An overview with new metallogenic and exploration data from the Cloncurry District, Northwest Queensland: Exploration and Mining Geology, v.10, p.191-213.

Williams, P.J., and Skirrow, R.G., 2000, Overview of Iron Oxide-Copper-Gold deposits in the Curnamona Province and Cloncurry District (Eastern Mount Isa Block), Australia, in Porter, T.M., eds., Hydrothermal iron oxide copper-gold and related deposits: A Global Perspective, Adelaide Mineral Foundation, p.105-122.

Williams, P.J., Dong, G., Ryan, C.G., Pollard, P.J., Rotherham, J.F., Mernagh, T.P., and Chapman, L.H., 2001, Geochemistry of hypersaline fluid inclusions from the Starra (Fe oxide)-Au-Cu Deposit, Cloncurry District, Queensland: Economic Geology, v. 96, p.875-883.

Wyborn, L.A.I., 1992, The Williams and Naraku Batholiths, Mt Isa Inlier: an analogue of the Olympic Dam Granites?: BMR Research Newsletter, v. 16, p. 13-16.

Wyborn L.A.I., and Heinrich, C., 1993, The relationship between late-tectonic felsic intrusives and Cu-Au mineralisation in the Eastern Fold Belt, Mount Isa Inlier: Australian Institute of Geoscientists Bulletin, v.13, p. 27-30.

Xu, G., and Pollard, P.J., 1999, Origin of CO₂-rich fluid inclusions in synorogenic veins from the Eastern Mount Isa Fold Belt, NW Queensland, and their implications for mineralisation: Mineralium Deposita, v.34, p.395-404.

Zaw, K., Huston, D.L., Large, R.R., Mernagh, T., and Hoffman, C.F., 1994, Microthermometry and geochemistry of fluid inclusions from the Tennant Creek gold copper deposits: implications for ore deposition and exploration: Mineralium Deposita, v.29, p.288-300.

Zhang, Y.G., and Frantz, J.D., 1989, Experimental determination of the compositional limits of immiscibility in the system CaCl₂-H₂O-CO₂ at high temperatures and pressures using synthetic fluid inclusions: Chemical Geology, v. 74, p. 289-308.

APPENDIX 1

JCU rock sample numbers

All samples referred to in this thesis have been given a JCU sample number. Also included is a list of all analyses done on each sample, in addition to thin section cut and photos used in this thesis. Throughout the thesis, for samples taken from the FC12 and FC4NW prospects, sample numbers refer to the depth down hole and drill hole number respectively (e.g. MFC160.5/51).

An outline of the map of outcrop at MFC is also presented giving the locations of all samples taken.

JCU Sample	Hole #	Northing	Fasting	Down hole	Hand sample	Polished	Photo in	VPE	Microthermo	DIVE	Laser	CADDS	Electron
#	Fiole #	Northing	Easting	depth	Franci sample	section	thesis	AKF	analysis	FIAE	Ablation	GADDS	microprobe
JCU samp	ole collection	numbers: FC	4NW prospec	t									
71478	MFC97012D	7751426	468285	81.2	*		*						
71479	MFC97027D	7751302	467388	47.2m	*		*						
71480				50.5m	*	*							
71481				52.9m	×								
71482				81.2m	*								
71483				81.9m	*	×	*						
71484				91.1m	*								
71485				98.3m	*								
71486				100.3m	*	*	*		*	*			
71407				114.2m	*	*							*
71400				114.2III	*		-			-			
71403				121m	*								
71490				121m	*	*	*		*	*			
71492				132.6m	*								
71493				180m		*	*		*	*			
71494	MFC98051D	7750597	466705	90.3m		*							
71495				94.6m	*	*							
71496				125.7m	*		-			-			
71497				143.3m	*								
71498				154.3m	*								
71499				160.2m	*	**		*			*		
71500				160.5m	*	**	**	*					*
71501				161.3m	*		*						
71502				168.6m							*		
71503				174.5m	*								
71504				181.9m		*							
71505				182.8m	*								
71506				190.8m	*								
71507				194m	*								
71508				210.9m	*								
71509				214.6m	*								
71510				242m	*								
/1511	MFC98052D	7750860	466860	146.2m	*								
71512				165m	*	+							
71513				211.4m	-	*							*
71514				220III	*								
71515				255.5III 256m	*								
71510				256 7m	*								
71518				257.5m	*	*							
71519				259.7m		*	*		*	*			*
71520				260.6m	*	*							
71521				265.9m	*								
71522				268.7m	*	*							*
71523				269m	*	*	**						
71524	MFC98053D	7751358	467020	158.3m	*	*							
71525				180.8m	*								
71526				181.2m	*								
71527				181.4m	*								
71528				212.4m	*	*							
71529				214.4m	*								
71530				215m	*	*							
71531				219.6m	*	*							
71532				224.3m	*								
71533				225m	*								
71534				226.6m	*								
71535				242m	*	*							
71536				254.2m	*								
/1537				261./m	*								
/1538	MECODOS (S	7754440	407400	162.6M	*	L		L			L		
71539	MFC98054D	//51110	467130	169.8m	*								
71540				1/6.8m	*								
71541				104		**							
71542				194	*								
71543		-		206.6m	*								
71544				200.011 208m	*	*							
715/6				210 1m	*								
71540				210.ml	*	*							*
71548				262m	*								
11040				202111									

ICU Sample				Down hole		Polished	Photo in		Microthermo		Lacar		Floatson
900 Sample #	Hole #	Northing	Easting	depth	Hand sample	section	thesis	XRF	metric	PIXE	Ablation	GADDS	microprobe
1011		6							analysis				
JCU samp	NECODODOD	numbers: FC	4NW prospec	t 74m	*		r		-		r		
71549	MFC99090D	7750450	466450	74m	*								
71550				144III 176.9m	*	*	*						*
71551				176.60	-								
71552				184m	*								
71553				214.8m	*								
71555				214.011 224.7m	×	*							
71556				224.711 232m	×	*							
71550				234 3m	÷								
71558				248m	*								
71559				254.8m	*	***	**				*		*
71560				262m	*	**					*		
71561				266m	*								
71562				272.1m	*								
71563				273m	*								
71564				285.1m	×						*		
71565				315m	*	*							*
71566	MFC99091D	7750410	466300	197.6m	*								
71567				202.9m		*	*		*	*			
71568				224m	*	*	*						*
71569				288m	*								
71570				295.9m	*								
71571				310.3m	*								
71572				325.5m	*		l				l		
71573				327.4m	*								
71574				333.8m	*								
71575				335.3m	*	*							
71576				341.6m	*								
71577				344.6m	*								
71578				346.5m	*								
71579				353.6m	*								
71580				362.4m	*								
71581				399.5m	*	*							
71582				430m	*								
71583				440m	*	*							
71584				440.8m	*	**							*
71585				449.3m	*								
71586				469.7m		*	*						
71587				485.4m	*	**							
71588	MFC99092D	7750220	466600	170.5m	*								
71589				176m	*								
71590				183.8m	*								
71591				189m	*	*	*						
71592				195.8m	*								
71593				203.7m	*								
71594				232.9m	*	*							
71595				243m	*								
71596				250m	*	*	L	l					
71597				281m	*	**							
71598				285.4m	*	*	*						
71599				301.6m	*						ļ		
/1600				311m	*	*							
/1601			100000	312.9m	*	<u> </u>	<u> </u>				ļ		
71602	MFC99093D	//50280	466320	127m	*	*	×	I					
71603				153m	*	I	L	I					
/1604				180.7m							l		
/1605				190.6m	•	· ·	I				I		
/1606				197.5m									
71607				230.4m									
71608				230.4M	•	<u>⊢ .</u>							
/1609				240m	•	L .							*
71610				240.1M	*	-							
71640				24/111 247.9m	*								
71612				247.011	*	*							
71613				253.2m	*	*	L						
71614				253.5m	*	*							
71010				204.000 285.4m	*	*							
71617				200.4III 203.2m	*								
71610				208.4m	*								
01010				230.4111				1			1		

									Microthermo				
JCU Sample	Hole #	Northing	Easting	Down noie depth	Hand sample	Polished	Photo in thesis	XRF	metric	PIXE	Ablation	GADDS	Electron
"				ucpin		section	thesis		analysis		Holation		meroprose
JCU samp	le collection	numbers: FC	12 prospect						-				
71619	FTCD1081	7757785	470101	136m	*	*							
71620				256.8m		*							
71621				260.8m	*	**		*					
71622				266.3m	*	*	*	*					
71623				275m	*								
71624				284m	*	*							
71625				289.6m	*	*	*						
71626				291m	*	*	*				*		
71627				299 7m	*	*							
71628				302.5m	*	*							
71620				303.8m	×	*							
71630				356.8m	ż		*						
71630				259.0m	*	*	*	*					
71031				356.911				*					
71632				360.300	-								
/1633				363m				-	-				
/1634				431m		-							^
71635	FTCD1082	7757500	469700	203m	*								
71636				226.8m	*								
71637				253.2m	*	*							
71638				261.3m	*			*					
71639				263m	*			*					
71640				265m	*	*							
71641				256.7m	*	*							
71642				258.3m		*							
71643				327.3m	*								
71644				338m	*	*	*	*			*		
71645				339m	*			*					
71646				346.9m	*	*	*	*					*
71647				346m	*	*	*	*					
71649				356m	*								
71640				294.5m	*	*	*	*					
71049				304.3III	*	*	*	*					
71650	-			390.300	*								
71051	-			4360	,								
71652				44 IM	\								
/1653				441.2m		<u> </u>							
71654				447.3m	,								
71655				466.6m	*	*		*					
71656				466.8m	*	*		*					
71657				468.1m	*	*		*					
71658				490m	*	*							
71659				501m	*	*							*
71660				501.7m	*	*							
71661				505.9m	*	*							
71662	FTCD1084	7757501	470005	120.7m	*	*	*	*					
71663				121.3m	*			*					
71664				200.2m	*	*							
71665	1			259.5m	*	*			1				l
71666				271.5m	×								
71667				312.3m	*						*		
71669	FTCD1085	7756600	469950	101.4m	*	*	*						
71660	11001000	110000	403330	222.5m	×								
71670				204m	*	*							
/ 10/0				304111					1				

JCU Sample #	Hole #	Northing	Easting	Down hole depth	Hand sample	Polished section	Photo in thesis	XRF	Microthermo metric analysis	PIXE	Laser Ablation	GADDS	Electron microprobe
JCU samp	le collection	numbers: FC	12 prospect										
71671	FTCD1086	7758101	470205	190.3m	*			*					
71672				193.4m	*								*
71673				203	*	*	*						
71674				209.8m	*	*	*						*
71675				213m	*								
71676				223.6m	*	*							
71677				224.3m	*			*					
71678				228.3m	*	*							
71679				229.2m	*			*					
71680				246m	*	*	*	*					
71681				248.2m	*	*	*	*					
71682				249m	*	*							
71683				262m	*	*							
71684				262.3m	*	*	*	*					
71685				265.4m	*	*	*	*					
71686				280m	*	*							
71687				293.7m	*								
71688				303.8m	*		*						
71689				321.8m	*	*							
71690				327.4m	*	*							
71691				329m	*	*							
71692				360.6m	*	*							
71693				362.2m	*								
71694				362.3m	*	*							
71695				382.4m	*	*							
71696				395.6m	*			*					
71697				399.5m	*			*					
71698				425.1m	*	*							
71699				428.8m	*	*	*						
71700	FTCD1087	7758320	470130	145.9m	×	*							
71701				158.4m	*	*							
71702				183m	*		*						
71703				187m	*	**	*						*
71704				187.1m	*	*							
71705				191m	*								
71706				192.2m	*	*	*						
71707				192.6m	*		*						
71708				192.7m	*	*							
71709				201m	*	*	*						*
71710				203.2m	*	*	*						
71711				204m	*	*	*						
71712				204.2m	*						*		
71713				209m	*	*							
71714				263.8	*		*						
71715				270m	*	*							
71716				291.7m	*	*							
71717				369m	*	*							
71718				371.2m	*	*	*						

JCU Sample #	Hole #	Northing	Easting	Sample name in thesis	Down hole depth	Hand sample	Polished section	Photo in thesis	XRF	Microthermo metric analysis	PIXE	Laser Ablation	GADDS	Electron microprobe
JCU samp	le collection	numbers: Err	est Henry											
71719	FTCD004	7763268	439557	FT4B	88m	*	•					*		
71720				FT4A	198m	*	*					*		
71721	FTCD008	7769440	439160	FT8C	144.8m	*	•					*		
71722				FT8A	263.2m	•	•					*		
71723				FT8B	411.5m	*	•					*		
71724	FTCD021	7769278	439480	FT8A	135.3m	*	•					*		
71725	FTCD094	7769580	438600	FT94B	159.3m	*	•					*		
71726				FT94A	244.7m	*	•					*		
71727				FT94C	527.7m	*	•					*		
71728	EH151	7769053	439641	EH151	144m	•	•					*		
71729	EH184			EH184C	120.4m	•	•					*		
71730				EH184A	208.8m	*	*					*		
71731				EH184B	279.1m	*	*					*		
71732				EH184D	425m	*	*					*		
71733	EH201	7769320	439319	EH201B	159.5m	*	•					*		
71734				EH201C	205.9m	*	•	•				*		
71735				EH201C	268.8m	*	•					*		
71736	EH223	7769560	438680	EH223B	102m	*	•					*		
71737				EH223A	170.m	*	•					*		
71738	EH510	7769250	438470	EH235	235.7m	*	•					*		
71739				EH647	647.8m	*	•	•				*		

