JCU ePrints

This file is part of the following reference:

Willis, Bette Lynn (1987) Morphological variation in the reef corals Turbinaria esenterina and Pavona cactus: synthesis of transplant, histocompatibility, electrophoresis, growth, and reproduction studies. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/17400

MORPHOLOGICAL VARIATION IN THE REEF CORALS *TURBINARIA MESENTERINA* AND *PAVONA CACTUS*: SYNTHESIS OF TRANSPLANT, HISTOCOMPATIBILITY, ELECTROPHORESIS, GROWTH, AND REPRODUCTION STUDIES

> Thesis submitted by Bette Lynn WILLIS BSc (Hons) (Guelph) in February 1987

for the degree of Doctor of Philosophy in the Department of Marine Biology at James Cook University of North Queensland

ACKNOWLEDGEMENTS

I would like to acknowledge the support provided by my supervisor, Asoc. Prof. Michel Pichon, throughout the course of this project. I would also like to thank Dr. John Veron for his advice, encouragement and guidance at various stages over the years. Rick Willis is specially thanked for many long hours of accompaniment and assistance underwater, constructive comments on all aspects of this project, and his endless supply of encouragement. Many people have provided helpful comments and stimulating discussion, particularly Dr. David Ayre, Jamie Oliver, Dr. Russ Babcock, Peter Harrison, Dr. Carden Wallace, Dr. John Collins and Prof. Rhondda Jones. I would also like to thank Dr. Chris Alexander and Dr. Helene Marsh for constructive comments on this thesis. For guidance and assistance with electrophoretic techniques and interpretation of results, I am especially grateful to Dr. David Ayre. I am indebted to Dr. Duncan Mackay, Prof. Rhondda Jones, and Dr. Gerry Taylor for advise on statistical procedures. Technical advice on histological procedures by Leigh Winsor, S.E.M. procedures by Jim Darley, and photographic procedures by Zolly Florian and Les Brady is acknowledged with thanks. Numerous collegues and students at James Cook University have provided invaluable field assistance as diving buddies, without which this project could not have been completed. I would also like to thank Dirk Zeller and Linda Davies for assistance in morphological measurements, Mairi-Anne McKenzie for assistance in dissecting polyps, and Ray Giddings, Mairi-Anne McKenzie, and Jeff Kelly for assistance in preparing figures. Photographs were kindly contributed by Jamie Oliver (Figure 2), Dr. John Veron (Figure 4A and 4B), Alistair Birtles (Figure 9), Dr. Clive Wilkinson (Figure 24), and Peter Harrison (Figure 33D). Various aspects of this research were supported by two GBRMPA Augmentative Grants and two ACRS Postgraduate Awards.

ABSTRACT

Mechanisms underlying morphological variation in two highly variable reef corals are discussed. Surveys of growth form distributions established whether morphs of either species were associated with specific biotopes. Where such associations were identified, the physical environment was monitored, and the likelihood of an environmental correlate of the observed variation Reciprocal transplantation of morphs between was evaluated. biotopes tested for phenotypic plasticity in the two species. Histocompatibility tests and electrophoretic surveys were used to determine whether populations had a clonal structure, and to determine if morphs were associated with specific genotypes. Morphometric analyses of variation in colony shape and corallite structures suggested ways in which colony growth and colony shape are related in these two species. Comparisons of the seasonality of gametogenic development and breeding were used to evaluate the probability of reproductive isolation between morphs.

variation in Turbinaria Morphological mesenterina was continuous, but the convoluted and plate morphs (the two extremes of the morphological range) had non-overlapping depth distributions. Colonies transplanted between depths were phenotypically plastic, indicating that growth form variation is environmentally induced in Morphometric analyses demonstrated that colonies this species. changed the angle of corallite addition in response to changes in It is suggested that the angle of polyp budding is a depth. plastic trait, which varies in response to light intensity. This represents a photoadaptive mechanism, enabling the colony to control the degree of stratification of photosynthetic tissues. Although it is suggested that light is the primary controlling factor, depth-related differences in both sedimentation and water turbulence undoubtedly contribute to net colony morphology. Histocompatibility and electrophoretic studies revealed an absence of asexual reproduction within the population, and precision in the self-recognition response in this species. Linear extension rates and patterns in seasonal growth were identical for both morphs. Comparison of the timing of gametogenic development and breeding,

iv

age of reproductive maturity, and population sex ratios suggested that the two morphs were not reproductively isolated. *T. mesenterina* is gonochoric, and has an extended autumn breeding season, unlike the majority of species on the Great Barrier Reef which spawn in an episodic, spring mass spawning (Harrison *et al.*, 1984, Willis *et al.*, 1985, Babcock *et al.*, 1986). Possible proximate and ultimate cues controlling differences in spawning seasonality among corals are discussed.

