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SYNOPSIS

Two commonly suggested forms of the equation linking
head loss and velocity for flow of water through coarse
granular media are the Forchheimer and exponential
relations. These have been combined with the continuity
expression to give the differential equations applicable,
within the limits of validity of the parent relations, to
actual regions of flow., The resultant nonlinear elliptic
partial differential eguations have been solved by
numerical methods including the direct finite difference

and finite elcecment methods.

Experimental results and associated analytical work
were carried out to determine the accuracy of the nonlinear
relations as compared to the linear Darcy Law, when
applied over an extended Reynolds number range. Solutions
have been obtained for some examples of unconfined flow
with boundary conditions similar to those likely to be
enccuntered in practical applications. The experimental
work in a circular tank and an open flume has shown that
good agreement between observed and calculated values of
discharge and piezometric head can be obtained when the
coefficients in the nonlinear head loss equations are
accurately known., The results indicate that while the

flow patterns from the Darcy and the nonlinear solutions



(iii)
are only significantly different for a high degree of

curvature of the phreatic line, a nonlinear sclution will

usually be necessary for accurate predictions of discharge.
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Symbol Meaning

a, b = coefficients in the Forchheimer head loss
relavion.

apsby,cp = constants associated yith node I in the
representation of the piezomeiric head
function within the element IJHM.

e = goefficient in the exponential head loss relation.

a = average particle diameter (Chapter 2} .

d = grid length in Tinite difference Fformulation
(Chaptexr 4).

£ = friction factor.

£{}i]) = a function of the magnitude of the hydraulic
gradient |i| (Chapter 2).

f(hs) = a funecbion of the total head gradient {Chavnter 4).
£(r,h) = a function used in the approximate Runge-Kutta
numerical solution for unconfined Forchheimer
Z2low (Chapter 6).
g = acceleravion due to gravity.
h = piezometric head = $+y.
= ah, = 2h, - Bh
by =55 B = ax’ hy ay
_ 2% B _ 2%
Bex =738 Byy 755 By T 350
h = height of water level (in f4.) in the well above
impermeable base.
he = height of water level in ft. at the radius of
influence of a well,
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CHAPTER, 1
INTRODUCTION

1.1 Background to the FProblem
The traditional approach to problems of seepage

in saturated porous media has been based on the assumption
of Darcy's linear relation between head loss and velocity

(Darcy, 1856):

aH
or V = ki save lll"'l

in which V is the superficial or average secepage velocity;
k is the coefficient of permeability of the medium in the
direction s; H is the total fluid head; s is the distance
measured in the direction of the resultant velocity at the
point under consideration; i is the negative tobal head
gradient - g% , and is sometimes called the hydraulie

gradient.,

Egquation 1l.1-1 satisfactorily describes the flow
conditions provided velocities are small, It is usually
considered that Darcy's Law is applicable for so-called
"ereeping flows". For many flow conditions met in
practice, the grain size of the medium is small enough
or the velocity of the fluid low enough, for Darcy's Law
to give satisfactory results,

1.



2
However, since the last century (Slichter, 1897),
it has been realized that Darcy's Law fails to hold for
high velocities of flow., This realization of the limited
validity of Darcy's Law led to the suggestion of relations

that would be accurate over all flow ranges encountered,
Forchheimer (1901) introduced the nonlinear equation:
. 2
l = a'v + bv PR I ) 1.1"‘2

in which a and b are constants determined by the properties
of the fluid and medium, Although Forchheimer later added
a third order term cV3 to make the equation fit experi-
mental results more accurately, his original expression
(1.1-2), has become known as the Forchheimer relation and

herein will be referred to as such,

Missbach (1937) postulated an equation of the

general form:
i=cV® veee 1.1-3

in which ¢ is a constant determined by'the properties of
the fluid and medium; m is an exponent lying between 1

and 2, This expression is exponential in form and will

be referred to as the exponential relation. White (1935)
had previously shown that his experimental results
satisfied an equation of this type and cther investigators

have since used the equation specifying different values



of ¢ and m to fit their experimental results.

¥hile many of the practical problems of flow through
porous materials can be accurately solved on the assumpiion
of Darcy's Law, there have arisen various situations
where a more accurate relation between head loss and
velocity must be employed to obtain realistic solutions,
Such situations include flow in the area adjacent to a
pumping well in a coarse grained aquifer and flow through

rockfill dams and banks.

1,2 Regions of Interest

Flow through porous media is of fundamental impoxrtance
to a wide range of disciplines including c¢ivil engineering,
hydrology, chemical engineering, nuclear physies and
textile technology. The flow conditions actually consid-
ered in this thesis are allied to civil engineering but
the methods outlined should be applicable to most

nonlinear flows through porous materials,

One of the most important problems facing a community
today is the provision of adequate water supplies. At
the present time, much of the water used by man is
derived from surface storage reservoirs, although
actually less than 3 percent of the fluid fresh water
available at any given moment on this planet occurs in

streams and lakes (Johnson, 1966), The remainder is



4.,
underground and although not all of it is recoverable
from the water bearing formeticons in vhich it is found,
subsurface water is destined +to play an ever increasing
role in satisfying man's demand for this important

quantity.