JCU Sample #	Hole #	Hand sample	Polished section	Photo in thesis	XRF	Microthermometric analysis	PIXE	Laser Ablation	GADDS	Electron microprobe
JCU samp	le collection nur	nbers: MFC ou	tcrop							
71740	MEC002LIN				*					
71741	MEC002A	*	*	*	*					
71742	MEC008	*	*	*						
71743	MEC012	*		*						
71744	MEC012	*	**							
71745	MEC012B	*	*							
71745	MEC012002A	*	*		-					
71740	MFC013002A	*	*	*						*
71747	MFC013002B	+	*	*						-
71748	MFC013003A	*	**	*						*
71749	MFC013007A									
/1/50	MFC014									
71751	MFC016	×	*							-
71752	MFC017			*						-
71753	MFC019	*	*							
71754	MFC032	*	*							*
71755	MFC046	*	*							*
71756	MFC047	*	*	*						
71757	MFC051	*	*	*						*
71758	MFC070			*						
71759	MFC086	*	*							
71760	MFC089A	*	*							
71761	MFC089B	*	*							
71762	MFC092	*	*							
71763	MFC099		*							
71764	MFC103	*	*							
71765	MFC115	*	*		1					
71766	MFC121	*	*	*						
71767	MEC143	*	*	*						
ICII samn	le collection nur	nhors: Roymor	o ironston	2						
	Sample #	Hand Sample	Polished	Photo in	YRE	microthermometric	PIXE	Lasor	GADDS	Electron
sample #		riand Gample	coction	thosis		analycic		ablation	GADDO	microprobo
71769	Poymoro1-55		3001011	110313	*	anaiyoio		ablation		meroprobe
71760	Roxmere1-30		*		*					
ICII samn		nbors: Monako	<i>ff</i>							
JCU samp	Somple #	Hond Somple	Deliched	Dhoto in	VDE	miorothormomotrio	DIVE	Logor	CADDS	Electron
JCU	Sample #	Hand Sample	Polished	Photo in	ARF	microinermometric	PIAE	Laser	GADDS	Electron
sample #	ManakaffM		section *	thesis *	*	analysis		ablation		microprobe
/1//0	IVIONAKOITVV		0							
JCU samp	Deconection num	nbers: Lighthin	Ig Creek	Dia ta in	VDE	and a set the same state of the	DIVE	1	04000	El a stasa
JCU	Sample #	Hand Sample	Polished	Photo In	XRF	microthermometric	PIXE	Laser	GADDS	Electron
sample #			section	thesis		analysis		ablation		microprobe
/1//1	LCD32		^ +					*		
71772	LCD13	*	^					*		
71773	LCD43		*					*		4
71774	LCF12	*	*					*		
71775	LCD106		*					*		
JCU samp	le collection nur	nbers: Osborn	9							
JCU	Sample #	Hand Sample	Polished	Photo in	XRF	microthermometric	PIXE	Laser	GADDS	Electron
sample #			section	thesis		analysis		ablation		microprobe
71776	OS1	*	*	*				*		
71777	OS2		*					*		
JCU samp	le collection nur	nbers: Starra								
JCU	Sample #	Hand Sample	Polished	Photo in	XRF	microthermometric	PIXE	Laser	GADDS	Electron
sample #			section	thesis		analysis	1	ablation		microprobe
71778	ST1		*					*		
71779	ST2		*					*		
71780	ST3		*		l			*		
JCU same	le collection nur	nbers: Mount E	lliott		İ					
JCU	Sample #	Hand Sample	Polished	Photo in	XRF	microthermometric	PIXE	Laser	GADDS	Electron
sample #			section	thesis		analvsis		ablation		microprobe
71781	ME		*					*		
	=					1				1

APPENDIX 2

Electron microprobe data

All electron microprobe data referred to in this thesis are tabulated here. Sample numbers in this table refers to the depth down hole and hole number respectively, which can thus be used to determine their location in appendix 1. All analyses were performed using WDS. Elements analysed and their lower detection limits include (wt %):

 $\begin{array}{l} {\rm SiO}_2 = 0.20 \\ {\rm TiO}_2 = 0.20 \\ {\rm Al}_2 {\rm O}_3 = 0.25 \\ {\rm FeO} = 0.20 \\ {\rm MnO} = 0.20 \\ {\rm MgO} = 0.20 \\ {\rm CaO} = 0.20 \\ {\rm Na}_2 {\rm O} = 0.40 \\ {\rm K}_2 {\rm O} = 0.20 \\ {\rm Cl} = 0.20 \\ {\rm CaO} = 0.20 \end{array}$

Bd = below detection

Analytical technique

Thin sections were polished and examined under the microscope to determine areas of interest. These samples were then coated in a thin layer of carbon. Samples were placed into the JOEL JXA-840A EM microanalyser facility of the James Cook University Advanced Analytical centre. Common rock-forming minerals were in analysed in EDS mode at 15kV, an operating beam current of 10nA and count time of 30 seconds.

Albite	FC4NW (alteration :	selvage)							FC4NW (vein)		
	MFC259.7/52	MFC259.7/52	MFC259.7/52	MFC220/52	MFC220/52	MFC220/52	MFC220/52	MFC114.2/27	MFC315/90	MFC118.5/27	MFC232.7/90
Oxide weigh	nt percent	65 78	66.67	GG GA	6A 11	64.43	GE AA	GE OF	65 73	66 83	66 47
Ti02	t pq	pq	pd	pd	pq	pq	pq	bd	0.24	pq	pd
AI203	21.85	18.87	17.78	19.84	19.61	18.97	18.86	18.69	18.95	18.34	18.35
FeO	0.68	pq	0.36	pq	pq	0.34	pq	pq	0.27	0.19	pq
MnO	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	0.22
0 0 0	0.06	pq	pq	pq	0.32	0	0.44	0.26	pq	pq	pq
cao	0.49	0.82	0.18	1.51	1.57	1.3		0.42	0.8	0.41	pq
Na2O	8.84	10.28	10.95	10.77	9.67	10.19	10.82	10.01	10.28	10.9	10.94
K20	2.33	0.24	pq :	0.2	pg .	0.21	pq .	pg :	pq .	pg .	pq .
-CI	pd of 77	Dd of oo	Dd of 80	Dd OB OF	Dd OF 28	Dd OF 11	Dd Of Fe	Dd OF 13	Dd OF 77	Dd OG 67	Dd of o2
Number of 5	30.77 stoms par unit formul	132 Ovvinanc)	20.02	30.30	27.70	11 .02	20.00	90. 1 0	20.12	20.06	30.30
		ia (J2 UA)geno) 11 97	12 13	11 81	11 76	11 84	11 87	12.03	11 GU	12.07	12.07
ō i=	pd hd	Pq	Pri -	204			Pri d	Prd	0.03	Pd Pd	Pd
: A	4.72	4.05	3.81	4.14	4.24	4.11	4.03	4.01	4.08	3.90	3.93
Fe ²⁺	0.10	Pa	0.05	pq	pq	0.05	pq	pq	0.04	0.03	bd
- Mu	2.5		200			рч Рч			- 20	2010	0.03
M	200	2	2	3 2	000		0 13	0.07	2	2	0000 Pr4
n C	0.10	0.16	0.04	0.29	0.31	0.26	0.19	0.08	0.16	0.08	pq
Na Na	3.14	3.63	3.86	3.70	3.44	3.63	3.80	3.53	3.64	3.82	3.85
	0.54	0.06	pq	0.05	pq	0.05	pq	pq	b pq	- pq	bd
: 0	. pq	pq	pq	pq	pq	pq	pq	pq			pq
Total	20.08	19.85	19.90	19.99	19.84	19.94	20.02	19.73	19.85	19.89	19.89
Ca No.	2.97	4.16	0.00	7.11	8.23	6.50	4.86	2.27	4.12	2.04	pq
Actinolite											
	MFC Outcrop (vein)				MFC Outcrop (alter	ation)					
	MFC032	MFC051	MFC051	MFC051	MFC051	MFC051	MFC051				
Oxide weigh	nt percent										
Si02	52.96 2.25	55.04	55.43	53.02	53.97	53.75 2.25	54.04				
102	0.25	pq	pq	pq	0.27	0.29	pq				
	1.21	0.63	0.66	2.13	1.6	1.35	1.41				
De :	15.42	14.39	14.22	16.08	15	14.88 0.00	14.6				
MINC	17.0	pq	pq	DQ .	pa	0.23	0.32				
0 OGW	14.57	15.58	15.18	14.46	15.04	14.81	14.69				
CaO Naco	11.90	12.14	12.21	12.13	CU.21	12.08	0.40				
NazO V2D	0.33	0.04	0.0Z	0.20			0.40				
			2	0.03	0.30	27	0.00				
Total	07 13	0.22	00 98.58	99.45	08.31	97 30	0.23 98.26				
Number of 5	atoms per unit formul.	la (23 Oxvinens)	0000	2		0	04:00				
Si	7.78	7.90	7.94	7.66	7.79	7.83	7.82				
Ξ	0.03	pq	pq	pq	0.03	0.03	pq				
AI	0.21	0.11	0.11	0.36	0.27	0.23	0.24				
Fe ²⁺	1.89	1.73	1.70	1.94	1.81	1.81	1.77				
Mn	0.03	pq	pq	pq	pq	0.03	0.04				
Mg	3.19	3.33	3.24	3.11	3.24	3.21	3.17				
Ca	1.88	1.87	1.88	1.88	1.86	1.88	1.89				
Na	0.16	0.18	0.23	0.35			0.13				
<u> </u>		Da		0.07	0.07		0.0 90.0				
	15.17	15.16	15.11	15 37	15.08	15.03	15.10				
Mg No*	62.43	65.87	65.56	61.59	64.13	63.60	63.70				

Actinolite	FC12 (alteration	on selvage)						FC12 (vein)									
	MFC201/87	MFC431/81	MFC187/87	MFC187/87	MFC187/87	MFC187/87	MFC206/86	MFC347/82	MFC347/82	MFC347/82	MFC347/82	MFC501/82	MFC501/82	MFC501/82	MFC501/82	MFC501/82	MFC501/82
Oxide weig	tht percent		00 01		00 1	07.7	00							0, 1			10 11
202	02.50	40.7C	00°20	20.9Z	07.42	04.10	20.00	44.40 144	10.40	17.40	- 140	04.70	40.04	04.40	00.19	00.91 P.4	c0.1c
A1203	35	900	146	0.84	80	121	200	901	1 59	1 73	137	1 95	0,80	234	2.53	2 46	4.43
FeO	16.82	18.57	14.36	15	17.22	12.39	18.93	10.48	10.29	10.47	12.97	12.78	11.13	9.82	10.54	96.6	12.81
Cum	F	Pq	F	Pq	Z	0.2	0.28	Pq	F	0.21	Z	0.24	F	0.22	F	Pq	F
MaO	13,94	12.86	15.11	15.41	14.24	16.62	12.49	17.49	17.52	17.75	16.09	16.46	17.17	17.35	17.89	17.28	15.05
CaO	11.52	11.19	12.08	11.93	11.84	10.7	11.94	12.36	12.11	12.17	12.27	12.76	13	12.52	12.39	12.61	12.55
Na2O	0.91	0.67	0.54	0.6	1.1	0.72	Pq	1.06	pq	0.46	0.68	pq	pq	pq	Pq	0.51	pq
K20	pq	pq	pq	pq	pq	pq	0.24	0.32	pq	0.36	pq	0.25	pq	0.3	0.49	0.23	0.86
Ū	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	0.37	pq	pq	0.9
Total	97.7	96.31	96.93	97.7	99.31	96.02	98.62	97.21	95.88	98.15	98.09	99.22	98.16	97.33	97.83	96.96	97.93
Number of	atoms per unit	formula (23 Ox	(ygens)														
Si	7.82	7.82	7.803	7.84	7.85	7.89	7.89	7.82	7.85	77.7	7.84	7.76	7.94	7.77	7.66	7.73	7.41
F	pq	pq	pq	pq	pq	pq	pq	pq	pq	0.03	pq	pq	pq	pq	0.02	pq	0.03
AI	0.21	0.17	0.252	0.14	0.11	0.21	0.16	0.18	0.27	0.29	0.23	0.33	0.14	0.39	0.42	0.42	0.76
Fe ²⁺	2.06	2.33	1.755	1.82	2.08	1.51	2.32	1.26	1.24	1.24	1.55	1.51	1.32	1.17	1.26	1.19	1.55
- Ma	ł	P4	4	P4	2	0.00	200	۲ ۲	2	0.03	2	0.03	2	50.0	2	P4	2
W	3.05	2,88	3 203	3.34	3.07	3.61	0.00	3.75	3 77	3.76	3.44	3.48	3.63	3.69	3.80	3.69	3.26
n c	181	1 80	1 802	1 86	1 83	1.67	1 88	001	187	1.85	1 0 0	104	1 07	1.01	0.00	1 04	1 05
No Ca	90.0	00.0	0.153	0.17	0.31	00.0	2	0.50	2	0.13	010	5	bd.	104	201	110	60 0
2		0.50	22.0		2.2	0.20	300	90.0	33	0.13	6-0	200	3 3	300	000	± 00	0.00
20	3 2		3 2		3 2	89		8.9 P4	32	50	3 2	60-0 Pd	3 2	000	60:0 PH	5	0.22
Total	15.21	15.20	15 148	15.17	15.25	15.11	15.05	15.26	15.01	15.15	15.14	15.10	14 00	15 11	15.15	15 15	15.38
Ma No*	59.64	55.25	65.229	64.68	59.59	70.18	53.68	74.85	75.22	74.76	68.86	69.26	73.34	75.49	75.16	75.57	67.57
5																	
Actinolite																	
	MFC224/91	MFC:224/91	MEC:254.8/90	MFC:254.8/90	MEC:254.8/90.1	MEC:254.8/90	MEC:254.8/90	MEC:254.8/90	MEC:254 8/90 1	MEC:254.8/90.1	MEC:114 2/27	MEC114 2/27	MEC114 2/27	MEC:259 7/52	MEC:259 7/52	MEC:259 7/52	MEC:259 7/52
Ovide main	ht narrant		000-070	000000000	0000		00000000	000010000	0000						10110010		
SiO2	55.76	53.6	52.76	54.59	54.1	54.77	54.42	53.21	53.94	54.43	52.37	54.53	53.79	51.69	53.59	53.59	53.59
TiO2	pq	0.21	pq	0.22	pq	pq	pq	pq	pq	0.31	0.27	pq	pq	pq	pq	pq	pq
AI2O3	0.37	pq	1.4	0.52	0.87	pq	pq	1.21	0.61	0.91	1.88	1.42	1.47	1.07	1.67	1.67	1.67
FeO	10.19	19.35	17.61	11.2	9.26	10.99	11.31	13	11.9	13.22	11.96	12.11	11.2	14.86	12.05	12.05	12.05
MnO	pq	0.25	0.54	0.22	pq	pq	0.24	0.47	0.33	pq	pq	pq	pq	pq	pq	pq	pq
MgO	17.12	11.69	12.78	15.94	17.07	15.41	15.94	15	15.93	15.01	15	15.85	15.88	12.95	15.75	15.75	15.75
CaO	12.65	11.62	12.34	12.54	12.12	12.47	12.25	12.22	12.2	12.52	11.7	11.85	11.34	12.47	12.08	12.08	12.08
Na2O	pq	0.39	pq	pq	pq	pq	pq	pq	pq	pq	1.48	0.82	1.11	0.46	0.44	0.44	0.44
K20	Pq	pq	0.32	pq	0.2	pq	pq	pq	pq	pq	0.39	0.3	0.45	0.22	0.32	0.32	0.32
	8	pq	R	pq	R	pq	R	pq	B	pq	PG	0.21	R	pq	8	pq	B
Total	36.09	97.11	97.75	95.23	93.62	93.64	94.16	95.11	94.91	96.4	95.05	97.0426093	95.24	93.72	95.9	95.9	95.9
Number of	atoms per unit	formula (23 Ox	(ygens)		1												
ōi	8.03	8.00	08.7	1.988	1.97	8.12	8.06		CR. /	1.93	11.1	7.88	68.1	88	1.84	1.84	1.84
= ;	8 3	0.02	83	0.024		D .	8			0.03	0.03	D0		pg c		000	
1 A	00	5	0.24	0.090	CI .0	DO .	B	1.2.0	1.1.0	0.10	0.33	0.24	C7-0	0.18	87.0	0.23	87.0
-e-	1.23	2.41	2.18	1.370	1.14	1.36	1.40	1.61	1.47	1.61	1.48	1.46	1.37	1.89	1.47	1.47	1.47
u Z	pg	0.03	0.07	0.027	pq	pq	0.03	0.06	0.04	pq	pq	pq	pq	pq	pq	pq	pq
BN C	3.07	7.00	2.82	3.477	6/.5	0.41 100	20.5	3.31	00.5	3.20	3.32	0.41 00	0.47		0.43	3.43 2.00	0.4.0 0.0
Z G	06°-1	00	06.1	1.900	- 19	01 1-20	+ 6	+n -	- a0	06.1	00.1		0/	#0.7	60 C F C	-09 	- OG
	3 2	- 54	900		200	89	3 2		32		200	0.06	20.0		0.06	0.06	0.06
: 0	2 2	p pq	Pro-		Pd Pd	pq	2 2	pq		pq	pq	0.05	Pro-	- Pq	Pro-	pq	P4
Total	14.94	15.04	15.11	14.943	14.97	14.88	14.94	15.01	14.99	14.95	15.29	15.17	15.18	15.12	15.11	15.11	15.11
Mg No*	74.97	51.53	55.65	71.330	76.67	71.43	71.10	66.49	69.89	66.93	69.10	70.00	71.65	60.84	69.97	69.97	69.97

