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Abstract The scaling to characterize unsteady boundary layer 
development for thermo-magnetic convection of paramagnetic 
fluids with the Prandtl number greater than one is developed. 
Under the consideration is a square cavity with initially quiescent 
isothermal fluid placed in microgravity condition (g = 0) and 
subject to a uniform, vertical gradient magnetic field. A distinct 
magnetic thermal-boundary layer is produced by sudden 
imposing of a higher temperature on the vertical sidewall and as 
an effect of magnetic body force generated on paramagnetic 
fluid. The transient flow behavior of the resulting boundary layer 
is shown to be described by three stages: the start-up stage, the 
transitional stage and the steady state. The scaling is verified by 
numerical simulations with the magnetic momentum parameter m 
variation and the parameter γRa variation. 
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1. Introduction  
Patterson & Imberger [1] made the pioneering study by 
using a scaling analysis to predict the transient flow 
behavior in rectangular cavity when two opposite vertical 
sidewalls were heated and cooled simultaneously with the 
same amount of heating extent. Since then, extensive 
investigations have been made for many aspects of 
unsteady natural convection boundary layer flow under 
various flow configurations by using scaling analysis, 
numerical simulations and experiments, as recently 
reviewed by Lin, Armfield & Patterson [2]. In particularly, 
the scaling analysis has been used to accurately predict the 
Ra and A dependences of the transient natural convection 
flow behavior under various flow configurations [2-3]. 
Nevertheless, it has also been shown that some of the 
scaling obtained from the scaling analysis does not 
perform satisfactorily with the Pr variation. This prompts 
us in this work to develop improved scaling by taking into 
account the Pr variation in the scaling analysis to predict 
the transient magnetic thermal boundary layer growth in 
microgravity environment, which extends our previous 
investigations on magnetic convection of paramagnetic 
fluids [4-5]. 

2. Model equations and scaling analysis 
The governing equations of motion for paramagnetic 
electrically non-conducting thermo-fluids subject to a 
magnetic field in micro-gravity environment, together with 
the energy equation, can be written as follows: 
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where u


 is the velocity vector, t is the time, p is the 

pressure, T is the temperature, b


 is the magnetic induction, 
β , ν  and κ  are the thermal expansion coefficient, the 
kinematic viscosity and the thermal diffusivity of the fluid 
at T0, respectively, and m is the dimensionless momentum 
parameter for paramagnetic fluid, m = 1+1/(β T0) [4-5]. 
Under consideration is the transient flow behaviour 
resulting from heating of a quiescent isothermal Newtonian 
fluid in a 2-D open cavity of height H by imposing a fixed 
higher temperature, Tw, on the left-hand side vertical 
sidewall, as shown in Figure 1(a). The top and the bottom 
walls are adiabatic and the right-hand side boundary is 
open. All solid boundaries are non-slip. It is also assumed 
that the flow is laminar. Sample temperature contours at 
dimensionless time τ = 7.0 are shown in Figure 1(b). 

 

   
Fig.1 (a) The schematic of the physical system; (b) 
Simulated temperature contours at Pr = 10, γRa = 107, m = 
2 and τ = 7. 

 



 

                                                                    
 

The fluid is initially at rest and at a uniform temperature T0 
(T0 < Tw). In the presence of a gradient magnetic field, it is 
the magnetic buoyancy force that acts as the driving force 
for the resulting natural convection. It is found that the 
development of the resulting boundary layer consists of 
three stages: the start-up stage, the transitional stage and 
the steady state. 

2.1.  Start-up stage 
Figure 2 shows a three-region structure for the boundary 
layers for Pr > 1. As seen, the peak velocity vm occurs 
within the thermal boundary layer δT at a distance δvm from 
the wall. Also, there is a region of flow outside δT where 
there is flow which is not directly forced by buoyancy, but 
is the result of diffusion of momentum as the result of 
viscosity. This would occur at distance δv from the wall. 
Therefore, in regions I and II, the balance is between 
viscosity and buoyancy. However, in region III the balance 
is between viscosity and inertia, since there is no buoyancy 
there. Applying these characteristics to general scaling 
procedures described in [1-3], the following improved 
scalings are obtained for δT and vm in the start-up stage of 
the flow development:   
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Fig.2 Numerically simulated horizontal profile of vertical 
velocity and temperature at height Y = 0.5 within the 
boundary layer at time τ = 0.25, Case 2. 
 