In contrast, morphological variation in Pavona cactus was discontinuous, and no clear pattern emerged from an analysis of growth form distributions in relation to environmental variation. depths and reef slopes were Colonies transplanted between phenotypically stable. Histocompatibility tests and electrophoretic surveys revealed a clonal population structure, and imprecision in the self-recognition response. All clonemates displayed the same growth form, despite large spatial separation in several cases. This evidence, in conjunction with the finding of phenotypic stability, suggests a genetic basis for the observed morphological variation in this species. Analyses of variation in the dimensions of fronds and corallite structures, suggests that the allocation of energy to extension and infilling growth processes differs between the convoluted and columnar morphs. It is suggested that such differences are genetically controlled in P. cactus.

TABLE OF CONTENTS

ACKN	OWLEDGE	MENTS	iii
ABST	RACT		iv
LIST	OF TAB	LES	ix
LIST	OF FIG	URES	xi
CHAP	TER 1.	GENERAL INTRODUCTION	1
CHAP	TFR 2.	SPECIES DESCRIPTIONS AND THE DISTRIBUTION OF	
		MORPHS IN RELATION TO THE PHYSICAL ENVIRONMENT	
2.1	INTROD	UCTION	6
2.2	DESCRI	PTION OF STUDY SPECIES	
	2.2.1	Morphological Variation in Turbinaria mesenterina	9
	2.2.2	Morphological Variation in Pavona cactus	14
2.3	DESCRI	PTION OF STUDY AREAS	19
2.4	MATERI	ALS AND METHODS	
	2.4.1	Location of Study Sites	25
	2.4.2	Surveys of Growth Form Distributions	27
	2.4.3	Temperature and Salinity	28
	2.4.4	Light Profiles	29
	2.4.5	Sedimentation Regimes	29
	2.4.6	Localized Water Turbulence	31
2.5	RESULT	S	
	2.5.1	Surveys of Growth Form Distributions	32
	2.5.2	Temperature and Salinity	33
	2.5.3	Light Profiles	37
	2.5.4	Sedimentation Regimes	39
	2.5.5	Localized Water Turbulence	43
2.6	DISCUS	SION	46
CHAP	TER 3.	RECIPROCAL TRANSPLANT STUDIES:	
		PHENOTYPIC PLASTICITY VERSUS PHENOTYPIC STABILITY	
3.1	INTROD	UCTION	53
3.2	MATERI	ALS AND METHODS	
	3.2.1	Reciprocal transplants	57
	3.2.2	Morphometric Analyses: T. mesenterina	59
	3.2.3	Morphometric Analyses: P. cactus	62

3.3 RESULTS

	3.3.1	Survival and Growth of Transplants: T. mesenterina.	63
	3.3.2	Morphometric Analyses: T. mesenterina	66
	3.3.3	Survival and Growth of Transplants: P. cactus	73
	3.3.4	Morphometric Analyses: P. cactus	75
3.4	DISCUS	SION	79

CHAPTER 4. HISTOCOMPATIBILITY AND ELECTROPHORETIC STUDIES: RELATIONSHIP BETWEEN CLONAL POPULATION STRUCTURE AND MORPHOLOGICAL VARIATION

4.1	INTROD	UCTION	88
4.2	MATERIALS AND METHODS		
	4.2.1	Histocompatibility Tests	92
	4.2.2	Electrophoresis	96
	4.2.3	Intraspecific Competition	98
	4.2.4	Fragment Survival	99
4.3	RESULTS		
	4.3.1	Histocompatibility Tests	99
	4.3.2	Electrophoresis	104
	4.3.3	Intraspecific Competiton	106
	4.3.4	Fragment Survival	111
4.4	DISCUS.	SION	114

CHAPTER 5. GROWTH STRATEGIES LEADING TO MORPHOLOGICAL VARIATION

5.1	INTRODU	JCTION	122
5.2	MATERIA	ALS AND METHODS	
	5.2.1	Alizarin Red S Staining Technique	125
	5.2.2	Sampling Programme: T. mesenterina	125
	5.2.3	Growth Analyses: T. mesenterina	127
	5.2.4	Sampling Programme: P. cactus	129
	5.2.5	Growth Analyses: P. cactus	129
5.3	RESULTS	5	
	5.3.1	Growth Analyses: T. mesenterina	132
	5.3.2	Growth Analyses: P. cactus	140
5.4	DISCUSS	SION	146

CHAPTER 6. REPRODUCTIVE ISOLATION BETWEEN MORPHS?