Actinolite								
	FC4NW (vein) MFC259.7/52	MFC:259.7/52	MFC240.1/93	MFC315/90	MFC315/90	MFC315/90	MFC315/90	MFC440.8/91
Oxide weig	tht percent							
SiO2	53.46	53.15	54.83	53.8	55.02	54.81	53.61	54.57
Ti02	pq	B	0.22	pq	0.33	pq	B	pq
AI203	2.23	1.43	0.68	1.21	1.04	0.39	0.57	0.37
FeO	11.54	20.3	12.84	11.67	9.89	15.52	16.72	10.98
Oun	pq	B	pq	0.2	0.22	pq	B	0.44
MgO	16.41	11.82	16.01	16.4	17.82	14.77	13.46	16.07
CaO	11.65	12.4	12.32	12.08	12.17	12.74	12.59	11.84
Na2O	1.22	pq	pq	0.66	0.66	pq	pq	pq
K20	0.41	pq	pq	0.39	0.23	pq	pq	pq
ū	pq	pq	pq	pq	pq	pq	pq	pq
Total	96.92	99.1	96.9	96.41	97.38	98.23	97.27	94.27
Number of	atoms per unit formu	ula (23 Oxygens)						
Ni	7.74	7.80	7.93	7.83	7.85	7.93	7.90	8.05
Ē	pq	pq	0.02	pq	0.04	pq	pq	pq
P	0.38	0.25	0.12	0.21	0.17	0.07	0.10	0.06
Fe ²⁺	1.40	2.49	1.55	1.42	1.18	1.88	2.06	1.35
μ	pq	pq	pq	0.02	0.03	pq	pq	0.05
Ма	3,54	2.59	3.45	3.56	3.79	3,19	2.96	3.53
n C	1.81	1.95	1.91	1.88	1.86	1.97	1.99	1.87
n N	0.34	Pd	- pq	0.19	0.18	pq	Pd	p.
	0.08			0.07	0.04		R	2 00
2 0	0.0 Pd	8 2	pq	pd bd	b Pd	R PG	8 2	200
Total	15.28	15.08	14 99	15.19	15.14	15.04	15.10	14 92
Ma No*	71.71	50.93	68.97	71.12	75.86	62.92	58.94	71.49
Actinolite								
	FC4NW (vein)							FC4NW (alteration)
	MFC440.8/91	MFC440.8/91	MFC440.8/91	MFC440.8/91	MFC268.7/52	MFC268.7/52	MFC 268.7/52	MFC114.2/27
Oxide weic	tht percent	53.67	53 B.A	£3 83	51 12	52 87	5183	48 BG
	40.00	6.00	500	00.000	4 10	- 0.70 Pd	2010	0.53
	33	83	202	20	1 25	0.56	1 11	0.0
	10.76	10 71	010	n 1	16.76	0.00	- 1	0.4
		10.1	0.46	t 7	0.101	0.01	4.1	
	0.20	00 CF CF		n d	0.43	12.0	10.0	0.20
D D D	10.22	10.43	10.77	10.3	06.11 37.01	12.20	80'I I	25.01
	1.34	#; -	12.13	11.30	C / 7	12.33	14.4	10.04
NazO	2		27	27	2	27	0	1.04
2 2	3 3	1 2 0			8 2	2 2	8 2	0.0
Total	02.67	03 46	00 16 00 16	03 51	04 27	05.35	04 87	05.23
Number of	atome per upit form	10-103 Ovidenc)	34.10	10.05	17:40	00.00	10.40	07.05
		uia (zu Uvyyeria) R NN	8 06	8 07	7 87	7 06	787	7 31
5 F	pq	Pd	pd bd	-0.0	- Pq	pq	2	0.06
× A	pq	g	pq	pq	0.23	0.10	0.25	0.76
Fe ²⁺	1 35	1 34	1 18	1 42	2 14	2.12	2.18	1 52
Mn	0.03	Pd	pq	pq	0.06	0.03	0.04	0.04
ВМ	3.63	3.65	3.74	3.62	2.73	2.76	2.65	3.42
Ca Ca	1.92	1.99	1.95	1.91	2.09	2.02	2.02	1.77
Na	pq	pq	pq	pq	pq	pq	pq	0.53
¥	pq (0.04	pq	pq	pq :	pq :	pq :	0.13
	pq	B	pq	pq	pq	pq	PG	0.07
Total	14.97	15.02	14.94	14.98 34.00	15.07	14.99	15.01	15.62
Mg No*	72.46	73.23	76.04	71.82	55.36	56.16	54.34	68.74

Biotite	FC4NW (vein)											
	MFC160.5/51	MFC 160.5/51	MFC160.5/51									
Oxide weigh	nt percent	37 EO	02 96									
TiO2	2.73	2.54	2.59									
AI203	12.18	12.27	12.59									
FeO	13.32	13	13.3									
MnO	pq	pq	pq									
MgO	16.27	16.99	16.19									
CaO	pq	pq	pq									
Na2O	0.44	pg S	pd									
	10.23	9.03	0.03									
Total	94.2	92.58	93.98									
Number of o	Nome per unit formul		0000									
		lia (22 Oxygeris) 5 77	5 06									
ōË	0.0	00.0	00.0									
	0.31	67.0	67.0 VC C									
	1 50	77.7	1 20									
	1.03	1.07	00.1									
	D 2 2		D0									
BM BM	3.07	3.89	3.04									
ca Ca	pg g		8 3									
Za	0.13		B 2 2 2									
2 0	1.98	1.89	1.93									
CI Total	0.09	0.00	0.05									
1 0141	10.01	0000	1.01									
Clinopyrox	ene MEC Outaron (altor	(no iter										
		MEC 03.2	MEC032	MEC 03.2	MEC032	MECO32	MEC032	MEC032	MEC032	MEC 03.2	MECO32	MEC032
Ovide weidh	t narrant	1000	MI 0004	1000	7000	1000	1000	1007	7007	1007	1000	7000
SiO2	11 percent 52.42	52.6	52.12	52.44	52.63	52.45	53.04	52.89	52.07	51.97	53.08	51.7
Ti02	pq	pq	Pa	pq	pq	pq	B	pq	pq	pq	pq	pq
AI2O3	pq	Pq	pq	pq	pq	0.46	þq	0.37	pq	pq	pq	pq
FeO	10.55	10.96	10.53	11.11	9.97	11.07	11.09	10.78	10.61	12.74	11.66	11.15
MnO	pq	pq	pq	pq	pq	pq	pq	0.5	pq	pq	pq	0.15
MgO	11.61	12.04	11.68	11.99	11.95	11.55	11.91	10.61	11.44	10.65	11.56	11.67
CaO	23.38	22.94	22.9	23.44	24.09	22.59	23.39	22.22	23.87	20.41	22.9	23.1
Na2O	pq .	p :	pq .	0.81	pq .	0.85	0.46	1.5	0.51	2.16	0.56	pg :
6. C	pq .	pg :	pq .	pg :	pq .	pq .	8	DO .	pq .	pg :	pq .	pg :
	pq	pq	pq	pq	pq	pq	pq	pq	pd r	pq	pq	pq
	31.30	40.04	67.18	33.73	30.04	30.37	33.03	30.01	80.0	31.30	33.70	31.15
Number of &	atoms per unit tormu	ila (o Uxygens) 2 01	00 0	1 00	2.01	00 6	10 0	0.00	00 6	202	10 0	00 0
5 1	7.04 Pd	- P4	20.2	2021	54	00-7 P4	20.2	70.7 Pd	20.7	7 P4		0.1
Ā			2	2		20.0	82	000	2	22		3 2
г. Ео ²⁺	0.34	0.25	20.0	0.35	0.37	0.35	0.25	20:0	20.04	244	0.37	0.36
AN C	5 74	20.0	5	200	40.0 Pd	00:0 Pd	200	60.0	5.94		50	200
Mo	0.67	0.69	0.67	0.68	0.68	0.66	0.67	0.60	0.66	0.62	0.65	0.67
Ca	0.96	0.94	0.95	0.95	0.98	0.92	0.95	0.91	0.98	0.85	0.93	0.96
Na	pq	pq	pq	0.06	pq	0.06	0.03	0.11	0.04	0.16	0.04	pq
X	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
	pq	pq	pq	pq	pq	pq	pa	pq	pq	pq	pq	pq
Total	3.98	3.99	3.98	4.04	3.99	4.02	4.01	4.03	4.02	4.06	4.01	4.00
	00.24	00.20	00.42	00.00	00.12	40.00	80.00	02.70	07.00	03.00	10.00	11.00

Clinopyrox	ene AFC Outcrop (veir	(L												
	MFC051	MFC051	MFC051	MFC051	MFC051									
Oxide weigh	t percent				1									
	17.26	52.34	53.96	54.41 L1	22.07									
			27	2 2	27									
	10.02	11 50	90	14 61	10.02									
Cum	0.01	204	0.20	0.1	70.01									
	11 80	10.87	12.5	11 92	12.18									
CaO	23.54	24.08	24.4	24.64	23.45									
Na2O	pq	1.33	pq	0.27	0.84									
K20	pq	pq	pq	pq	pq									
ō	pq	pq	pq	pq	pq									
Total	99.07	100.21	100.68	102.85	98.56									
Number of a	toms per unit torm	ula (6 Oxygens)												
5	2.01	1.99	2.01	2.00	1.99									
= ;	pg .	pg .	pg .	p :	pq .									
AI 3	Da	Da	pq	pa	pq									
Fe ⁻	0.35	0.37	0.30	0.36	0.32									
LN X	pq	pq	0.01	pq	pq									
δN M	0.68	0.62	0.69	0.65	0.70									
ca C	0.96	0.98	0.97	0.97	0.96									
Na	pg .	0.10	pq .	0.02	0.06									
z i	pg :	pq .	pg :	pg :	pq									
	pq	pq .	pq	pg	pq									
Total	3.99 65 08	4.06 67 58	3.99 60 80	4.01 64.67	4.04									
	00.30	00:70	03.03	04.07	00.43									
Clinopyrox	ene													
	-C4NW (alteration MEC118 5/27	1) MEC118 5/27	MEC118 5/27	MEC118 5/27	MEC118 5/27	MEC118 5/27	MEC118 5/27	MEC118 5/27	MEC 118 5/27	MEC118 5/27	MEC118 5/97	MEC250 7/52	MEC.359.7/52	ID - 220cmv1
Oxide weigh:	t percent													
SiO2	52.79	52.73	53.44	53.46	52.26	53.01	52.31	52.83	53.59	52.49	53.31	52.56	53.11	53.49
Ti02	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
AI203	pq	pq	pq	0.36	0.33	pq	0.3	0.46	0.39	0.23	pq	pq	0.55	0.34
FeO	12.32	10.64	9.72	11.09	9.43 bd	10.19 bd	12.22	11.14	10.27	10.4	9.72	12.34	13.53	14.33 bd
	10.88	11 45	11.8	11 15	10 17	11.87	10.01	1114	11 03	11 77	11 06	10.63	10.27	1001
CaO	22.08	21.75	22.4	22.1	22.37	22.06	21.97	22.2	22.91	23.01	23.25	22.97	22.46	22.29
Na2O	1.18	0.44	0.64	1.02	1.18	1.27	1.17	0.95	pq	1.3	1.09	0.94	1.84	1.26
K20	pq	pq	pq	pq	pq	pq	pq	pq	pq	0.21	pq	pq	pq	0.07
	pd 2002	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
lota	99.25	97.23	98.26	99.15	97.74	98.4	99.14	98.97	99.09	99.41	99.33	99.72	102.03	101.8
Number of a	toms per unit form	ula (6 Oxygens)												
ي ت	2.02	2.04	2.04	2.03	2.01	2.02	2.01	2.01	2.02	2.00	2.02	2.01	1.99	2.01
_ <	pq	pq	pq	pq	pq	pq	pq	pq	pg	pq	pq	8	pq	pq
AI 2		B	Da	0.02	1.0.0	Da	1.0.0	0.02	20.02	10.0			0.UZ	0.UZ
Fe ⁻	0.39	0.34	0.31	0.35	0.30	0.33	0.39	0.36	0.32	0.33	0.31	0.39	0.42	0.45
Ē		0.01	0.01	pg	pg	pg	0.01	0.01	pg 2			0.01	0.01	pq 2
۵ M	7.970	0.00	0.01	0.63	0.70	0.00	79.0	0.63	0.67	0.04	19.0	19.0	/9.0	96.0
e Z	60.0	0.03	0.05	0.08	0.09	0.09	0.09	0.07	bd	0.10	0.08	0.07	0.13	60.0
×	pq	pq	pq	pq	pq	pq	pq	pq	pq	0.01	pq	pq	pq	pq
Ū	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	Pq	pq	pq
Total	4.03	3.98	3.99	4.00	4.03	4.02	4.03	4.01	3.97	4.05	4.02	4.03	4.06	4.03
Mg No*	61.16	65.74	68.40	64.13	69.71	67.50	61.42	64.07	67.44	66.86	68.69	60.56	57.51	55.46