In addition to providing a source of water,
permeable underground formations may be used more widely
as storage reservoirs., Such formations have the advantage
that evaporation losses are negligible and this is of
extreme importance in hot arid climates vhere the effective
capacity of surface storage reservoirs is significantly
reduced by evaporation., Of course, underground water
has provided water supplies in some areas for hundreds
of years while aguifer systems are at present used as
effective storage systems, but this development is likely
to become more important as man uses up his available

supply of surface run-off.

For seepage through fine grained sediments the
analytical methods based on Darey's Law are sufficiently
accurate for pracvical purposes. However, in coarge-
grained sand or gravel formations, the high velocities
which occur in the region adjacent to a pumping well may
necessitate the use of a nonlinear head loss relation

in an apnalysis. It is also feasible that gravel beds
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may become important in recharge and discharge areas in
finer grained sand formations and the availability of an
analytical approach incorporating nonlinear equations
would then be essential. Filter beds of coarse material
have widespread applications and, as they are subjected
to nonlinear flows, a better understanding of the flow
patterns involved would help in formulating improved

design practices,

Improved economics of surface storage reservoirs
have been possible by utilising porous rockfill in
constructions associated with the formation of the
impounding wall. Berth and rockfill dams have been
videly used throughout the world. In recent years
rockfill dams with inbuil+t spillways have been utilised.
Wilkins (1958} proposed such a dam where the overflow
passes through the rockfill itself so that the need forx
a costly spillway structure is obviated. Subsequently,
Parkin (19632, 1963b) carried out a detailed experimental
investigation of such dams and fTormulated methods for

discharge and stability calculations.

Experience in practice, however, indicates that the
functioning of the inbuilt spillway is inhibited due to
debris accumulation and to silitation. This reduces the

amount of discharge which can be passed through the
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rockfill and even with clean rockfill the discharge is
considerably smaller than that which could flow unimpeded

over an open spillway.

An important developmeni in dam construction methods
has taken place in recent decades with the introduction

of the technique of passing ficod flows ovexr partly

completed earth and rockfill dams, Veiss (1951) described

actual applications of the technigue in the construction
of a number of dams in Mexico., The dams considered were
conventional rockfill dams, earthfill dams and mixed
earth and rockfill dams, Weiss outlined the problems
encountered but showed that considerable economic
benefits could be obtained by alleviating the need ‘o
construct coffer dams, It is also possible to construct
coffer dams of earth or rockfill and swrith sultable
protection, allow these to be overtepped in times of

high flood.

The increasing use of the technique of passing
floods over partly completed dams has stimulated basic
regearch on flow over and through rockfill banks and this

will be referred to in a later chapter.

1.3 Formulation of the Problem
In an isotropic homogeneous saturated medium, for

continuous steady flow satisfying Darcy's Law, it can be
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readily shovm that application of the continuity relation

results in a Laplace differential equation:

2 2
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The total fluid head H is equal to the sum of the
pressure, static and velocity heads:
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in which p is the pressure at a point in the fluidy y is
the distance above a datum to that point; ¥ is the
specific weight of water; g is the acceleration due o
gravity. The sum of +the pressure and static heads is

called the piezometric head h:

h:E"}'y EEE 1.3-—-3
b

Since velocity heads are negligible in Darcy flow, the
total head H can be replaced by the piezometric head h so

that equation 1.3-1 becomes:

2
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The solution of this equation for various boundary
conditions has been well +treated in the literature.
Analytic solutions are available for many common problems,

for example as outlined by Polubarinova-Kochina (1962)
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and Harr (1962). Numerical finite difference solutions
to various problems including "free surface" flows are also
well documented {(Shaw and Southwell, 1941; Thom and Apelt,

1961; Boulton, 1951; Jeppson, 1968e, 1968b),

More recently the method of finite elements has been
applied to the solution of seepage problems (Zienkiewicsz,
Mayer and Cheung, 19€6) and has advantages in dealing
with complex boundary shapes and in allowing for
anisotropy and non-homogeneity of the media. This
method has also been applied to the analysis of "free
surface” problems including two-dimensional flOW‘(Finn,

1967) and axisymmetric flow (Taylor and Browm, 1967).

However, until recent years, the analysis of
practical field problems involving nonlinear flow
equations has been largely neglected probably because,
prior to the introduction of high speed digital computing
systems, the complex differential equations involved
have been too difficult to handle by analytical
mathematics, In view of the importance of situations
where nonlinear flow occurs, it is desirable to be able
to analyse nonlinear flows in porous media., The advent
of high speed computers and the advancement in numerical
analysis theory now allows the analyst to obtain

numerical solutions to a great variety of problems once-
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considered too difficult to be handled by conventional

mathematical methods.