2.2.  Steady stage 
The boundary layer continues to grow until the time instant 
ts when the convection of the heat carried away by the flow 
will balance the conduction of the heat transferred through 
the wall: 
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The temperature and velocity at steady state scale as: 
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2.3.  Dimensionless formulation 
To facilitate the numerical validation of scalings listed 
above, the dimensionless forms of governing equations 
(1)–(3) are used: 
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For non-dimensionalization H was used as length scale, 
H/v0 as time scale, κ(γRa)0.5/H as velocity scale, ρv0

2 as 
pressure scale and Tw-T0 as temperature difference scale. 
 
Hence, during the start-up stage of the boundary layer 
development, the scaling relations (4) and (5) can be 
rewritten in dimensionless form as: 
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The dimensionless form of the scalings (6), (7) and (8) for 
steady states can be rewritten as follows:  
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2.3. Cases considered 
Table 1 lists values of γRa, Pr, m for 10 DNS, which are 
used to validate the obtained scalings. Eqs. (9)-(11) are 
approximated with finite difference equations and the 
HSMAC method is used to iterate mutually the pressure and 
velocity fields on staggered mesh/grid allocation system. 
The inertial terms in momentum equations are approximated 
with a third-order upwind UTOPIA scheme. The mesh size 
used in all simulations is 251×251 and to ensure the 
numerical stability, the time step is fixed to 10-5. 
 

Table 1: Values of γRa, Pr and m for 10 DNS runs. 
Run 1 2 3 4 5 6 7 8 9 10 
γRa 106 107 108 109 107 107 107 107 107 107 
Pr 10 10 10 10 5 20 50 100 10 10 
m 2 2 2 2 2 2 2 2 1 5 

 

3. Results  
To validate the scalings (12), (14), and (15), at first the 
time series of ΔT for varying γRa, Pr, m and Y are obtained 
from the numerical simulations. ΔT at a specific height is 
determined as distance from the vertical sidewall to the 
location where θ, the dimensionless temperature of fluid, 
becomes 0.01. Fig. 3(a) presents these time series with ΔT 
and τ scaled respectively by 

])/[()1( 25.025.025.05.05.0 mRaY γ−+ Pr  and 5.05.05.0 /)1( mY−+ Pr , 
which are the scales for ΔT,s and τs at steady states, as 
shown by the scalings (14) and (15). At the start-up stage 
(before each series attains its individual peak), it is seen 
that all ten scaled series with varying γRa, Pr, m and Y fall 
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onto the same straight line, confirming that 
25.05.0 )/(~ RaT γτΔ  is the correct scaling for ΔT at the start-

up stage and ΔT does not depend on Y. At steady state, 
these scaled series fall approximately onto the same 
horizontal straight line, which clearly confirms that 

])/[()1(~ 25.025.025.05.05.0
, mRaYsT γ−+Δ Pr  is the correct scaling 

for ΔT,s at steady state. Additionally, Fig. 3(a) shows that 
all ten scaled series attain their respective peaks almost at 
the same scaled time with acceptable deviations, which 
also validates the scaling (14). 
Figure 3(b) presents further numerical results to validate 
the scalings (13), and (16), where the time series of Vm for 
varying γRa, Pr, m and Y are presented. Fig. 3(b) presents 
ten time series with Vm and τ scaled respectively by 

)1/( 5.05.05.0 −+ PrYm and 5.05.05.0 /)1( mY−+ Pr , which are 
the scales for Vm,s and τs at steady state. It is found that all 
ten scaled time series fall approximately onto the same 
straight line at the start-up stage, which confirms that 

( )25.0Pr1/~ −+τmVm  is the correct scaling for Vm at the start-
up stage. At steady state, it is seen that all scaled time 
series fall essentially onto the same horizontal straight line, 
which clearly confirms that )1/(~ 5.05.05.0

,
−+ PrYmV sm

 is 

the correct scaling for Vm,s at steady state. Additionally, 
Fig. 3(b) shows that all ten scaled time series attain their 
respective peaks almost at the same scaled time, which 
also validates the scaling (14). 
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Fig.3 Scaled time series of ΔT and Vm. 

 
4. Conclusions  

Thermo magnetic boundary layer development in 2-D 
enclosure filled with a paramagnetic fluid of Pr > 1 and 
subject to a gradient magnetic field is predicted using a 
scaling analysis. The following conclusions may be drawn 
from the above study: 

•  A set of  improved scalings are obtained for the 
thermal layer thickness, the velocity and the 
steady state time for different stages of  boundary 
layer development. 

• Numerical results demonstrate that the obtained 
scalings with the three-region structure represent 
accurately the physical behaviour of the whole 
stage of flow development with the Pr variation. 
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