Clinopyro	<i>xene</i> FC4NW (vein)										
	MFC254.8/90	MFC254.8/90	MFC254.8/90	MFC254.8/90	MFC254.8/90	MFC268.7/52	MFC268.7/52	MFC268.7/52	MFC268.7/52	MFC268.7/52	MFC268.7/52
Oxide weig	tht percent										
SiO2	52.07	52.41	51.77	52.42	52.84	52.89	52.38	50.91	53.88	49.77	48.87
TiO2	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
AI203	pq	pq	pq	pq	pq	pq	pq	pq	Pq	pq	pq
FeO	10.78	8.68	8.67	9.02	8.96	9.72	11.47	18.93	14.28	11.6	13.08
OuM	0.3	0.31	0.33	pq	þq	0.3	pq	0.27	0.26	0.34	pq
Com	11.41	11.98	11.26	12 44	12.49	11.78	10.49	6.51	10.38	10.05	9.5
CeO	24.09	24.35	23.4	24.81	24 45	24.25	23.1	21.22	22.17	23.63	22.62
Na2O		0.27	, pq	. pq		pd Pd	, pq	0.23	19	pd bd	0.42
K20	pq	pq	pq	pq	þq	pq	pq	pq	pq	pq	pq
2					2			12	2		
Total	98.65	80	95.43	98.69	98.74	08 94	97 44	98.07	102.87	95.39	94 49
Number of	otome por unit for		CT-02	20.00	1 100	10.00	LT: 10	10.00	107701	20.00	
	atoms per unit ion	imula (o Uxygen:	5) 2000	000	200	200	00 0	000	1000	00 7	
N.	2.00	2.01	2.03	2.00	2.01	2.01	2.03	2.03	2.01	1.99	1.99
F	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
A	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
Fe ²⁺	0.35	0.28	0.28	0.29	0.28	0.31	0.37	0.63	0.45	0.39	0.44
MD	0.01	0.01	0.01	pq	þq	0.01	pq	0.01	0.01	0.01	pq
- UN	0.65	0.68	0.66	0 71	0 71	0.67	0.61	0.30	0.58	0.60	0.58
	000	0.00	00.0	101	000	000	900	500	00.0	101	0.0
	0.33	9.5	0.30		0.33	0.33	0.30	- 6.0	0.00		0.93
		0.02			8			0.02	-	D I	cn.n
×	pq :	pq :	pq .	pq .	DQ .	pq .	DQ .	DQ (DQ :	pq :	pq .
ō	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
Total	4.00	4.00	3.97	4.00	3.99	3.99	3.97	3.98	4.06	4.01	4.03
Mg No*	65.36	71.10	69.84	71.09	71.31	68.36	61.99	38.01	56.45	60.70	56.43
Clinopyro	xene										
	MEC315/00	MEC315/00	MEC315/00	MEC315/00	MEC 220/62	MEC220/62	MEC220/62	MEC220/62	MEC 220/62	MEC220/62	
Cion of the				MILCO 19/90							
UXIDE WEIC	jni percent 52.68	53.54	52.83	52.01	52.32	52.64	53.43	52.45	52.03	51.06	
Ti02	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	
AI2O3	0.4	0.29	0.4	рч	Ę	рч	рч	0.45	F	pq	
FeO	12 72	11 77	196	10.52	12 88	14.59	12.85	12.06	14 46	13.53	
CaM	4 7 7		0.58	0.35	2017		0.0	20.7	10.0	200	
C W	10.55	11 26	12 44	11 25	10.69	10.02	10.49	11 01	9.47	9.86	
CeC	22.03	21.68	22.95	22.61	22.51	21.92	22.23	22.15	21.85	21.47	
Na2O	40	1 44	1 00	0.03	0.51	0.43	1 25	0.64	0.45	0.73	
K OC	5 4		201	200	200	Pt-p	22	5.04	6.5	2.5	
		2			2			3 2	3 2		
Total	08 78	90 98	99,86	07 97	08 01	996	100.45	08.76	08.47	96.65	
Number of	otomo por unit for	00.00 Province 0.00		10.10	10.00				1.00	00.00	
		nnua (o Oxygeni 2 02	ہ) 1 ۵۵	2.01	2 01	2 0.2	2 0.2	2.01	2.0.2	000	
5 F	70.7 Pd	70.7 Pd	201	10.0	Pd	Pd	70.7 Pd		70.7 Pd	40.7 Pd	
A	0.00	0.01	20.0	. pq				0.02	2		
Eo ²⁺	20.0	0.27	10:0	200	110	24.0	10.0	0.00	247	0.45	
	- + - +	0.0	00.0	40.0	- 1-	14.0		0.03	- 1 0	C+:	
		500	0.02	10.0	50	0.57	0.0	200	0.01		
b u	0.00	0.00	0.00	60.0 0	10.0	10.0	0.00	0.02	0.00	0.00	
	- 60 0	0.00	0000	20.0	0.00	0.00	00.0	0.05	10.0	- 6.0	
Z Z	60-00 Prd		90-0	60.0	to:0	60-0 P4	60-0	60.0	60.0 Pd	0.00	
2 0			5		2		5	22	3 2		
Total	00 8	4 02	404	4 02	4 01	4 00	4 02	4 00	00 8	4 01	
Mg No*	59.66	63.04	69.86	65.60	59.67	55.04	59.27	61.94	53.87	56.51	

Ferro-act.	'inolite FC12 (vein)			EC4NW (alteration)						
	FTCD501/82	FTCD501/82	FTCD501/82	MFC224/91	MFC114.2/27	MFC114.2/27	MFC114.2/27			
Oxide wei	ght percent									
SIO2	53.88	53.65	54.02 b.d	53.79 L-1	49.57	52.29 L-1	51.96 L-1			
	D0 72 0	p p	pq	D q	00 0.26	00 90	8 2			
	21 B	23.71	21 10	20.20	22.00	22.20	23.67			
MnO	0.29	0.36	0.35	pq	pq	pq	pq			
MgO	11.08	9.73	11.2	11.04	7.66	9.65	9.62			
CaO	11.72	11.85	12.05	11.32	11.77	11.91	11.67			
Na2O	pq	pq	pq	0.88	pq	pq	0.65			
K20	pq	pq	pq	pq	pq	pq	0.3			
- - -	pq	pq	pq	pq	pq	pq	pq			
Total	99.04	99.3	98.81	97.32	92.54	96.66	97.87			
Number o.	of atoms per unit formula	a (28 Oxygens)								
N.	7.95	7.98	7.98	8.03	7.97	7.96	7.89			
=	pq	pq	pq	pq	pq	pq	pq			
Ā	0.05	0	0	0	0.05	0.05	0			
Fe ²⁺	2.69	2.95	2.62	2.53	3.09	2.84	3.01			
Mn	0.04	0.05	0.04	pq	pq	pq	pq			
Mg	2.44	2.16	2.47	2.46	1.84	2.19	2.18			
Sa	1.85	1.89	1.91	1.81	2.03	1.94	1.90			
Na	pq	pq	pq	0.25	0.09	0.08	0.19			
¥	pq	pq	pq	pq	pq	pq	0.06			
ō	pq	pq	pq	pq	pq	pq	pq			
Total	15.02	15.02	15.02	15.09	15.06	15.05	15.23			
Mg No*	47.20	41.88	48.10	49.24	37.27	43.56	42.02			
Ferro-acti	inolite FC4NW (vein)									
	MFC259.7/52	MFC259.7/52	MFC259.7/52	MFC240.1/93	MFC240.1/93	MFC240.1/93	MFC240.1/93	MFC240.1/93	MFC268.7/52	MFC268.7/52
Oxide wei	ght percent									
SiO2	49.54	51.48	51.05	49.03	48.25	48.15	48.2	49.3	51.16	49.42
Ti02	pq	pq	pq	pq	0.26	pq	pq	pq	pq	pq
AI203	0.73	pq	0.24	1.26	0.88	2.66	2.64	1.42	pq	pq
Pe0	21.77	22.65	20.24	26.02	24.23	22.08	22.28	23.87	23.69	26.26
	0.33	0.45	pq	pq	0.58	pa	0.17	pd 7 Or	pa	0.45
D d	8.30	8.94	9.89	6.64 11 00	1.19	9.33	9.21	60.7 7	8.30	6.12
	12.38	12.04	27.11	60.11 امط	11.83	70'U	17.11	10.11	11.40	20.11
	2 2	10.0	0.00		0.00 Pod	0.90	0.30	83		33
2 2	2	- P4	2	67-0 P4	2	8 2	3 2	3 2	33	3 2
Total	93.11	96.33	76	94.93	93.55	94.72	94.64	93.15	94.67	93.87
Number of	f atoms per unit formula	(28 Oxvaens)								
Si Si	7.88	7.94	7.96	7.80	7.77	7.55	7.57	7.88	8.01	7.96
Ē	pq	pq	pq	pq	0.03	pq	pq	pq	pq	pq
A	0.14	pq	0.04	0.24	0.17	0.49	0.49	0.27	pq	pq
Fe ²⁺	2.90	2.92	2.64	3.46	3.26	2.90	2.93	3.19	3.10	3.54
Mn	0.04	0.06	pq	pq	0.08	pq	0.02	pq	pq	0.06
Mg	1.98	2.05	2.30	1.57	1.73	2.18	2.16	1.68	1.95	1.47
Ca	2.11	1.99	1.96	1.99	2.04	1.94	1.89	1.97	1.92	2.01
Na	pq	0.17	0.26	pq	0.10	0.30	0.28	pq	pq	pq
× i	pq :	0.04	pq :	0.06	pq :	0	pq :	pg :	pg :	pg :
	pd 101	pq	pq	pq	pq	pd 101	pq	pq	pq	pq
lotai	CU.CI	/1.GT	CL.CL AG EG	21.01	11.CT	05.01 70.04	10.33 AC CA	14.39	14.99 20 6.0	15.04
NIG INO	40.21	40.02	00:04	31.21	00'+C	44.31	42.24	D4.40	20.02	79.00

Ferro-acti.	nolite FC4NW (vein)									
	MFC268.7/52	MFC268.7/52	MFC268.7/52	MFC268.7/52	MFC268.7/52	MFC268.7/52	MFC114.2/27	MFC114.2/27	MFC114.2/27	MFC114.2/27
Oxide weig	tht percent									
SiO2	50.33	50.91	49.57	50.69	50.26	50.24	53.37	50.52	50.52	52.78
Ti02	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
AI2O3	pq	pq	0.31	pq	0.27	pq	pq	pq	pq	pq
FeO	26.53	22.3	26.58	25.45	27.27	21.57	23.5	20.41	20.41	24.92
MnO	pq	pq	pq	0.38	0.39	0.48	pq	pq	pq	pq
OgM	6.87	8.41	5.92	7.12	6.11	9.58	9.41	9.37	9.37	9.11
CaO	11.98	12.48	11.49	10.82	11.3	12.16	11.96	11.8	11.8	11.77
Na2O	pq	pq	pq	0.45	pq	pq	0.54	pq	pq	0.49
K20	pq	pq	pq	pq	pq	pq	pq	0.26	0.26	pq
ō	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
Total	95.79	94.1	93.87	94.91	95.6	94.03	98.78	92.36	92.36	99.07
Number of	atoms per unit form	ula (28 Oxygens)								
N.	7.93	8.00	7.97	8.01	7.95	7.90	7.98	8.02	8.02	7.93
Ē	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
A	0.01	pq	0.06	pq	0.05	pq	pq	pq	pq	pq
Fe ²⁺	3.49	2.93	3.57	3.36	3.61	2.84	2.94	2.71	2.71	3.13
- W	2 14		, pq	0.05	0.05	0.06				2
W	161	1 97	1 42	1.68	1 44	2.25	2 10	2.22	2 2 2 2	204
	10.1	010	108	1 83	60 1	2.05	1 0 2	2010	10 0	1 80
Na Na	7077 704	2 74	000	0.14	70-1 Pr4	20-7 7	0.16	- P4	2.4	410
Z Z		33		t 7	22	22	2.5	200	200	5 2
2 0				27				cn:n	cn.n	
Total	15.07	15.00	15.00	15.06	15.02	15.10	15.09	15.01	15.01	15.14
Mg No*	31.59	40.20	28.42	32.95	28.25	43.64	41.65	45.01	45.01	39.46
Hedenher	critte									
in a second seco	FC4NW (alteration									
	MFC218/54	MFC218/54								
Ovide Maio	ht narrant									
Si02	jin percent 52.2	52.21								
Tio2	0.23	pq								
AI2O3	0.81	0.28								
EeO	18.14	18.84								
Out of the second secon		P4								
	7 06	7.65								
	30.00	00.1								
	00.07 0 4 0	20.6								
	2.7	0.6.7								
	2	0.2								
- - -										
lotal	101.53	CG-101								
Number of	atoms per unit form	ula (6 Oxygens)								
N.	2.00	2.00								
=	0.01	pq								
AI J	0.04	0.01								
Fe ^{2†}	0.58	0.60								
Mn	pq	pq								
Mg	0.45	0.44								
ca Ca	0.82	0.82								
za Za	0.16	77.0								
2 0		0.01								
	DQ V	110 110								
Na Na*	4.00	41.99								

]