The investigation in this thesis concerns the
application of numerical methods to obtain solutions to
problems of nonlinear flow through porous materials.

To check the accuracy of the numerical analyses and to
determine where nonlinear solutions are mecessary,
corresponding experimental investigations were carried

out with coarse grained aggregates.

In developing the mathematical theory for nonlinecar
flow, the form of the equation linking head loss and
velocity must be known and, in view of the diversity of
head loss relations that have been suggested in the
literature, a careful consideration of these relations
was first carried out., Two of the most common nonlinear
relations have already been given as eguations 1.1-2 and

1,1-3 and these have been used in the analyses.

These equations are empirical wvhen applied to
actual media because the coefficients have to be
determined experimentally. However, even Darcy's Law
remains essentially empirical in a»plication as values
of permeability must usually be obtained from experiﬁent.
Thus, although ii is realised that o complete undersitand-

ing of the problems associated with seepage beyond the
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range of application of Darcy's Law has not been
evolved, it has been shovm by numerous experimental
investigetions reported in the literature, that
equations of types 1.1-2 and 1,1-3 can adequately
express the relation between head loss and velocity at

least over limited ranges of flow,

The object of the thesis has been to apply these
equations to analyses of nonlinear flows and, by carrying
oul associated experimental work, to determine if such
analyses can adequately predict the experimental results,
In this way the range of application of the equations
in actual flow situations can be assessed, An indic-
ation can also be obtained of vhether or not variations
in the values of the coefficients in the equations need
be incorporated. 4As a result of these investigations
it is hoped that a clearer understanding of nonlinear
porous media flow may be developed with relevant

applications to practical flow problems.

1.4 Scope of the Investigation

The investigation carried out was fundamental in
vhat it was concerned with the application of nonlinear
head loss equations to analyse some specific flows in
porous materials and involved associated experimental

work to check the accuracy of the analysis. However,
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the types of flow considered vwere aligned to situations

of likely practical importance as far as possible.

Flows to a well in a confined and an unconfined
aquifer were investigated. In actual aquifers, although
the permeable material is usually fine-grained compared
to rockfill material, it is still probable that substan-
tial nonlinear effects may occur, for example in coarse
sand aguifers, in the area adjacent to a pumping well.
These effects may need to be considered in an analysis
because of the great variation in velocities from the
radius of influence of the well to the radius of the

well itself,

The experimental work was carried out in a 'porous
media tank' of 20 feet diameter and involved flows
through the complete circle of material as well as through
a sector of material. Although the analysis of steady
confined flow could be carried out easily, the
unconfined flow situation was analysed by numerical
methods and was more complicated as it involved the

solution of 2 free streamline problem,

Flows through gravel banks were investigated in an
open flume to simulate flows through rockfill dams and

banks., The work included consideration of dams with an

impervious cut-off wall as well as 'straight through® flows on
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a horizontal impermeable base. In the numerical analysis
it was again necessary to account for a free streamline
problem., No consideration of stability aspects of the
banks was contemplated although the values of piezometric
head, obtained from the solutions, would be applicable
in stability analyses within the limits of accuracy of

the solutions.

Application of the nonlinear head loss relations
results in nonlinear elliptic partial differenvial
equations, As the majority of the amnalytical work was
undertalien on the Townsville University College's IBM

n

T
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1620, the computer time involved in the numerical solutio
of these eguations wss considerable especially as most

of the situations investigated were of a free streamline
type. The analysis of such problems virtually involves

a number of solutions of the partial differential
equations as the correct position of the free surface

has to be determined by successive approximations as

well as the correct distribution of piezomebric head

under the free surface.

I+ was therefore not possible, nor wes it considered
necessary, bto analyse all flows for both the nonlinear
head loss equations 1,1=-2 and 1.,1-3., In view of the fact

that theoretical work (Irmay, 1958; Stark and Volker, 1967)
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has shown that the Forchheimer equation has a rational
basis, the numerical solutions were carried out chiefly
using equation 1.1-2. Corresponding solutions for some
parbicular flows were then carried out using the
exponential relation (egquation 1.1-3) for comparison

PUTPOSES.

Two technigques commonly applied to the numerical
solution of ellipitic partial differential equations are
the finite difference method and the finite element
method. Both approaches have been applied in the
solutions carried out in this thesis. For a given amount
of computer time and a fixed number of memory locations
it is usually possible to employ a finer grid of poinis
with the finite difference method provided boundary
conditions are relatively simple. Thus the finite
difference method was used in the analysis of the well
flow problem because the boundary oif the flow field was
conveniently shaped, having vertical sides and a
horizontal base. In addition, 2 fine grid was required
to obtain an accurate solution to the radial flow
equations in the vicinity of the well where the drawdown

curve 1is steeper and the velocities of flow larger.

