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ABSTRACT 
 

The Eastern Fold Belt (EFB) in north-west Queensland, Australia, is an extensively 

metasomatised terrain that contains a variety of Fe oxide (Cu-Au) and related deposits 

(IOCG). Most of these deposits formed after the peak of ca. 1600-1575 Ma regional 

metamorphism and exhibit a broad range of mineralogical and chemical associations. 

The origin of fluids associated with mineralisation is particularly controversial, whereby 

magmatic, non-magmatic and magmatic-evaporitic fluid-derived models have all been 

proposed. Several deposits in the district also exhibit different relations to ironstone (Fe 

oxide-rich rock) occurrences. These relations vary from early to pre-mineralisation Fe 

oxides (Starra and Osborne), syn-mineralisation Fe oxides (Ernest Henry) and examples 

where significant amounts of Fe oxide are distal to the site of mineralisation (Eloise).  

 

Fe oxide-rich rocks can form from a number of different processes (orthomagmatic, 

replacement, infill, sedimentary), and can be distinguished by textural observations and 

geochemical analysis. Sulphide mineralisation and Fe oxide-rich rocks within the 

Mount Fort Constantine (MFC) exploration lease (the main study area) are of particular 

interest due to their proximity to the Ernest Henry (Cu-Au) deposit. At the FC4NW and 

FC12 prospects in the MFC lease, sulphide mineralisation post-dates the formation of 

Fe oxide-rich rocks and is associated with amphibole-rich Na-Ca alteration. Fe oxide-

rich rocks in the FC12 prospect were formed by orthomagmatic processes directly 

related to the formation of their tholeiitic gabbroic host. In contrast, Fe oxide-rich rocks 

in outcrop and at the FC4NW prospect were formed by hydrothermal processes. Fe 

oxide-rich rocks at the FC4NW prospect exhibit a close spatial and temporal association 

with an earlier clinopyroxene-rich Na-Ca alteration phase that predates sulphide 

mineralisation. The poor correlation between Fe oxide-rich occurrences and sulphide 

mineralisation at MFC differs from Ernest Henry, where Fe oxide and Cu-Au 

mineralisation are synchronous and post-date Na-Ca alteration. 

 

Na-Ca alteration at FC12 is associated with the enrichment of Fe, Mg, REE, Cu and S. 

In contrast, Fe is typically depleted and Mg, REE, Cu and S are variable in regional Na-

Ca alteration throughout the Cloncurry District. Na was also found to be variable at 

FC12. These geochemical patterns suggest that the fluids at FC12 were cooler and more 

evolved than for regional Na-Ca alteration, and had previously undergone significant 
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fluid-rock interaction prior to mineral precipitation. This is reflected in the low 

temperature mineral assemblage (chlorite, calcite, magnetite, hematite, pyrite, 

chalcopyrite) associated with these veins.  

 

Na-Ca alteration at FC4NW formed by a hypersaline (25 to 50 wt% NaClequiv) and CO2-

bearing fluid at temperatures of around 260 to 442°C. These fluids cooled and became 

less saline with time, reflecting the transition from clinopyroxene-rich to amphibole-rich 

Na-Ca alteration. The chemistry of these fluids is similar to regional Na-Ca 

assemblages, containing elevated Mn, Zn, Cu, Fe, K, Cl, Ca, Ba and Pb. In contrast, 

they are distinctly different to fluids associated with Cu-Au mineralisation at Ernest 

Henry, Starra, and Lightning Creek in the EFB. In particular, Mn, Zn, Ba and Cu 

concentrations are significantly lower in Na-Ca assemblages from FC4NW. The lack of 

significant Cu-Au mineralisation at FC4NW may be attributed to the low Cu content in 

the fluid. 

 

The mineral chemistry of magnetite, hematite, pyrite and chalcopyrite can be used to 

discriminate between Cu-Au mineralised systems and systems which are weakly 

mineralised to barren. Magnetite associated with Cu-Au mineralisation contains a 

greater variety of elements including Mo, W, Th and U, which are typically low to 

below detection in other systems. In addition, Cu-Au mineralised systems are associated 

with higher Sc and Mn (magnetite), As and Co (pyrite), Bi, Sn, In and Ag (chalcopyrite) 

and As, Sb, Ga, and W (hematite). In contrast, Ti, V, Ga and Cr (magnetite) and Se and 

Ni (pyrite) are lower in Cu-Au mineralised systems. Fluid chemistry is interpreted to be 

the dominant control on the trace element content of magnetite, hematite, pyrite and 

chalcopyrite, however, other physicochemical factors including fO2 and temperature 

may also affect the relative concentration of elements including V, Cu and Se. These 

chemical signatures have the potential to be used as vectors towards geochemical haloes 

peripheral to Fe oxide (Cu-Au) mineralisation. 

 

The presence of granitic and pegmatitic dykes at FC12 and FC4NW suggests the 

presence of a nearby igneous intrusion. In contrast, no igneous intrusive phases are 

present at Ernest Henry. The felsic igneous rocks at FC4NW exhibit a close spatial and 

temporal relationship to clinopyroxene-rich Na-Ca alteration suggesting a genetic link. 

The presence of sulphide associated with the latter amphibole-rich Na-Ca phase at 
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FC4NW, together with the low temperature mineral assemblage associated with Na-Ca 

alteration at FC12, suggests that mineralisation may have occurred due to a drop in 

temperature over time, irrespective of the specific mechanism responsible for the 

precipitation of sulphide. 

 

The paragenesis and fluid inclusion chemistry at MFC suggest that sulphide 

mineralisation is an earlier / unrelated event compared to the phase of Cu-Au 

mineralisation at Ernest Henry. Instead, sulphide mineralisation at MFC more closely 

resembles the early, weakly mineralised Na-Ca alteration phase and related hanging 

wall Fe oxide-rich rocks at Ernest Henry. The main ore genesis stage at Ernest Henry is 

noted by a more complex fluid chemistry, in addition to the presence of Au (absent at 

MFC) and K-Fe alteration, which suggest that at least one fluid associated with Cu-Au 

mineralisation at Ernest Henry was absent at MFC. However, the whole rock 

geochemistry of low temperature Na-Ca alteration at FC12 as well as the mineral 

chemistry of Fe oxides and Fe sulphides suggest that sulphide mineralisation at MFC 

and Ernest Henry may be more implicitly linked. In particular, magnetite associated 

with sulphide-bearing Na-Ca alteration at FC4NW and FC12 contain high Ni and 

anomalous W, Mo, Th and U, the latter of which are minor to absent in barren regional 

Na-Ca assemblages but highly enriched at Ernest Henry. One possibility is that Ernest 

Henry is part of an overlapping hydrothermal system, which supports the interpretation 

by Mark et al (1999) that more than one fluid was responsible for Cu-Au mineralisation. 

Fluids responsible for sulphide mineralisation at MFC may have either been diluted by 

another fluid, possibly of meteoric origin, or did not mix with a more chemically 

complex, S-bearing fluid. Thus, while a clear distinction can be made between sulphide 

mineralisation at MFC and Cu-Au mineralisation at Ernest Henry both chemically and 

paragenetically, MFC may represent a vector towards mineralisation at Ernest Henry, 

because a small amount of potentially ore-bearing Ernest Henry-style fluid appears to 

have contributed to the MFC magnetite geochemistry. 
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