K-feldspar	MFC outcrop (v	ein)							MFC outcrop (al	teration)			
	MFC13002B	MFC13002B	MFC13002B	MFC13002B	MFC13002B	MFC13002B	MFC13002B	MFC13002B	MFC13002B	MFC046	MFC046	MFC046	MFC046
Oxide weight	percent												
SiO2	64.29	64.13	64.22	63	63.53	63.23	64.71	62.88	63.33	62.67	63.62	63.65	63.38
AI203	16.39	16.74	16.37	16.32	16.75	16.65	16.77	16.02	16.33	16.24	16.39	16.17	16.66
Na2O	pq	0.4	0.56	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
K20	17.36	17.45	17.36	17.21	17.61	17.2	17.27	16.97	17.49	17.73	17.28	17.35	17.5
CaO	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
BaO	0.53	0.62	pq	0.69	0.32	0.86	0.59	0.56	0.2	pq	pq	0.42	0.18
Total	98.57	99.34	98.52	97.23	98.21	98.06	99.34	96.75	97.36	96.79	97.54	97.6	97.72
Number of at	oms per unit form	ula (32 Oxygens)											
io N	12.19	12.10	12.16	12.14	12.10	12.09	12.16	12.16	12.15	12.12	12.16	12.19	12.11
A	3.66	3.72	3.65	3.70	3.76	3.75	3.71	3.65	3.69	3.70	3.69	3.65	3.75
	200	0.15	0.0	2.2	2.5	25		2010	200	2.5	2010	200	2.5
		00.10	140	50 1	001		111	110	00 1	201	201		90.1
2 (4.40	4.20	+	4.40	4.40	4.20	+ - +	+. - פ	4.70	4.07	4.4	4.74	4.40
g	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq	pq
Ba	0.04	0.05	pq	0.05	0.02	0.06	0.04	0.04	0.02	0.01	0.01	0.03	0.01
Total	20.08	20.21	20.21	20.12	20.16	20.15	20.05	20.16	20.14	20.21	20.12	20.11	20.14
Magnesio-hu	ornblende ECANW (vicin)				_	EC ANW (alteratio	ŝ						
	MFC160.5/51	MEC160.5/51	MEC160.5/51	MEC160.5/51	MEC160.5/51	MFC118.5/27	MFC118.5/27	MEC118.5/27	MEC118-5/27	MEC118.5/27			
Oxide weight	percent												
SiO2	48.13	46.02	47.53	46.91	47.87	45.55	44.8	45	45.32	47.2			
TiO2	1.29	1.33	1.35	1.1	1.36	1.26	1.44	1.1	1.03	0.54			
AI2O3	5.39	5.39	5.84	6.35	6.27	6.87	7.2	5.85	6.87	5.97			
FeO	13.79	13.5	13.46	13.71	13.46	14.56	14.22	14.68	14.25	15.63			
MnO	pq	pq	pq	0.24	pq	pq	0.21	pq	0.29	pq			
OpM	13.73	13.35	13.55	13.93	13.59	12.53	12.72	12.73	12.76	13.3			
CaO	11.02	10.23	10.83	10.52	10.8	11.18	11.13	11.35	11.12	11.19			
Na2O	1.65	1.62	3.02	1.97	2.42	2.2	1.66	1.23	1.45	1.53			
K2O	0.79	0.69	0.93	0.7	0.71	1.07	1.04	1.17	1.26	0.8			
ō	pq	0.27	0.27	0.26	pq	pq	0.22	0.25	pq	pq			
Total	95.79	92.34	96.72	95.63	96.48	95.22	94.59	93.30	94.35	96.16			
Number of at	oms per unit form	nula (28 Oxygens)											
N.	7.21	7.15	7.09	7.05	7.11	6.95	6.87	7.01	6.97	7.11			
F	0.15	0.16	0.15	0.12	0.15	0.14	0.17	0.13	0.12	0.06			
A	0.95	0.99	1.03	1.13	1.10	1.23	1.30	1.07	1.24	1.06			
Fe ²⁺	1.73	1.75	1.68	1.72	1.67	1.86	1.82	1.91	1.83	1.97			
Mn	pq	pq	pq	0.03	pq	pq	0.03	pq	0.04	pq			
Mg	3.06	3.09	3.01	3.12	3.01	2.85	2.91	2.96	2.92	2.99			
Ca Ca	1.77	1.70	1.73	1.69	1.72	1.83	1.83	1.90	1.83	1.81			
Na	0.48	0.49	0.87	0.57	0.70	0.65	0.49	0.37	0.43	0.45			
×	0.15	0.14	0.18	0.13	0.13	0.21	0.20	0.23	0.25	0.15			
ō	pq	0.07	0.07	0.07	0	pq	0.06	0.07	pq	pq			
Total	15.49	15.55	15.81	15.65	15.60	15.72	15.69	15.65	15.63	15.60			
Mg No*	63.97	63.81	64.22	64.03	64.29	60.54	61.11	60.72	61.00	60.27			

Page A2.10

APPENDIX 3

Calculations for chemical composition of Na-Ca-bearing veins

Sample numbers in this table refer to the depth down hole and hole number, which can thus be used to determine their location in appendix 1.

Calculations con	verting modal m	ineral proportion (%	6) of veins to norm	nalised mass (grams)
FTCD346/82				
	Volume %	Density (gcm3)	Mass (g)	Normalised mass %
Magnetite	15	5.20	78	24.26
Hematite		5.20	0	0.00
Titanite	2	3.45	6.9	2.15
Actinolite	15	3.20	48	14.93
Pyrite	1	5.00	5	1.55
Chalcopyrite	1	4.28	4.28	1.33
Apatite	1	3.20	3.2	1.00
Calcite	45	2.72	122.175	38.00
Albite	20	2.70	54	16.79
Total	100		321.56	100.00
FTCD246/86				
	Volume %	Density	Mass	Normalised mass %
Magnetite	3	5.20	15.6	5.25
Hematite		5.20	0	0.00
Titanite	10	3.45	34.5	11.60
Actinolite	23	3.20	73.6	24.75
Pyrite		5.00	0	0.00
Chalcopyrite		4.28	0	0.00
Calcite	60	2.72	162.9	54.77
Albite	4	2.70	10.8	3.63
Total	100		297.40	100.00
FTCD262/86				
	Volume %	Density	Mass	Normalised mass %
Magnetite	3	5.20	15.6	5.07
Hematite	5	5.20	26	8.45
Titanite	2	3.45	6.9	2.24
Actinolite	4	3.20	12.8	4.16
Pyrite	4	5.00	20	6.50
Chalcopyrite	3	4.28	12.84	4.17
Calcite	22	2.72	59.73	19.41
Albite	57	2.70	153.9	50.00
Total	100		307.77	100.00
FTCD203/86				
	Volume %	Density	Mass	Normalised mass %
Magnetite	4	5.20	20.8	7.24
Hematite		5.20	0	0.00
Titanite	1	3.45	3.45	1.20
Actinolite	3	3.20	9.6	3.34
Pyrite	1	5.00	5	1.74
Chalcopyrite	1	4.28	4.28	1.49
Calcite	65	2.72	176.475	61.47
Albite	25	2.70	67.5	23.51
Total	100		287.11	100.00

Calculations for the conversion of mineral modal % to mass (g) for Na-Ca veins from the FC12 prospect. The density values were obtained from Deer et al (1992).

	Calculations 10	lucterining	the chemical co	mposition of v	
	FTCD346.9/82	FTCD246/86	FTCD262.3/86	FTCD203/86	Host Minerals
Si	9.50	9.08	17.15	8.35	Titanite, actinolite, albite
SiO2	20.32	19.44	36.68	17.87	
AI	1.67	0.36	5.04	2.34	Albite
AI2O3	3.15	0.67	9.52	4.43	
Са	17.74	26.49	8.80	25.40	Actinolite, titanite, calcite, apatite
CaO	24.82	37.07	12.31	35.54	
Na	1.42	0.30	4.29	2.00	Albite
Na2O	1.92	0.41	5.79	2.69	
K	-	-	-	-	-
K2O	-	-	-	-	
Mg	1.04	1.70	0.29	0.23	Actinolite
MgO	1.72	2.82	0.49	0.39	
Ti	0.78	2.88	0.57	0.30	Titanite, actinolite, albite
TiO2	1.30	4.80	0.95	0.50	
Р	0.19	-	-	-	Apatite
P2O5	0.43	-	-	-	
S	0.88	0.00	5.00	1.45	Pyrite, chalcopyrite
SO3	2.20	0.00	12.48	3.63	
SO3-S	1.32	0.00	7.48	2.18	
Cu	0.05	-	1.45	0.51	Chalcopyrite
CuO	0.06	-	1.81	0.64	
CuO-Cu	0.01	-	0.36	0.13	
Fe ²⁺	0.73	0.00	3.08	0.82	Pyrite
Fe2O3	1.04	0.00	4.41	1.17	
Fe2O3 - Fe	0.31	0.00	1.32	0.35	
Fe ³⁺	0.04	0.00	1.27	0.45	Chalcopyrite
Fe2O3	0.06	0.00	1.82	0.64	
Fe2O3-Fe	0.02	0.00	0.55	0.19	
Fe ²⁺	8.27	5.16	1.92	2.30	Actinolite, magnetite
FeO	10.64	6.64	2.47	2.96	
Fe2O3	11.82	7.38	2.75	3.29	
FeO-Fe2O3	1.18	0.74	0.28	0.33	
Fe ³⁺	11.78	2.52	8.53	3.53	Magnetite, hematite
Fe2O3	16.84	3.60	12.19	5.04	insgrieute, nomano
Fe2O3(Total)	29.76	10.98	21.16	10.14	
	20110	10.00	20		1
101	15.63	23.81	6.30	26.35	1
Total	100.00	100.00	100.00	100.00	1

Calculations for determining the chemical composition of veins at FC12

Results of calculations for determining the chemical composition of veins from the FC12 prospect (section 3.4.2 in text) using equation 3.1. The far right column indicates the mineral phases which contain each calculated element. The chemical formulas and atomic weights of each mineral are presented in table 3.4. For Si, Al, Ca, Na, Mg, Ti and P the values obtained from equation 3.1 were converted to oxides. In a typical XRF analysis, S concentrations are given as SO₃, where oxygen is derived from the atmosphere rather than the sample. As such, the calculated oxygen value obtained from this conversion was subtracted from the LOI value. In addition, Cu (in chalcopyrite) will form CuO during XRF combustion, although the oxygen component is again derived from the atmosphere and was also subtracted from the total LOI. Due to the different valence states of Fe in pyrite and actinolite (Fe²⁺) and chalcopyrite and hematite (Fe³⁺), all Fe values are converted to Fe₂O₃ and the difference between this value and the original Fe value is subtracted from the LOI. In the case of magnetite, the chemical formula contains both Fe²⁺ and Fe³⁺ and was calculated separately. As was the case for both S and Cu, the Fe component in pyrite and chalcopyrite will bond with oxygen from the atmosphere. Therefore the difference between Fe₂O₃ and Feⁿ⁺ is also subtracted from the total LOI value.

APPENDIX 4

Calculations for combining the chemical composition of veins and alteration selvage for comparison with unaltered rock

Sample numbers in this table refer to the depth down hole and hole number, which can thus be used to determine their location in appendix 1.

Bulk weight a	nd density calc	ulations - wall i	rock alteration
FTCD246/86	%	Density	Bulk density
chl	0.20	2.95	0.59
CDX	0.25	3.39	0.85
ttn	0.05	3.54	0.00
ah	0.00	2.59	0.10
aty	0.10	2.00	0.05
hem ah	0.02	2.00	0.03
ht	0.20	2.09	0.52
mnt	0.02	5.00	0.00
illmonito	0.07	3.20	0.30
	0.02	4.75	0.09
au Totol	0.02	3.24	0.00
Total hulk dana	itter i		2.46
TOTAL DUIK GENS	lly		3.10
vvidth of alterat	ion zone (cm)) (*0)	5
Bulk weight of a	alteration zone (g) (*2)	31.6
	0/		
FTCD262/86	%	Density	Bulk density
chl	0.40	2.95	1.18
musc	0.12	2.83	0.34
hem ab	0.14	2.59	0.36
act	0.17	3.24	0.55
mag	0.08	5.20	0.42
ру	0.02	4.99	0.10
ttn	0.07	3.54	0.25
Total	1		
Total bulk dens	ity		3.20
Width of alterat	ion zone (cm)		3.5
Bulk weight of a	alteration zone (a) (*2)	22.4
FTCD346/82	%	Density	Bulk density
ah	0.60	2 59	1 55
chl	0.00	2.00	0.44
	0.15	2.35	0.44
au tit	0.15	3.24	0.49
lil mot	0.05	5.04	0.10
mnt 0.05		5.20	0.20
Total 1			2.02
Total bulk density			2.92
Width of alterat	ion zone (cm)) (*2)	3.2
Bulk weight of a	aiteration zone (g) (*2)	18.7
			
FTCD203/86	%	Density	Bulk density
chl	0.30	2.95	0.89
hem ab	0.33	2.59	0.85
act	0.20	3.24	0.65
ttn	0.05	3.54	0.18
musc	0.05	2.83	0.14
mag	0.03	5.20	0.16
ill	0.02	4.75	0.09
pv	0.02	4.99	0.10
Total	1		0.10
Total bulk dens	itv		3 06
			5.00
Width of alterat	ion zone (cm)		8 9
Rulk weight of	Interation zone (a) (*2)	0.0 52 0
DUIK WEIGHT OF a	aiteration zone (ui (Z)	33.0

Calculations for determining the bulk weight (g) of the alteration selvage based on modal mineralogy, the density of each mineral (Deer et al., 1992) and the width of each sample zone.