The finite element method 1is, however, more readily

adaptable to complex boundary shapes and was used in mosi



140

analyses of flow through dams and banks. It was
particularly convenient when considering flows with the
complex lower impervious boundary caused by the inclusion
of a cut—off wall in dams, The availability of a method
of solution by fLinite elements will be important in
practical considerations where irregularly shaped dams

and banks of rockfill often occur.

In summary, having established the merit of the
Forchheimer relation, & series of computer solutions
and experimental tests were undertalen to investigate
the accuracy of numerical analyses of the resultant
partial differential equation for actual flow fields.
Considerable work has previously been carried out on
the application of the exponential relation to problems
of nonlinear flow, including a substantial amount ét
the University of Melbourne on flow through rockfill,
as will be evidenced by references in later chapters.
Moreover Engelund {1953), using a method of solution by
series, obtained results for some problems of Forchheimer

flow, with simplified boundary conditions,

However, the development presented in this thesis
extends the analysis of the Forchheimer field equation
to a series of problems with practical applications, by

using the finite difference and finite element techniques
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of numerical soluiion., Treatment of the exponential
relation is incorporated for some examples, so that the
limitavions and advantages could be evaluated for
different approaches to the solution of problems of

nonlinear flow in porous media.,



CHAPTER 2
FUNDAMENTALS OF FLOW THROUGH POROUS MEDIA

2.1 Regimes of Flow in Poxous Media

It has been postulated that there are three regimes
of incompressible continuous flow in porous media; these
are:

(i) +the linear leminar regime;
(ii) +the nonlinear laminar regime;

(iii)} +he nonlinear turbulent regime,

The existence of a prelinear regime has also been
suggested by Dudgeon (1964) and Gheorghitza (1964). In
this regime velocities may be so low that water ceases 1o
act as a Newtonien fluid. Bondarenke andNerpin (1965)
discussed the reasons for deviations from Darcy's Law in
terms of the rheological properties of water at low
hydraulic gradients, and Mencl, Bobkova and Hanzlova (1965)
showed how the permeabilities of sand and clay were
affected at small hydraulic gradients. However, the
problems situdied in this thesis deal with deviations from
Darey's Law due to high velocities so that the prelinear
regime is not of interest and will not be considered

further.

The fundamental equations governing fluid flow, the
Navier-Stokes ecuations, are applicable to the fluid flow=-
ing between the grains of a porous medium. For the flow

18.
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of an incompressible constant viscosity fluid, the Navier-

Stokes eaualtions may be written in tensor form asi-

2
A S 2.1-1
PEE T Ty T T TR o sree 2e

_— . du, ., . .
or writing the acceleration _ i in terms of its partial

at
derivatives:
2
ou. du. 8 ua.
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in which p is the density of the fluid; u, is the component
of velocity in the i direction; t is timeg xj is the
co—ordinate in the j direction: Bi is the body force in the

i direction: u is the coefficient of viscosity.

These ecuations hold on a microscopic scale; that is,
for any given element of fluid at any instant of time., &
macroscopic solution to a problem can only be_obtained by
solving the ecuations for the relevant boundary conditions.

Their complexity, however, renders them intractable 1o an
exact solution excent for a few relatively simple boundary
conditions, although some solutions have been obtained in
recent years by numerical methods (Thom =nd Apelt, 1961;
Fromm, 1963; Stark, 1968). Nevertheless, a counsideration
of the basic eguations dops allowy & better understanding

of the facitors causing the changes in regimes of flow.
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The effects associated with each term of equation

2.1-2 can be nominaved as:

o i ~ unsteady effects or local acceleration
at forcess
aui
pus 5= - convective inertia forces;
J
0
- gf ~ pressure forces;
i
B - body forces;
2
c u.
> a0
u axjaxj viscous forces.

The regimes of flow in porous media can now be
considered with regard to these components of the Navier-

Stokes equations.

2.1.1 The linear laminar regime

This is simply the regime where Darcy's Law can be
considered to apply with sufficient accuracy. It is the
mest widely studied end the best understood since the great
majority of snalybvical work in porous media has been under-
talten for flows in this regime, Virtually all of the
solutions for problems of seepage of water and other fluids
through the strata of the carthls crust, for example, have

assumed vhe validity of Darcy's Law, Becouse the acceptance
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of this law allows the flow to be treated by potential
theory, problems are amenable to solution by analogies;
these include the electric analogue plotter, the Hele~Shaw
model and others, DMathematical treatments are alsc
facilitated since complex potentizl functions can be

employed,

Muskat (1946) discussed the basic Navier—Stokes
equations with respect to flow in porous media and showed
that, from dimensional considerations, Darcy's Law implied
that the inertial forces are neglected. Hubbert (1956)
showed theoretically that Jarcy's Law is vaiid only for
velocities such that inertial forces arxe negligible
compared with those due to viscosity. Irmay (1958)
derived the linear Darecy Law by neglecting the inertia
terms in the Navier-Stokes equations, but proved that for
higher velocities a nonlinear relation would be necessary

0 link head loss with velocity.