6.1	INTRODUCTION 15		
6.2	MATERIALS AND METHODS		
	6.2.1	Gametogenic Cycles	155
	6.2.2	Polyp Fecundity and Reproductive Effort	157
	6.2.3	Size at Reproductive Maturity and Sex Ratio	158
6.3	RESULT	S	
	6.3.1	Gonad Structure and Arrangement	159.
	6.3.2	Gametogenic Cycles and Breeding Seasonality	162
	6.3.3	Reproductive Effort	170
	6.3.4	Size at Reproductive Maturity and Sex Ratio	171
6.4	DISCUS	SION	173
CHAP	TER 7.	CONCLUDING DISCUSSION	181
REFE	RENCES	• • • • • • • • • • • • • • • • • • • •	187

APPENDICES

1.	Growth Form 1	Modification of	f P. cactus by Sinularia	
	flexibilis .		••••••••••••	201
2.	Publications	from research	associated with this thesis	203

LIST OF TABLES

TABLE		PAGE
1.	Muffle furnace determination of the organic and carbonate content of sediment samples	43
2.	Mean weight losses and diffusion indices for plaster spheres exposed at Nelly Bay during calm and rough periods	44
з.	Mean weight losses and diffusion indices for clod cards and plaster spheres at Eclipse Island	45
4.	Mortality of <i>Turbinaria mesenterina</i> colonies transplanted to a shallow and deep station at Nelly Bay, Magnetic Island between April 1981 and November 1984	63
5.	Mean annual linear extension rates (mm/year) of <i>Turbinaria</i> mesenterina colonies transplanted to either a shallow (1m) or deep (4m) station at Nelly Bay, Magnetic Island	64
6.	Three-factor partially hierarchical analysis of variance for linear extension rates of <i>T. mesenterina</i>	65
7.	Comparison of initial and final convolution indices of plate colonies of <i>T. mesenterina</i> involved in reciprocal transplant studies at Nelly Bay, Magnetic Island	70
8.	Mean initial and final growth angles of <i>T</i> . mesenterina colonies involved in reciprocal transplant studies	71
9a.	Mortality of colonies of the convoluted morph of <i>P. cactus</i> transplanted to one of four depths on two reef slopes at Eclipse Island for a period of 2.3 years	74
9Ъ.	Mortality of colonies of the columnar morph of <i>P. cactus</i> transplanted to one of four depths on two reef slopes at Eclipse Island for a period of 2.3 years	74
10.	Mean distance between fronds (mm) for transplanted convol- uted and columnar colonies of <i>P. cactus</i>	77
11.	Four-factor analysis of variance of frond spacing in transplants of <i>P. cactus</i>	78
12.	Descriptions of polymorphic enzymes assayed for colonies of <i>P. cactus</i> and <i>T. mesenterina</i>	97
13.	Outcome of 80 histocompatibility tests for P. cactus	103
14.	Outcome of 36 histocompatibility tests for T. mesenterina	104
15.	The 4-locus genotypes and growth forms of 80 colonies of <i>P. cactus</i> , Eclipse Island	105
16.	The 3-locus genotypes of 21 colonies of <i>T. mesenterina</i> at Nelly Bay, Magnetic Island	107

17.	Outcome of competitive interactions among six clones of <i>P. cactus</i> , Eclipse Island108
18.	Summary of the types of intraspecific competitive inter- actions recorded in intra- and inter-morph pairings of <i>T. mesentering</i> at Nelly Bay, Magnetic Island
19.	Outcome of competitive interactions among eight colonies of <i>T. mesenterina</i> 110
20.	Comparison of numbers of grafted fragments showing negli- gible or significant tissue mortality for 3 morphs of <i>P. cactus</i>
21.	Three-factor, partially hierarchal analysis of variance of linear extension rates for adult colonies of <i>T. mesen-</i> <i>terina</i>
22.	Four-factor, partially hierarchal analysis of variance of linear extension rates for immature colonies of <i>T</i> . mesenterina
23.	Mean annual linear extension rates $(mm/year)$ at two depths for three size classes of <i>T. mesenterina</i>
24.	Comparison of mean growth angles between depths for three size classes of <i>T. mesenterina</i> 139
25.	Comparison of mean convolution indices between depths for three size classes of <i>T. mesenterina</i>
26.	Three-factor, partially hierarchal analysis of variance of linear extension rates for the convoluted and columnar morphs of <i>P. cactus</i>
27.	Comparison of volume and linear dimensions for mature oocytes from convoluted and plate colonies of <i>T. mesen-</i> <i>terina</i>
28.	Sex ratios for the plate and convoluted morphs of <i>T. mes-</i> entering at Nelly Bay, Magnetic Island