Bulk weight and	d density cal	culations - v	ein
FTCD246/86	%	Density	Bulk density
ttn	0.10	3.54	0.35
act	0.23	3.24	0.74
calc	0.60	2.72	1.63
ab	0.04	2.59	0.10
mnt	0.03	5.20	0.16
Total	1		
Total bulk densit	V		2.99
	ĺ		
Vein width (cm)			2.70
Bulk weight of ve	ein (a)		8.06
FTCD262/86	%	Density	Bulk density
ab	0.57	2.59	1.48
hem	0.05	5.20	0.26
cov	0.00	4 20	0.13
act	0.00	3.24	0.13
calcite	0.04	2 72	0.10
magnetite	0.22	5.20	0.00
nvrite	0.03	1 00	0.10
pynte ttp	0.04	4.99	0.20
un Totol	0.02	5.54	0.07
Total bulk donait			2.02
	y I		3.02
Vois width (and)			0.70
Vein width (cm)			2.70
Bulk weight of ve	ein (g)		8.14
ETCD246/92	0/	Doncity	Pulk dopoity
F1CD340/82	70	Density	Duik density
	0 1 5	E 00	0 70
mag	0.15	5.20	0.78
mag calc	0.15	5.20	0.78
mag calc py	0.15 0.45 0.01	5.20 2.72 4.99	0.78 1.22 0.05
mag calc py act	0.15 0.45 0.01 0.15	5.20 2.72 4.99 3.24	0.78 1.22 0.05 0.49
mag calc py act tit	0.15 0.45 0.01 0.15 0.02	5.20 2.72 4.99 3.24 3.54	0.78 1.22 0.05 0.49 0.07
mag calc py act tit cpy	0.15 0.45 0.01 0.15 0.02 0.01	5.20 2.72 4.99 3.24 3.54 4.20	0.78 1.22 0.05 0.49 0.07 0.04
mag calc py act tit cpy ap	0.15 0.45 0.01 0.15 0.02 0.01 0.01	5.20 2.72 4.99 3.24 3.54 4.20 3.23	0.78 1.22 0.05 0.49 0.07 0.04 0.03
mag calc py act tit cpy ap ab	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52
mag calc py act tit cpy ap ab Total bulk densit	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20
mag calc py act tit cpy ap ab Total bulk densit	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm)	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 1 ein (g)	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2 .30 7.36
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 2 1 2 2 1	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2 .30 7.36
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 2 1 2 2 1 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 Density	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 0.20 1 sin (g) % 0.65	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 Density 2.72	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 1 sin (g) % 0.65 0.03	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 Density 2.72 3.24	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76 0.10
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act ab	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 1 ein (g) % 0.65 0.03 0.25	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 Density 2.72 3.24 2.59	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76 0.10 0.65
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act ab mag	0.15 0.45 0.01 0.15 0.02 0.01 0.20 1 0.20 1 0.20 1 0.20 1 0.20 1 0.20 0.20	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 Density 2.72 3.24 2.59 5.20	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76 0.10 0.65 0.21
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act ab mag py	0.15 0.45 0.01 0.15 0.02 0.01 0.20 1 0.20 1 0.20 1 0.20 2 1 0.20 2 1 0.20 2 1 0.20 2 1 0.20 2 1 0.01 0.20 2 1 0.01 0.20 2 0.01 0.20 2 0.01 0.02 0.02	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 Density 2.72 3.24 2.59 5.20 4.99	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76 0.10 0.65 0.21 0.05
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act ab mag py cpy	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 1 0.20 1 1 0.20 2 1 % 0.65 0.03 0.25 0.04 0.01 0.01	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 Density 2.72 3.24 2.59 5.20 4.99 4.20	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2 .30 7.36 Bulk density 1.76 0.10 0.65 0.21 0.05 0.04
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act ab mag py cpy ttn	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 0.20 1 0.20 2 1 0.20 2 1 0.20 2 1 0.20 2 1 0.20 2 1 0.01 0.0	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 2.59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76 0.10 0.65 0.21 0.05 0.04 0.04
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act ab mag py cpy ttn Total	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 0.20 1 0.20 2 1 % 0.65 0.03 0.25 0.04 0.01 0.01 0.01 0.01 1	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 2.59 Density 2.72 3.24 2.59 5.20 4.99 4.20 3.54	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76 0.10 0.65 0.21 0.05 0.04 0.04 0.04
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act ab mag py cpy ttn Total bulk densit Total bulk densit	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 0.20 1 0.20 2 1 % 0.65 0.03 0.25 0.04 0.01 0.01 0.01 0.01 1 y	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 2.59 Density 2.72 3.24 2.59 5.20 4.99 4.20 3.54	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76 0.10 0.65 0.21 0.05 0.04 0.04 0.04 0.04 0.04
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act ab mag py cpy ttn Total Total bulk densit	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 0.20 1 % 0.65 0.03 0.25 0.04 0.01 0.01 0.01 0.01 1 y	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 Density 2.72 3.24 2.59 5.20 4.99 4.20 3.54	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76 0.10 0.65 0.21 0.05 0.04 0.04 0.04 0.04 0.04 0.04
mag calc py act tit cpy ap ab Total bulk densit Vein width (cm) Bulk weight of ve <i>FTCD203/86</i> calc act ab mag py cpy ttn Total Total bulk densit Vein width (cm)	0.15 0.45 0.01 0.15 0.02 0.01 0.01 0.20 1 0.20 1 % 0.65 0.03 0.25 0.04 0.01 0.01 0.01 0.01 1 y	5.20 2.72 4.99 3.24 3.54 4.20 3.23 2.59 Density 2.72 3.24 2.59 5.20 4.99 4.20 3.54	0.78 1.22 0.05 0.49 0.07 0.04 0.03 0.52 3.20 2.30 7.36 Bulk density 1.76 0.10 0.65 0.21 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.21 0.05 0.21 0.05 0.21 0.05 0.21 0.05 0.21 0.05 0.04 0.10 0.21 0.04 0.04 0.05 0.21 0.04 0.04 0.05 0.21 0.04 0.04 0.05 0.21 0.04 0.04 0.05 0.21 0.04 0.04 0.05 0.10 0.05 0.21 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.05 0.5 0.

Calculations for determining the bulk weight (g) of the vein based on modal mineralogy, the density of each mineral (Deer et al., 1992) and the width of each sample zone. А

р	
к	
$\boldsymbol{\nu}$	

Density calculati	ons - Unalte	red rock	
FTCD246/86	%	Density	Bulk density
muscovite	0.60	2.83	1.70
apatite	0.04	3.23	0.13
biotite	0.05	3.00	0.15
clinopyroxene	0.05	3.39	0.10
hornblende	0.00	3 31	0.50
illmenite	0.05	4 75	0.00
magnetite	0.00	5.20	0.21
nvrite	0.01	4 99	0.05
chalcopyrite	0.01	4 20	0.04
Total	1		0.01
Total bulk density	•		3 18
			5.10
FTCD262/86	%	Density	Bulk density
clinopyroxene	0.45	3.39	1.53
biotite	0.02	3.00	0.06
quartz	0.03	2.65	0.08
albite	0.10	2.59	0.26
muscovite	0.30	2.83	0.85
illmenite	0.06	4.75	0.28
magnetite	0.03	5.20	0.16
pyrite	0.01	4.99	0.02
chalcopyrite	0.01	4.20	0.02
Total	1		
Total bulk density			3.26
FTCD346/82	%	Density	Bulk density
orthopyroxene	0.40	3.59	1.43
muscovite	0.07	2.83	0.20
albite	0.40	2.59	1.04
biotite	0.03	3.00	0.09
illmenite	0.07	4.75	0.33
magnetite	0.02	5.20	0.10
pyrite	0.01	4.99	0.05
Total	1		
Total bulk density			3.2
FTCD203/86	%	Density	Bulk density
clinopyroxene	0.30	3.39	1.02
relict orthopyroxer	0.10	3.59	0.36
biotite	0.04	3.00	0.12
albite	0.27	2.59	0.70
muscovite	0.22	2.83	0.62
magnetite	0.02	5.20	0.10
illmenite	0.04	4.75	0.19
pyrite	0.01	4.99	0.05
Total	1		
Total bulk donaity			22

Calculations for determining the bulk weight of the unaltered rock. A. The bulk density is calculated by the overall modal % multiplied by the density. B (overleaf). A value for the volume of the precursor unaltered rock that produced the observed alteration selvage was determined by dividing the volume of the altered rock with the change in volume (Fv) determined for each sample (Fig. 3.5). The bulk weight of the unaltered rock is then determined by the calculated volume of the unaltered rock and the bulk density from table A.

Bulk weight of unaltered rock				
Calculations	FTCD246/86	FTCD262/86	FTCD346/82	FTCD203/86
Width of altered rock (cm3)	5	3.5	3.2	8.8
Volume change (Fv) between altered and unaltered rock	0.975	1.03	1.18	1.075
Bulk density of unaltered rock	3.1764	3.25815	3.2438	3.16
Width' of unaltered rock - (width of Alt rock / volume change)	5.13	3.40	2.71	9.62
Bulk weight of unaltered rock - ('width of unaltered rock * bulk density of unrock)	16.29	11.07	8.80	30.11
Bulk weight of unaltered rock *2	32.58	22.14	17.59	60.22

APPENDIX 5

Fluid inclusion microthermometric data

Sample numbers in this table refers to the depth down hole and hole number respectively, which can thus be used to determine their location in appendix 1.

Analytical technique is described in text (chapter 4)

P = Present in inclusion but homogenisation temperature was not observed Dec = present in inclusion but fluid inclusion decrepitated before homogenisation

Type 1 multisol	id fluid inclusions						
Host mineral	Initial frezing (Tfr)	Initial melting (Ti)	Melting of ice	T melt: hydrohalite (Thh)	Homogenisation temp: halite	Vapour homogenisation	Salinity
Qtz					260.6	150	35
Qtz		-50	-25.4	6.8	275.8	~153	36
Qtz			-20.5		dec = 170	dec	
Qtz		-60-50	-26.4	6.2	330.3	293	41
Qtz		-75-65	-31.9		312	171	30
Qtz		>-70	-43.9		dec =140	dec	
Qtz		>-62	-29.7	-6.9	Ъ	Ъ	
Qtz		>-60	-34.4		Ъ	Ъ	
Qtz		>-70	-40.2		Ъ	Ъ	
Qtz		>-70	-27.8	4.1	Ъ	Ъ	
Qtz			-26.7	9.8	Ъ	Ъ	
Qtz		-62.5	-22.3	10.2	٩	٩	
Qtz		-55	-35		Ъ	Ъ	
Qtz	-89.2	-65	-28.4	3.8	4	110.3	
Qtz	-89.6	-65 to 60	-28	7.4	dec = 223	115	
Qtz	-91.5	>-55	-27.9	3.1	dec = ?	~ 90(2)	
Qtz		>-60	-30	1.7	dec = 172	115.3	
Qtz	-77.4	>-75	-29.7	2.8	333(?)		41
Qtz			-28.1		dec	147.2	
Qtz	-82.7	-75	-30.5	6	dec	73.4	
Qtz	-91	-75	-28.1	8.9	dec	113.7	
Qtz		-72.3	-25.1	14.5	dec		
Qtz					452.3	133.4	50
	= -77.4 to -91.5 degrees	= -75 to -50 degrees	= -43.9 to -20.5 degrees	= 1.7-14.5 degrees	= 260.6 - 452.3 degrees	= 73.4 - 293 degrees	35 - 50 wt % NaCI

Page A5.2

Type 2 CO₂-rich fluid inclusions

Sample number	initial melting (Ti)	Final melting (Tm)
MFC202.2/91	-56.8	14.9
MFC202.2/91	-56.9	6.6
MFC202.2/91	-56.9	13.4
MFC202.2/91	-56.8	-8
MFC202.2/91	-56.8	1.4
MFC202.2/91	-56.8	8.5
MFC202.2/91	-56.9	-8
MFC202.2/91	-56.9	-1.5
MFC202.2/91	-56.9	-1.5
MFC202.2/91	-56.9	-10
MFC202.2/91	-56.7	-12.1
MFC202.2/91	-56.7	-4.1
MFC202.2/91	-56.8	11
MFC202.2/91	-56.8	2.2
MFC202.2/91	-56.7	4.8
MFC202.2/91	-56.7	4.8
MFC108/27	-56.8	-1
MFC108/27	-56.8	11.6
MFC108/27	-56.8	12.6
MFC108/27	-56.8	13.3
MFC108/27	-56.8	10.6
MFC108/27	-56.8	12.2
MFC108/27	-56.8	13.3
MFC108/27	-56.8	14.3
MFC108/27	-56.8	21.4
MFC108/27	-56.8	21.5
MFC108/27	-56.7	-7.3
MFC108/27	-56.7	1.4
MFC108/27	-56.7	4.3
MFC108/27	-56.7	7.3
MFC108/27	-56.7	-4.2
MFC108/27	-56.7	-4.2
MFC108/27	-56.7	0.2
MFC108/27	-56.8	-3.8
MFC108/27	-56.8	0.1
MFC108/27	-56.8	-3.8
MFC108/27	-56.8	1.8
MFC108/27	-56.8	2.2
MFC108/27	-56.8	-12.2
MFC108/27	-56.8	-2.4
MFC108/27	-56.8	-2.6
MFC108/27	-56.8	-2.6
MFC108/27	-56.8	9,1
MFC108/27	-56.7	-12.2
MFC108/27	-56 7	-7
MFC108/27	-56 7	-2.2
MFC108/27	-56 7	-1
MFC108/27	-56 7	2.7
Range:	= 56.7 to 56.9	= -12.2 to 21.4

Type 3a Halite-t	pearing fluid inclusions	rezina (Tfr)	initial melting (Ti)	Malting of ice	T melt' hvdmhalite (Thh)	Homorenisation temp: halite	Vanour homodenisation	Salinity
MFC125/27	atz	5	~-60/-50	-26.2	()	d d		
MEC125/27	40			00-		Δ.		
MEC125/27	10			-30	13.6	. ם		
MEC125/27	45		~50	-26.4	0.0 8 0	273 5	5 040	PE
MEC105/07	4 F		50	25	2	der 220		5
MEC125/27	44		7 C	67- 50-		46C 223		
	4k	7.0 7	0 fu	25		0.000	200	
	44	7.01	-0	5.02- 5.02-		067 264	330	22
				C.D.7-		204	230 7 F T	3 3
MFC125/27	zib			-24.1		G17	/61	<u>د</u> ا 1
MFC125/27	zib		66-60	39.1		244		33
MFC125/27	qtz			-39.8		dec = 182	dec	
MFC125/27	dtz		>-60	-24.3		dec = 173	dec	
MFC125/27	qtz		>-65	-21.3	9.5	dec = 221	dec	
MFC125/27	qtz		>-65	-36.5		dec = 221	dec	
MFC125/27	qtz		>-60-55	-25.1	7.9	Ъ		
MFC125/27	qtz		>-50	-21.6	10.7	Ъ		
MFC125/27	dtz		>-70	-27.7	5.7	٩		
MFC125/27	atz		-76.6		7.6	٩.		
MFC125/27			>-70	-27.7	6.7	٩		
MFC125/27	240					210	129	31
MFC125/27	40		-62 q	-291	75	231.3	149.2	3
MEC125/27	45		00		2	250 0	104 5	34
MEC105/07	45					0.00 A	0.101 0.101	5
MEC105/07	4 5			c 10-			0.121	
			1	C. 1.2-				
MFC108/27	zib		2-10?	1.72-	12.1	dec	dec	
MFC108/27	zıb		2.99-<	-26.1	0.7	dec	dec	
MFC108/27	qtz			-26.1	ω	dec	dec	
MFC108/27	dtz			-26.2		۵.		
MFC108/27	dtz					٩.	384.5	
MFC108/27	qtz					274.5	142.8	34
MFC202.2/91	qtz			-25.2		212.3	173	32
MFC202.2/91	qtz			-20.4		dec	dec	
MFC202.2/91	qtz			-25.8				
MFC202.2/91	qtz			-24.3		205	209	31
MFC202.2/91	qtz			-26.4			dec	
MFC202.2/91	qtz		-55-45	-20-30	7.3			
MFC202.2/91	qtz		-55-45	-26.6	6.9	278.9	198.5	34
MFC259.7/52	qtz		>-70	-43.7		dec	dec	
MFC259.7/52	qtz		>-70	-38.1		dec	dec	
MFC259.7/52	qtz		>-70	-33.7		dec	dec	
MFC259.7/52	qtz			-35.5		248	143	34
MFC259.7/52	qtz		>-50	-32.6		Ъ		
MFC259.7/52	qtz		>-65	-31.3	0.8?	٩		
MFC259.7/52	qtz			-29.3		dec	dec	
MFC259.7/52	qtz		>-80?	-24.3		dec	dec	
Range	1		= -76.6 to -45 degrees	= -43.7 to -20.4 degrees	= 5.7 to 12.1 degrees	= 210 to 278.9 degrees	= 104.5 to 249.3	31 - 34 wt % NaCl