It appears therefore, that in the linear laminar
dua.
regime, the term ~E% must be negligible, For steady flow,
which is the case considered here, the unsteady component

. gu . - . . .
of this term, 53 1s negligible, The convective inertia

du, . .
components uj i are only zero in sitroight, parallel
OX.

laminar flovw. In the curved and tortuous paths of a

porous medium these components will only be negiigible
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for very small velocities encountered in "creeping motions".
Thus, the linear laminar regime can be considered as the

one in which all flows are "creeping flows™.

At higher velocivies a nonlinear rvelation will be
required because of the increasing importance of the
convective inertia terms. Many investigators have there-
fore attempted to distinguish between the linear laminar
regime and the remaining ones by defiming a critical
Reynolds number at vhich Darcy's Law is said to break dovn.
Scheidegger (1960a), for example, quotes values of Reynolds
number (BN) ranging from 0.1 to 75, above which different
authors have stated Darcy's Law becomes invalid. One of
the reasons for this wide range in values is the as yeb
unsolved problem of defining a suitable representative
length dimension for Heynolds number for actual porous
medic, Stark (1968) has shovn that Reynolds numbexr can
be used as an exact comparison eriterion for flows in
different media, only if the avrangement of particles is
geometrically similar or if the length dimension can
statistically account for variations in geometric arrange-

ments,

In spite of the uncertainty concerning the limit of
validity of Darey's Law, it is evident that for flows in

coarse granular materials the inervial effects are likely
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to cause considerable discrepancies from the linear relation,

and & nonlinear regime of flow will occur,

2.1.2 The nonlinecar laminar regime

In this regime Dercy's Law is no longer sufficiently
accurate to describe the velocity-head loss relationship
although the flow remains leminar, Schneebeli (1958)
suggested that the breakdown of Darcy's Law was notv
necessarily associated with the omnset of actual turbulence
but was probably due to the emergence of the nonlinear
inertia terms in a flow that remains laminar., Subseguent
experimental work {Schneebeli, 1955) on flow through three
dimensional packings showed visually thalt Darcy's Law did
become inaccurate before the start of fluctuetions in the
lines of flow which would indicate the commencement of

turbulence.

A number of authors have supported these conclusions,
Computations by Tamade and Fujikawa (1957) of the drag on
an array of cylinders in a two-dimensional flow indicate
this effect and Philip (1958) suggesied from theoretical
counsicerations vhat similar results could be expected For
flow through an aetual porous solid. Ward (1964) intro-
duced the idea of two effective transition regimes beitween
fully laminar and fully burbulent flow. These were the

laminar transition regime in vhich most of the flovw
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remained laminar but with some turbulent areas and the
turbulent transition regime in which the majority of the
flow was turbulent but where zome pockets of laminar flovw
still existed. However, Werd obbtained no direct experi-

£
i

mental verification of the existence of these regimes
either by visual observations or by measurement of the

onset of turbulence in different areas of the flow.

Chauveteau and Thirriot (1967) reported experimental
measurements and observations of flow through various
geometrical arrangements in 2-dimensional models and
indicated the existence of four regimes of flow, These
were the linear laminer, the nonlinear laminar, the
mixed laminar and turbulent, and the turbulent regimes.
Wright (1968) used hot-wire anemometers to measure the
onset of turbulence in the passage of air through a coarse
grained gravel, By using gravel with a particle size of
1 inch, the pore space was large enough to allow the
insertion of ‘the anemometers within the porous medium
itself, Although the measurements recorded from the hot-
wire anemometers were not accurate at lov air velocities,
the results did indicete when the flow became unsveady as
a result of the initiation of fturbulence., By carrying out
head loss measurements on coarse sands of similer shape

and size distribution to the gravel, Wright showed that
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deviations from the linear resistance law occurred at

Reynolds numbers below that at vhich turbulence commenced

in the gravel.

Stark and Volker {1867) reported the results of
experimental work on the flow of woater avound arrays of
idealised particles in 2 horizontal parallel plate model.
By using a Utransparent upper sheet on the model, observ-
ations of flow lines were carvied out with the aid of dye
injected into the flow, Correswonding head loss and
velocity measurements in the model showed that Darcy’s
Law was valid for only the lowest velocities measured,
wvhile the onset of turbulence occurred at substantially

higher velocities.

Advances in numerical analysis technigues and in
computer technology have enabled solutions of the Navier-
Stokes eguations to be obbtained even when the nonlinear
inertia terms are retained. Thom and Apelt (1961) solved
som¢ problems of 2-dimensional flow around circular
eylinders, Watson (1963) awnplied the methods of Thom
and Apelt to sclve the Navier-Stokes eauations for flow
through an idealised arrangement of square cylinders.
Stark (1968) revised and extended this approach $o include
variations in particle size and spacing and solved the

equations for a comprehensive range of Reynolds numbers.
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Pregsure calculations from these results have shown
conclusively that the linear Darcy Law is subject o
error at any Reynolds number greater than zero although

the error is small for small Reynolds numbers.