LIST OF FIGURES

FIGURE	Ε	PAGE
1.	Representative growth forms of Turbinaria mesenterina	. 11
2.	Growth forms of Turbinaria mesenterina: Large, in situ colonies at Nelly Bay, Magnetic Island	. 12
3.	Scanning electron micrographs of corallites of two growth forms of Turbinaria mesenterina	. 13
4.	Representative growth forms of <i>Pavona cactus</i> : skeletal specimens	. 16
5.	Growth forms of <i>Pavona cactus: in situ</i> colonies at Eclipse Island	. 17
6.	Scanning electron micrographs of corallites of two growth forms of <i>Pavona cactus</i>	. 18
7.	Location of study reefs	20
8.	Geomorphology of Nelly Bay, Magnetic Island, and location of Site A	22
9.	Geomorphology of Eclipse Island and adjacent reef	. 24
10.	Location of sites B to G, Eclipse Island, and distribu- tion of growth forms of <i>Pavona cactus</i>	26
11.	Seasonal patterns of temperature and salinity at Nelly Bay, Magnetic Island	. 34
12.	Seasonal patterns of temperature and salinity at Eclipse Island	35
13.	Light (PAR) profiles at Nelly Bay, Magnetic Island and Eclipse Island	38
14.	Rates of sediment accumulation at Nelly Bay, Magnetic Island	41
15.	Rates of sediment accumulation at Eclipse Island	42
16.	Morphometric measurements for the plate morph of Turbin- aria mesenterina	59
17.	Representative colonies of the plate morph of <i>Turbinaria</i> mesenterina, before and after transplanting to a shallow station (1m) at Nelly Bay, Magnetic Island	67
18.	Representative colonies of the convoluted morph of <i>Turb-</i> <i>inaria mesenterina</i> , before and after transplanting to a deep station (4m) at Nelly Bay, Magnetic Island	68
19.	Final growth forms of colonies for both the convoluted (A) and columnar (B) morphs of <i>Pavona cactus</i> , following	

	Eclipse Island
20.	Schematic representation of fragment pairing in histo- compatibility bioassays of <i>P. cactus</i>
21.	Summary of autografts and allografts established, involv- ing the convoluted and columnar morphs of <i>P. cactus</i> during the first grafting period
22.	Skeletal records of histocompatibility and competitive interactions between fragments of <i>P. cactus</i> , Eclipse Is 95
23.	Tissue responses in histocompatibility tests between colonies of <i>P. cactus</i> , Eclipse Island
24.	Scanning electron micrographs of boring sponge excava- tions in skeletons of <i>P. cactus</i> , Eclipse Island
25.	Representative skeletons from immature and adult size classes of <i>T. mesenterina</i> , stained with Alizarin Red S126
26.	Morphometric measurements of P. cactus
27.	Mean linear extension rates for the convoluted and plate morphs of <i>T</i> . mesentering, Magnetic Island
28.	Mean linear extension rates of immature and adult size classes of <i>T. mesenterina</i> , Magnetic Island
29.	Mean linear extension rates for the convoluted and col- umnar morphs of <i>P. cactus</i> , Eclipse Island
30.	Comparison of frond and corallite structures between the convoluted and columnar morphs of <i>P. cactus</i> , Eclipse Is143
31.	Scanning electron micrographs of septo-costae of <i>P. cactus</i>
32.	Oogenesis in T. mesenterina160
33.	Spermatogenesis in T. mesenterina161
34.	Total oocyte volume versus polyp age in T. mesenterina163
35.	Seasonal variation in oocyte volume and polyp fecundity in the plate morph of <i>T. mesenterina</i>
36.	Seasonal variation in oocyte volume and polyp fecundity in the convoluted morph of <i>T. mesenterina</i>
37.	Seasonal variation in 'reproductive effort' per polyp for the convoluted and plate morphs of <i>T. mesenterina</i> 167
38.	Spawning seasonality in relation to seawater tempera- tures (at 4m) for <i>T. mesenterina</i> , at Magnetic Island169
39.	Comparison of size and estimated age at reproductive maturity between the two morphs of <i>T. mesenterina</i>

•