.) po = p				
Sample number	Host mineral	Initial melting (Ti)	Final melting (Tm)	Vapour homogenisation (Th)
MFC125/27	qtz		-1.7	165
MFC125/27	qtz		-12	155
MFC125/27	qtz		-3.3	dec = 127
MFC125/27	qtz		-3.9	191.6
MFC125/27	qtz		-1.8	Р
MFC125/27	qtz	-40	-14.1	Р
MFC125/27	qtz		-17.1	Р
MFC125/27	qtz		-9.6	Р
MFC125/27	qtz		-4.6	Р
MFC125/27	qtz		-1.7	Р
MFC125/27	qtz		-1.7	Р
MFC125/27	qtz		-1.7	Р
MFC125/27	qtz		-1.8	Р
MFC125/27	qtz		-2.1	Р
MFC125/27	qtz		-1.8	Р
MFC125/27	qtz		-1.8	Р
MFC125/27	qtz	>-40	-18.7	Р
MFC125/27	qtz	>-40	-19.6	Р
MFC125/27	qtz		-1.8	Р
MFC125/27	qtz		-4.7	Р
MFC125/27	qtz			125.5
MFC125/27	qtz			184.5
MFC125/27	qtz			172.9
MFC125/27	qtz			165.5
MFC202.2/91	qtz		-1.1	125
MFC202.2/91	qtz		-4.6	153.3
MFC202.2/91	qtz		-2	dec = 138
MFC202.2/91	qtz	-50 to -45	-23	dec
MFC202.2/91	qtz			162.8
MFC202.2/91	qtz			198.9
MFC259.7/52	qtz		-1.1	Р
MFC259.7/52	qtz		-2.3	Р
MFC259.7/52	qtz	>-30	-5.3	Р
MFC259.7/52	qtz			130
MFC108/27	qtz			P
Range:			= -19.6 to -1.1	= 125 to 191.6

Type 4a 2 phase fluid inclusions

Sample number	Host mineral	initial melting (Ti)	Melting of ice	T melt: hydrohalite (Thh) Ho	omogenisation temp: Halite	Vapour homogenisation
Type 3b Halite-beari	ng fluid inclusions					
MFC002	ap	>-70?	-32.1	8	Ъ	dec 172
MFC002	ap	>-60	37.7		٩	~114
Range:			= -32.1 to 37.7		٩	=-114 to 172
Type 4b 2-phase flui	id inclusions			ı	ı	
MFC002	ap		-24.8			147.2
MFC002	ap		-26.6			dec
MFC002	ap		-53.1	·	ı	109.6
MFC002	ap		-44.5		ı	116.6
MFC002	ap	>-70	-37.7	ı	ı	110.2
MFC002	ap	>-70	-34.6		ı	114
MFC002	ap		24.1			~114
MFC002	ap		-2.1	·	ı	~114
MFC002	ap				ı	142.2
MFC002	ap					142.4
Range:			= -53.1 to -2.1			= 109.6 to 147.2

APPENDIX 6

Tabulated whole rock XRF and INAA data

Sample numbers in the text (e.g. MFC160.5/51) refers to depth down hole and hole number respectively for samples from FC12 and FC4NW.

- = below detection N/A = not analysed

Element	SiO_2	TiO_2	$AI_2 O_3$	Fe203T	ОиМ	МgО	CaO	$Na_2 O$	K20	$P_{2}O_{5}$	SO_3	CI	IOI	SUM
FC12: gabbro														
261.3/82UN	37.23	5.13	11.05	22.58	0.31	6.73	9.76	2.12	0.60	3.08	0.09	0.15	1.88	100.6
395.6/86UN	40.06	6.28	11.65	20.69	0.27	7.18	10.17	2.09	0.99	0.08	0.03	0.03	0.50	100.0
121.3/84UN	35.35	7.18	10.62	29.90	0.25	4.39	8.25	2.16	0.69	1.95	0.06	0.19		100.8
224.3/86	37.88	4.38	12.41	26.57	0.23	5.04	6.80	2.44	1.35	1.86	0.12	0.11	1.04	100.1
260.8/81UN	44.85	1.96	17.56	12.12	0.13	7.87	7.20	2.20	3.08	0.19	0.06	0.25	2.67	99.9
468.1/82UN	44.30	3.11	13.23	18.91	0.18	6.83	9.78	2.79	0.75	0.25	0.05	0.03	0.29	100.5
339/82A	42.14	3.08	13.04	20.04	0.23	7.36	7.61	2.82	1.42	0.42	0.07	0.11	0.91	100.1
190.3/86	46.39	1.68	16.23	14.95	0.14	7.44	7.35	3.14	1.94	0.08	0.02	0.16	1.53	100.9
466.6/82	39.35	4.58	8.34	27.49	0.21	8.60	9.94	1.50	0.44	0.14	0.05	0.04	,	100.5
384.5/82UN	40.29	4.86	11.54	20.14	0.21	7.08	10.41	2.51	0.93	2.63	0.03	0.12	0.21	100.8
363/81UN	42.44	4.02	11.78	18.94	0.20	5.86	9.59	3.30	1.29	2.05	0.05	0.15	1.16	100.7
FC12: Fe oxide-rich rock														
399.5/86A	26.20	9.92	6.56	42.05	0.27	6.79	7.61	0.69	0.15	0.05	0.03	0.02		100.3
120.7/84A	27.46	9.22	2.23	44.59	0.29	9.64	4.52	0.25	0.10	0.45	0.12	0.14	1.41	100.3
266.3/81A	15.16	2.48	2.60	69.57	0.11	6.39	3.84	0.06	0.39	0.54	0.04	0.05		100.7
228.3/86A	26.95	7.37	2.01	37.12	0.36	13.70	8.30	0.22	0.13	2.79	0.08	0.33	1.26	100.3
263/82A	28.90	6.90	4.87	41.45	0.31	9.84	3.22	0.54	0.14	0.59	0.21	0.09	3.22	100.2
229.2/86	26.60	7.68	2.24	40.08	0.38	13.22	7.89	0.31	0.08	2.70	0.31	0.15	,	99.7
446.8/82A	7.42	7.84	3.30	77.96	0.27	3.91	0.32	0.00	1.65	0.09	0.08	0.15	•	100.5
338/82UN	30.11	8.62	2.58	40.31	0.35	9.57	7.23	0.17	0.11	0.04	0.09	0.07	0.91	100.1
390.3/82A	13.41	2.25	3.02	68.08	0.17	6.18	2.38	0.11	0.27	0.22	1.27	0.12	3.22	100.6
360.3/81A	5.10	1.71	3.30	85.79	0.08	2.56	0.82	0.00	0.43	0.46	0.08	0.05	·	100.0
358.9/81	16.84	8.13	5.58	58.71	0.23	4.35	3.74	0.68	1.18	1.17	0.10	0.13	ı	100.4
FC4NW: metasedimentary rock														
MFC160.5	54.00	1.20	14.42	10.75	0.09	2.13	6.49	5.55	2.27	0.33	ı	0.03	2.10	99.4
MFC160.2	53.90	0.82	15.34	13.66	0.06	3.54	3.44	7.40	0.78	0.19	ı	0.06	1.70	100.9
FC4NW: Fe oxide-rich rock														
MFC160.2	23.23	0.38	5.13	66.29	0.05	0.76	1.57	2.10	0.19	0.20		0.09		100
MFC160.5	19.79	0.54	4.24	69.20	0.07	1.42	2.55	1.67	0.46	0.20		0.08	0.40	100.6
Regional 'unaltered' rocks														
MFC002U (felsic volcanic rock)	66.91	0.52	13.97	6.71	•	0.73	1.02	8.30	0.18	0.14			0.54	0.06
Roxmere1-55 (calc-silicate)	1.23	0.51	1.77	15.70	0.10	0.68	38.82	0.72	0.03	18.48	0.08	,	18.51	90.6
MonakoffW (metapelite)	38.72	1.08	14.77	21.09	2.35	4.21	6.41	1.64	4.36	0.13	0.05		4.88	99.7
Regional Fe oxide-rich rocks														
MFC002A	4.45	0.33	0.15	86.50	0.02	0.13	4.45		0.01	3.65			1.11	100.8
Roxmere1-30	15.48	1.39	0.63	60.08	0.06	0.75	11.89		0.01	2.79	0.02		7.14	100.2

Detection limit	ეო	Ва 10	5	>∞	ωČ	Mn 8	°.	Źო	з Сп	n V	з З	AS 10	10 10	92 ~~	ي م	∽∼	3 S	2	
FC12: gabbro)))))	I	•)))	2	2	I	I	I))
261.3/82UN	•	196	26820	287	406	1757	50	13	28	85	20	·	S	23	159	56		47	47 8
395.6/86UN	•	202	29695	558	•	1286	36	29	101	49	21	ო	8	46	456	13		77	7 77
121.3/84UN	'	248	37980	152	·	1503	37	20	129	105	26	2	б	28	192	25		49	49 9
224.3/86	•	209	20275	432	567	1251	56	29	967	21	25	2	5	57	137	25	`	12	12 2
339/82A	•	259	16163	310	395	1344	64	57	94	104	19	,	-	75	216	21	2	ი	с о
190.3/86	•	292	2007	157	286	893	42	46	50	57	20	,	2	102	297	1	÷	0	2
384.5/82UN	•	254	26939	321	438	1236	71	13	74	67	20	,	5	59	256	52	54	_	6
363/81UN	•	271	20366	275	338	1095	99	24	164	32	57	,	ო	60	212	48	67		11
260.8/81UN	•	926	10411	180	289	860	155	62	47		19	•	2	142	275	19	78		6
468.1/82UN	•	262	18637	429	б	1215	71	38	138	83	20	,	2	35	281	25	43		4
466.6/82	•	175	24335	720	935	1449	81	44	192	81	23	,	5	21	142	28	58		9
FC12: Fe oxide-rich rock																			
399.5/86A		108	52244	1714	•	1680	76	74	303	219	30	•	12	·	79	6	57		5
120.7/84A	•	58	42305	142	ı	1685	06	39	1353	55	24	0	10	,	14	22	85		16
266.3/81A	'	48	13221	749	·	951	21	51	29	39	34	·	16	35	11	4	54		14
228.3/86A	•	88	39895	775	1085	2346	104	69	159	210	16	,	13		43	37	22		5
263/82A	•	<u> 3</u> 3	32818	195		1734	100	94	20	132	22	2	16		67	10	29		9
229.2/86	'	78	43020	513	·	2736	105	57	84	108	15	·	1	,	49	17	25		5
446.8/82A	'	220	46895	930	ı	1910	34	27	58	49	49	•	20	146	5	18	59		12
338/82UN	1	55	41170	801	25	2017	45	55	172	31	24	0	1	,	8	16	58		ი
390.3/82A	ı	105	11225	432	226	1222	248	88	267	95	42	•	16	28	13	12	53		12
360.3/81A	ı	122	9696	721	ı	720	153	91	444	49	19	•	21	30	ი	15	64		9
358.9/81	1	212	42228	531	ı	1431	91	65	480	50	45	,	15	73	66	24	68		13
FC4NW: Metasedimentary rock																			
MFC160.5/51a	12	833		62	9	646	63	64	294	12	17	9	ω	135	121	71	311		39
MFC160.2/51a	15	470		143	14	425	81	38	181	ø	21	ო	7	87	84	24	192		10
FC4NW: Fe oxide-rich rock																			
MFC160.2/51b	N/A	g		312		470	204	101	N/A	9	N/A	2	19	,	20	6	98		2
MFC160.5/51a	N/A	55		535	•	626	104	145	N/A	14	N/A	0	17	15	17	1	84		ı
Regional 'unaltered' rock																			
MFC002U (felsic volcanic rock)	12	21001	5146	142	ı	6115	74	91	665	205	23	59	92	243	119	31	238		12
Roxmere1-55 (calc-silicate rock)	12	52	1674	641	12	1365	17	93	177	8	12	161	16	,	156	287	10		,
MonakoffW (metapelite)	1	27	3937	99	27	66	26	12	13		22	9	2		15	46	308		18
Regional Fe oxide-rich rock																			
MFC002A	N/A	11	2750	1400		337	37	66	57		45	ო	21	·	17	69	ß		
Roxmere1-30	N/A	43	6548	1254	·	717	21	136	206	ı	27	ო	16	ı	35	41	16		,

Element	Sb	As	Ŗ	Ce C	රි	ò	Eu	Чu	Ηf	La	Γn	Мo	Sm	Sc	Se T	q_{-}	M	qХ
Detection limit	0.2	1.0	1.0	2.0	1.0	5.0	0.5	5.0	0.5	0.5	0.2	5.0	0.2	0.1	5.0 0	Ŀ.	2.0	0.5
FC12: gabbro																		
261.3/82UN	ı	ı	ı	137.0	1.3	7.9	2.9		1.6	67.8	0.5		14.9	53.1	- 1	4	1.2	3.5
395.6/86UN	0.5	1.3	1.1	14.8	ı	20.1	0.9		2.6	6.7	ı		2.5	66.9	0 '	5.	33.0	1.3
121.3/84UN			1.8	113.0	ı	10.9	2.8		1.5	56.5	0.4		12.9	49.4	, ,	9	18.0	3.0
224.3/86		11.4	2.0	45.4	1.1	35.0	1.7	12.4	0.7	20.0	0.2		6.8	59.2	, ,	× 0.	6.9	1.5
260.8/81UN			ı	29.8	ı	319.0	1.1		1.3	15.3	0.2	·	3.2	32.0	0 '	.6 37	0.06	1.5
468.1/82UN			1.1	31.2	·	21.9	1.3		1.8	16.1	0.3		4.3	58.8	0 '	8.	44.0	2.0
339/82A			2.3	50.0	·	136.0	1.4		1.4	28.6	0.3	5.4	4.8	49.7	0	œ.	4.4	1.9
190.3/86	ı	ı	ı	12.2	·	322.0	0.7		0.7	6.2	•		1.6	36.9			8.2	0.6
466.6/82	,	,	ı	27.5		31.1	1.2		2.3	11.4	0.3		4.6	81.2	0	6.	9.8	2.4
384.5/82UN	ı	,	ı	128.0	ı	6.1	2.8		2.0	68.8	0.4		13.9	54.7	-		8.9	3.4
363/81UN		2.8	1.5	166.0	·	11.6	2.6		2.5	98.8	0.5	10.3	12.9	49.4	, ,	.9 1	33.0	3.1
FC12: Fe oxide-rich rock																		
399.5/86A	ı	ı	ı	10.0	·	42.6	0.6		2.1	3.8	•		1.9	67.6			3.1	1.0
120.7/84A	ı	5.0	ı	41.6	,	35.4	0.8		2.7	17.6	0.5		6.3	109.0	, ,	2.9	47.0	3.3
266.3/81A	ı	1.5	ı	50.1	•	49.8	0.7		1.6	22.8	ı		3.3	31.3	,		86.0	0.9
228.3/86A	,	,	1.3	71.0	,	63.2	1.8		1.1	32.2	0.2		9.2	72.7	, ,	ю. 1	57.7	1.7
263/82A	·	1.0	ı	27.8	·	31.8	0.7	19.7	0.9	14.0			3.2	39.6	0	ت	8.9	1.0
229.2/86	,	,	ı	67.8		134.0	1.7			30.7	0.2		9.4	59.0	, ,	.3	80.0	1.8
446.8/82A	,	,	,	2.2	1.5	72.7	ı		2.0	1.2			0.3	31.1	,		1.3	,
338/82UN	ı	3.9	1.8	11.8	,	246.0	,		2.3	3.9	0.3	,	3.1	116.0	0	2.	3.5	2.3
390.3/82A	ı	ı	1.4	20.4	•	291.0	ı		1.4	11.2	ī	5.5	1.9	57.5	1	N 1	14.6	1.1
360.3/81A	·	7.0	ı	48.9	1.3	55.3	ı	ı	1.9	32.0		6.5	2.8	47.0	1		6.2	1.3
358.9/81	,	3.2	,	68.8	1.6	55.2	1.5		2.6	35.4	0.3	7.1	7.2	44.7	, ,	۲.	10.0	1.8
Regional 'unaltered' rock																		
MFC002U (felsic volcanic rock)	ı	1.7	ı	57.6	•	N/A	1.5		8.4	23.4	0.6		7.6	N/A	, ,	4. L	69.0	4.6
Roxmere1-55 (calc-silicate rock)		175.0	2.6	940.0	•	N/A	11.7			547.0	2.0		68.1	N/A	- 7	<u>.</u>	5.5	18.2
MonakoffW (metapelite)	1.7	61.5		70.7	9.8	N/A	1.1	47.0	4.9	38.2	0.4	16.6	4.9	N/A	•	œ.	9.6	3.0
Regional Fe oxide-rich rock						N/A								N/A				
MFC002A	·	41.4		359.0	·	N/A	2.0			218.0	1.0	6.8	19.5	N/A	N '	 	32.3	6.9
Roxmere1-30	0.5	22.2	ı	905.0		N/A	5.9			513.0	0.7		39.3	N/A	- 3	о.	94.9	6.0