From the foregoing discussion, it is apparent that
the inecreasing importance of the inertia effects will
necessitate the use of a nonlinear relation even though
the flow may not be turbulent in the commonly accepted
fluid dynamic sense, It should be clearly undersiood
that the turbulent regime referred to here implies the

oceurrence of actual turbulence,

2.1.28 The nonlinear turbulent regime

The problem of turbulence is by no means completely
understood even for simple flow conditions such as flow
through pipes and rvegular channels. In porous media
there have been no reporied attempts at a theoretical
analysis of turbulence., It is logical, therefore, 1o
refer again to the fundamental flow equations in the

discussion of this regime,

The eddies or insitanteneous fluctuations about the
mean velocity which occur in turbulent Fflow give rise to
additional terms in the Navier-Stockes eguations, Thus,
vhile these equations in their original form {ecuation

2.1=2) still hold for any pariicular clement of Fluid ab
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any instant of time, they do not hold for properties
averaged over a finite period of 4time as they do in
laminar flowv. The various terms involved must be averaged
with respect to time to obiain the equetions for turbulent

flow. Hinze (1959) gave these eguations in tensor form as:

. - S
aui _ ou, ' aui
(gg~ * wym) *+oewy 3
J J
oy — azu.
:-_:Q +B. +”.._._.....g:_..... s o e 2.1-’3
9. i Ox.9x.
i J 1

in which ui is the instant

aneous value of the velocity
component in the direction ij Ei is the mean value of
velocity in the i directiong ui is the instantaneous
variation of the =actual wvelocity from the mean velocitys
and the bar over any term indicetes averaging with respect

to bime,
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The extra term due to turbulence in eguation 2,1-3;

as compared to ecuation 2.1-2, is
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and is similar in form o the steady convective inertia
terms except thet its magnisude is governed by variations
from the mean velocities instead of by the mean velocities

themselves,
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Eguation R2.1-8 is sometimes written as
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In this form the extra terms due to turbulence are
5%7 (ngﬂag); and then the terms pﬁz"ﬁg can be interpreted
asastresses on the fluid element due to burbulence. These
are called Reynolds stresses. Hguation 2.1-5 is even more
difficul’ to solve than the corresponding steady flow
equation and research is still being carried out on its
applicavion o flows with relatively simple boundary
conditions such ag flow in streight pipes and channels.
However, the form of the Reynolds stress term indicates
that the extra head loss it causes would, as a first
approximation, be proportional o the square of velocity
deviation from the mean; and if the deviation were iinearly
related 4o the mean velocity itvself then the extre heod
loss due %o turbulence would be a function of the square
of the macroscopic velocity. ZExperimental work on Fflow
through streaight perallel pipes has shown that the head
loss per uni®v length is proportional to the sauare of the
velocity for turbulent flow. However, even experimental
studies on porous media are much more difficult than with

pipe flow end few comclusive results regarding itruly
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turbulent flow have been reported, although it is
generally agreced that the head loss will approach a value
proportional to the sguare of the macroscopic velocity for

very high velocities.

inanyan (1985) carried out a theoretical and an
experimentel study of turbulent flow through bends of

Nal

conduits., 4 comsideration of transverse circulation and
of the turbulent viscosity coefficient was underitalken.
Ananyan formuleted the relevant equoations governing the
turbulent flow and introduced o variational method of
solution for the eguations. It appears that approaches
of this type may eventually be extiended to theovretical
analyses of turbulend flow in porous media. Advances in
the methods of pumerical anelysis may also allow the
solution of the turbulent flow equations for idealised
models of porous media., A corresponding increase in the
understanding of the macroscopic flow conditvions would
follow as has been obtained from the solubion of the

steady form of the Navier-Stoles equations for laminar

flowr.

2,2 The Linear Darcvy Layw

Darcy (1858) first postulated the egquabion 1.1-1 as
a result of experimental work on the downwerd flow of twater

through sands, but it has since been applied to the flow
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of numerous fluids through a2ll types of media, The
constant of proporticnality k as defined by equation 1.l1-1
involves the properties of both the fluid and the porous
medium and in order to separate the effects of the fluig

properties, Muskat (1946) suggested the relation:

ksy
T o r— s e a0 o -1
Ik 0 2.2
in which ks is the specific permeability of the medium and
has dimensions of lengthgg Y is the specific weight of the

fluid; p is the coefficient of viscosity.

Since the experimental formulation of Darcy's Law
there have been numerocus atltempts to jusvify it on
theoretical grounds. Hazen (1893), Slichter (1897) and
King (1899) were among the first to carry out analyses.
Slichter, for exemple, derived an equation of the Darey
type from a study of vhe pore space existing within a
mass of uniform spheres packed in a definite arrangement,
Slichter's approach was probably the first of a seceries
vhich have been based on g capillary bundle model for
porous media., This approach considers the pore space of
a3 porous medium to be represented by a series of capillary
tubes, but although some quite complicated variations of
the approach have been devised (Adzumi, 1989; Childs and

Collis-George, 1950), the capillary bundle model does not
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adequately explain the relationshin betyeen variables
involved in flow through actual media. In the devious
paths travelled by the fluid, it is obvious that Tiuid
particles will suffer inexrtial accelerations due %o
curvature of the paths and these ineritial effects are

ignored by even the most complicated capillary models,

Another approach which has been used in the
theoretical analysis of flows in the lincar laminar
regime is the hydraulic radius theory which is based on
the representation of o porous medium by a series of
channels through which the fluid flows. 4 representative
dimensgion caelled the hydraulic radius is defined for each
channel and this dimension is of direct significance in
evaluating the permeability of the medium. One of the
best known of the hydraulic radius theories is that due
to Xozeny (1927) who considered the medium as an
assemblage 0f channels of fixed length but of varying
section, With simplifying assumptions, Kozeny solved the
Havier—Stokes couaitions simultaneously for flow in these
channels, and by averaging across 2 section normal to the

flow, he obtained the following expression:

3
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in which C is a2 dimensionless constant; P is the porositys
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S is specific surface or the surface area per unit volume,

The hydraulic radius theories are usually more
elegant than the capillary bundle models but they cannot
fully explain all the characteristics of flow through
porous media and they still contain some ili-defined
factors so that, as Scheidegger (1960b) points out, litile

more thaen a cualitetive description should be expecved from

them.

Hubbert (1958) derived the Darcy eguabtion by a
method somewhat analogous to that of Xozeny (1927) and
showed thet Darcy's Law is valid only for velocities such
that inertial forces are negligibie. Irmay (1958) derived
a microscopic form of Laplace's eguation by neglecting
the inertia terms in the MNavier-Stokes equations. The
agreement between this microscopic form of the Lavlace
equation and the mecroscopic Fform (eguation 1.3-4) derived
from Darcy's Law is supevrficial because the microscopic
gquavion 1s in terms of the piezometric head at a
particular noint in the fluid at any time, vhereas the
macroscopic form contains the value of piezometric head
averaged over a considerable volume of fluid and medium
surrounding the point in guestion, Nevertheless, Irmay's
analysis showed that the form of Darey's Law is correct

provided inertial effects are negligible, although =2
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complicated averaging process is necessary in order to
obtain a value for the permesbility coefficient from

theoredicsl considerafions.

The foregoing discussions indicate thatl a completely
theoretical analysis of even linear laminar flow in porous
media is not always nossible and coefficients of permea-
bility musv often be obitained from experiment. However,
it has been established that Darcy's Law is applicable for
creeping flows such as would occur in the seepage of
fluids through clays and fine silis and even through sands
in underground acuifers atv very low hydraulic gradients.
These linear flow conditions have been extensively
investigated both theoretically and experimentally and it
is now proposed to consider the relevant flow equations
which 2pply at Heynolds numbers abowve the limiv of

validity of Darcy's Law,

2.3 DNonlinear Head Loss Relations

A number of relations have been suggested to replace
Darey's Law at high velocitics of flow, The relations
suggested have been of & wide varieby, beth in the form
of the expression, and in the values of the constants in

eny particular exmression.
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29.3.1 The Forchheimer relation

Forchheimer {1901) suggested the norlincer equation
given as equation 1,1-2 and repeated here for convenience:
. 2 5 a.]
1=&v+bv c v aun 93"
Forchheimer postulated this equation as a result of semi-
theoretical reasoning by an anslogy with flow in tubes.

I+t has becen modified +to:

0
<

i = aV + bV + ¢

l

l -5 CR 203"“'2

Q3
o

(in which ¢, is a constant and % is time) by Irmay (1958)
and Polubarinova-Kochina (1962), who sitated, however, that
the time dependent term was small and could be neglected

for steady flow.

Muskat (1946) and Harr (1962) cach suggested a
relations
i = eV + bv" cees 2.3-83
vhere m has values between 1 and 2 and approaches 2 as
turbulence of flow increases. Aravin and Numerov (1965)
observed thet the soundest law both from theoretical and
xperimental viewpoints anpeared o be of the form of

equation 2Z,3-1.

Lindguist {1933) reported the results of a series
of experiments on the flow of water through uniform lead

shot contained in a vertical pipe of 4 inches diameter.



33.