APPENDIX 7

Density calculations for Fe oxide-rich rocks from the FC4NW prospect

Sample numbers in this table refer to the depth down hole and hole number, which can thus be used to determine their location in appendix 1.

MFC 160.5/51	Modal proportion	Density of mineral	Contribution to rock density
Unaltered rock			
biotite	0.12	3.00	0.36
actinolite	0.12	3.30	0.40
magnetite	0.05	5.20	0.26
quartz	0.55	2.65	1.46
plagioclase	0.15	2.60	0.39
Total density of rock:			2.86
Altered rock			
magnetite	0.4	5.20	2.08
albite	0.2	2.60	0.52
actinolite	0.15	3.30	0.50
pyrite	0.2	5.00	1.00
muscovite	0.05	2.80	0.14
Total density of rock:			4.24

MFC 160.2/51	Modal proportion	Density of mineral	Contribution to rock density
Unaltered rock			
biotite	0.15	3.00	0.45
actinolite	0.1	3.30	0.33
magnetite	0.05	5.20	0.26
quartz	0.5	2.65	1.33
plagioclase	0.2	2.60	0.52
Total density of rock:			2.89
Altered rock			
magnetite	0.55	5.20	2.86
albite	0.3	2.60	0.78
actinolite	0.1	3.30	0.33
pyrite	0.05	5.00	0.25
Total density of rock:			4.22

APPENDIX 8

Mineralogy of host rocks and alteration assemblages used for Laser Ablation ICP MS

Location	Sample No	Rock Type /	Host rock mineral	Mineralisation style:
		mineralogy	assemblage	mineral association
Ernest Henry	FT8C	-Plagioclase-phyric	-Plagioclase	-Associated with
	EH201B	felsic volcanic rocks	phenocrysts with	brecciation of felsic
	FT8A	(1740 Ma).	plagioclase +	volcanic rocks: magnetite
	EH201C		biotite + magnetite	+ calcite + biotite +
	EH184D		+ quartz matrix.	chalcopyrite + pyrite + K-
	EH9			feldspar + quartz + barite.
	EH10			
	647			-Rare accessory minerals
				include: apatite \pm fluorite
				± amphibole ±
				molybdenite \pm cobaltite \pm
				arsenopyrite \pm gold \pm
				coffinite \pm rutile \pm
				hematite \pm scheelite \pm Sb
				sulphides ± LREE-rich
				fluorcarbonates \pm
				uraninite
Osborne	OS1	-Contacts between	-Psammite:	-Associated with silica
		banded ironstone	Dominantly	flooding + chalcopyrite, +
		formation and	plagioclase +	pyrite, + magnetite, +
		feldspathic psammitic	quartz with minor	quartz, + pyrrhotite, +
		rocks	biotite + magnetite.	hematite \pm apatite \pm
				siderite \pm talc \pm biotite \pm
			-Banded ironstone	chlorite \pm molybdenite \pm
			formation:	bravoite \pm muscovite
			Magnetite + quartz	
			$+$ apatite \pm hematite	-Rare accessory phases
			\pm pyrite \pm chlorite	include: pendlandite \pm
			\pm siderite \pm	gold \pm bismuth \pm
			chalcopyrite ±	wolframite ±
			pyrrhotite.	stilpnomeline \pm costibite.
Starra	ST1	-The Stavely formation:	-Magnetite +	-Associated with pyrite +
		western ironstones	hematite + quartz \pm	gold + chalcopyrite +
			chlorite \pm calcite \pm	anhydrite + bornite +
			pyrite ±	barite \pm chlorite \pm
			chalcopyrite	muscovite \pm chalcocite \pm
				hematite \pm calcite and
				anhydrite
				-inote: Magnetite is
				associated with the
				magnetite bearing Fe
				ovide_rich rocks
Mount Elliott	ME	Meta-pelitic rocks	-Skarn: diopside +	-Associated with
mouni Lilloli	14117	altered to skarn	scapolite \pm	brecciation: chalconvrite
			actinolite +	+ actinolite + scapolite
			magnetite \pm purits	+andradite +tourmaline
			\pm chalconvirto	+allanite +anatita
			- enacopyme	+magnetite +pyrite
				+nyrrhotite and calcite

Location	Sample No	Drill hole No /	Rock Type	Host rock mineral	Mineralisation
		depth		assemblage	style: mineral
					association
FC4NW	MFC254 (Fe oxide)	MFC99090D,	-Metasedimentary	-Felsic volcanic rocks:	-Fe oxide-rich
		254.8m	rocks	Phenocrysts:	rocks:
	MFC168 (Fe oxide)	MFC98051D,	-Plagioclase-phyric	plagioclase + quartz	clinopyroxene +
		168.6m	felsic volcanic rocks	Groundmass:	magnetite +
	MFC161 (Na-Ca alt)	MFC98051D,	-Na-rich granitic	plagioclase + quartz	chalcopyrite +
		160.2m	rocks	+magnetite.	pyrite \pm actinolite
	MFC262 (Na-Ca alt)	MFC99090D,			\pm albite.
	MECO72 (No. Co. alt)	262m		-Metaseaimentary rock:	
	MFC275 (Na-Ca alt)	MFC99090D, 272m		quartz + plagloclase +	-Na-Ca
		275111		biotite.	alteration:
	MFC222 (Na-Ca alt)			-Na-rich granitic rock	actinome +
	1011 02222 (19tu Ou ult)			plagio clase + quartz +	magnetite \perp albite
	MFC243 (Na-Ca alt)			Clinopyroxene +	+ nyrite +
				amphibole	\pm pyrice \pm
	MFC217 (Na-Ca alt)				$\frac{1}{1}$
					hematite
	MFC125 (Na-Ca alt)				nemane.
FC12	MFC204 (Na-Ca alt)	FTCD1087,	-Tholeiitic gabbroic	-Gabbroic rock	-Na-Ca
		204.2m	rocks	plagioclase +	alteration:
			-Cumulate Fe oxide -	horneblende + biotite +	actinolite +
	MFC312 (Na-Ca alt)	FTCD1084,	rich layering in	magnetite + ilmenite +	calcite \pm titanite \pm
		312.3m	gabbroic sequence.	pyrite + orthopyroxene	magnetite ± pyrite
	MEC229. (ETCD 1002		+ clinopyroxene.	\pm chalcopyrite \pm
	MFC338: (cumulate	FICD1082,		Cumulate Fe ouide	hematite \pm albite
	layering in gabbio)	556111		-Cumulate Fe Oxide-	
	MEC291. (cumulate	FTCD1081		Magnetite \pm ilmenite \pm	
	lavering in gabbro)	291m		clinopyroyene + biotite	
	iajering in gaooro)	2,7111		\pm titanite \pm microcline	
				\pm manue \pm microcline \pm quartz \pm plagioclase \pm	
				\pm quartz \pm pragrociase \pm	
				pyrice <u>-</u> enaleopyrice	

Location	Sample No	Rock Type	Host rock mineral	Mineralisation
			assemblage	style: mineral
Ernest Henry: Pre- mineralisation alteration	EH235 (Na-Ca alt) FT021A (K-Fe alt) EH184A (K-Fe alt) FT94C (K-Fe alt) EH223B (K-Fe alt) FT94B (K-Fe alt) EH223A (K-Fe alt) E151 (K-Fe alt)	-Plagioclase- phyric felsic volcanic rocks	-Plagioclase phenocrysts with plagioclase + biotite + magnetite + quartz matrix.	-Na-Ca alteration: actinolite + albite \pm magnetite \pm pyrite. -K-Fe alteration magnetite + biotite \pm titanite \pm K- feldspar \pm pyrite \pm chalcopyrite
Ernest Henry: Post- mineralisation alteration.	FT4A1 FT4A2 EH201A FT8B	-Plagioclase- phyric felsic volcanic rocks	(as above)	-Late carbonate flooding calcite + dolomite + biotite + magnetite \pm pyrite \pm chalcopyrite
Guilded Rose area(breccia) (Marshall (2003)	1714	-Calc-silicate rocks	Diopside \pm quartz \pm albite \pm apatite \pm biotite \pm titanite	-Na-Ca alteration actinolite + quartz + magnetite + pyrite + chalcopyrite
Lightning Creek veining	LCD106 LCD13	I-type granitoids and Fe-rich sills	-Coarse-grained monzodiorite: plagioclase + K- feldspar (phenocrysts) + amphibole + biotite + K-feldspar + magnetite + plagioclase + quartz + titanite ± apatite ± zircon. -Fe-rich sills: K-feldspar + quartz + magnetite ± clinopyroxene ± pyrite ± apatite ± calcite ± chlorite ± titanite ± zircon	-Cu-Au-bearing veins: magnetite ± chalcopyrite ± chlorite ± pyrite

Location	Sample No	Host rock mineral	Mineralisation style:
	-	assemblage	mineral association
Guilded Rose area	1307	Calc-silicate rock:	Matrix:
(breccia)	1310	Diopside \pm quartz \pm albite	Albite + calcite + quartz +
(clasts are a mix of marble	1314	\pm apatite \pm biotite \pm titanite	actinolite + chlorite +
and calc-silicate rock)	1351	-	magnetite + hematite
(Marshall, 2003)	1561B		staining
Mount Avarice Quarry	1375A	Gabbro	Vein:
Veining	1375B	Quartz + actinolite + pyrite	Quartz + calcite + actinolite
(Marshall, 2003)			+ magnetite
Corella breccia	1808	Calc-silicate rock:	Matrix:
(Marshall, 2003)		Diopside \pm quartz \pm albite	Actinolite + magnetite +
		\pm apatite \pm biotite \pm titanite	quartz
Mount Angelay: medium-	MA2 (Medium-grained	Medium-grained granite:	Matrix:
grained equigranular	granite)	plagioclase + quartz +	Actinolite + magnetite
granitoid	MA3 (brecciated granite)	magnetite + biotite + \pm	
(Marshall, 2003)		apatite \pm titanite \pm allanite	
		\pm zircon \pm fluorite \pm pyrite	
		1.	

Barren Fe oxide-rich rocks			
Location	Sample No	Associated mineralogy	
Starra	ST2	Magnetite \pm quartz \pm calcite	
	ST3		
Osborne	OS2	Magnetite \pm quartz \pm apatite	
Guilded Rose: North of the Cloncurry	271	Magnetite \pm quartz \pm apatite \pm	
Syncline	176	hematite	
(Marshall, 2003)			
Guilded Rose	1356	Magnetite \pm quartz \pm apatite \pm	
(Marshall, 2003)	345	hematite	
	1739		
	1686		
	271		
	176		
Mount Philp	MP011	Hematite replacing magnetite	
(Marshall, 2003)			
Camel Hill	1561A	Hematite	
(Marshall, 2003)			

Igneous magnetite			
Rock type / location	Sample No	Associated mineralogy	
Lightning Creek monzogranite and	LCD32 (Fe-rich sill)	-Coarse-grained monzodiorite:	
Fe-rich sills	LCD43 (Fe-rich sill)	plagioclase + K-feldspar	
	LCF12 (monzogranite)	(phenocrysts) + amphibole + biotite	
		+ K-feldspar + magnetite +	
		plagioclase + quartz + titanite \pm	
		apatite ± zircon.	
		-Fe-rich sills:	
		K-feldspar + quartz + magnetite \pm	
		clinopyroxene \pm pyrite \pm apatite \pm	
		calcite \pm chlorite \pm titanite \pm zircon	
Corella calc-silicate (pristine)	1735	Diopside \pm quartz \pm albite \pm apatite	
(Marshall, 2003)	1785	\pm biotite \pm titanite \pm magnetite	
Slaughter Yard	SY	Magnetite + horneblende + quartz +	
		feldspar + biotite	

APPENDIX 9

Laser ablation data tables for magnetite, hematite, pyrite and chalcopyrite

All laser ablation inductively coupled mass spectrometer (LA-ICP-MS) analyses of magnetite, hematite, pyrite and chalcopyrite collected for this study are included as several Microsoft Excel spreadsheets under the following titles:

Chalcopyrite Hematite Magnetite (barren assemblages) Magnetite (Ernest Henry only) Magnetite (weakly mineralised and Cu-Au mineralised assemblages) Pyrite (Ernest Henry only) Pyrite (other assemblages)

Notations: 'bd' = below detection, '-' denotes values whereby 1 sigma and MDL cannot be calculated due to below detection values, * denotes likely impurity in analysis.

DATA FOR APPENDIX 9 IS AVAILABLE ON CD-ROM ONLY