Ee computed two variables, a friction facvor:

¢ = 2&4R ceee 2,54

VoL

in which 4 is the diameter of the lead shot; h is the
head loss over length Lg¢ and a Heynolds number:

R = 142 2,8-5

¢ s %0

From the experimental results, Lindguist reported the

following relation between £ and RN:
f RI\I = 2500 + 40 RII . e bw 2.3‘-6

On substituting for f and RN and rearranging, the resulv is:

. 2
2 :-%:]-25%”‘7-"" ZOE TER 2e 3=T
pgd &=

This is a Forchheimer relation with the coefficients a
and b given by the equations:

a = 1250 LI I 2(:3"‘“8
pgd2

-
gd e &b

2. 8_9

Engelund (1953) carried out experiments on flow
through a uniform sand and found that his results plotted
ag a straight line on a2 graph of fBN against RN, This
result again leads to & Forchheimer equation linking i aend
V. ZIngelund's expressions for the coefficients were

slightly different to those obtained by Lindouist because
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of the difference in the medis used. Tor the sand he used,
Engelund showed thob:

20C0 2.3.10
2 * b6 W »

d

L
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Morcom (1948) by semi-theoretical reasoning deduced

an egusation of the Forchheimer type and produced experi-

mental results to jusgtify it. He discussed work by
Chilton and Colburn {1931) who had pointed out that the
resistance to flow in a granular material is made up of
wo parts:
{(a) frictional resistance at the surface of solidsg
(b} loss of head due to successive expansions and
contractions of channels bthrough vhich fluid

is passing.

Morcom concluded that the frictional resistance
accounts Tor most of the head loss in ithe viscous range
of flow while the expansion and contraction losses
predominate in the higher flow range. 4s a result,

J‘I

Morcom obteined *the relatbion:

2
Ap _ apV . BV 2,8-12
L pdz pd L 3R 3% I L §

in which Ap is the pressure drop over length L; d is the
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effective mean particle diameter; o and f are expoerimental
constants., This again is of the form i = aV + bV~

provided ¢, p and @ arc constants and provided horizontal
Ap

; ) . h
flow 1s considered so that 1 = =

“

Trgun and Orning (1949) extended the Kozeny theory
to the nonlinear flow regimes. Mor fluid flow through
fine powders at low velocidies it was shovn that viscous
forces cen account for vhe pressure drop, but that for
higher velccities, Kinetic offects become more imporiant
although they do not alone account for all the pressure
drop. Zdrgun end Orning suggested that the transition
from the dominance of viscous effects to kinetic effects
was smooth for most packed systems and this indicated that
a single continuous relation could be used for velocivy

head loss correlaiions, Their extension of the Kozeny

approach led to the ecquation:

(A=P) [ gv? 2. 8183

b2 [ 3
L)
P

2 HS

Bls
1l
[i
lav!
colttd
e
mrm

in vhich o and B are coefficients depending on the

Ko

propertvies oi the system and which Exgun end Orning stated
should be obtained from experiment. For any variicular
flow system, equaticon 2.,8-13 reduces to a Forchheimer

relation,

Tok (1957) derived "a generalised Darcy ccouation" in
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which the coefficiont of permeability is & function of the
Reynolds number of the flow md is not a censtant. Tek,
although considering the porous medium as a sueccession

of capillary passages, stated that an approximate relation
between inertial and viscous losses could be obtained;
however, a 'lithology factor' was then necessary to relate
this expression to easily measured physical properties of
the flow, Irom the relation between inertial and viscous
losses, Tek derived a friction factor in terms of Reynolds
number, the friction factor being that defined by the

Fanning egquation which may be simplified to:

e
!

sssr 243-14

ol

in which £ is the friction factor and C is a constant
depending on the properties of the fiuid and medium. The

equation derived for the friction factor was:

c
P o= E% (1 + % RI) ceve 2.8-15

in which Cl is a constant depending on the propexrties of
the fluid and medium; RN is Reynolds number; a is a

dimensionless 'lithology factor'; and P is porosity.

A combinstion of equations 2.3~14 and 2,3-15 gives:

C. .2 ¢
R WA N >
1=+t e sV vens 2.3-16



37.

3,.!1(3 Siﬂce R-N- = .-v‘%‘& I ) 20 8""’17

in wvhich 4 is the average grain diameter, then equatvion

2,3-16 may be vritten ass
i = aV + ng

in vhich a and b are properties of the fluid and medzium,

That is, equation 2.3-16 is a Forchheimer relation.

Teli's analysis is restrictive in application however,
because it relies on an approximate expression for
relating the viscous to the inertial losses and does not

hold as Tek points oud, for truly turbulent flow.

Chauveteau and Thirriot {1967) carried out an
experimental study on Z2-dimensional meodels in vhich the
flow patierns could be observed visually, They postulated
four regimes of flow and distinguished belween the regimes
onn & plot of fRY againstv RN similar to that used by
Lindgquist (1938). Thus in the first or linear laminar
regime TREN is a constant, In the following three regimes,
the nonlinear laminar, the mixed laminar and turbulent, and
the turbulent regimes the plot of fRN against RN was given
28 three slightly different straight lines. This is
equivalent to an hypothesis of three Forchheimer equations
with slightly different values of the coefficients a and
b in each of the three nonlinear regimes. %he experimental

results, for flows above the linear regime, giver by
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Chauveteau and Thirriot plot as two straight lines with
only a very slight change in slope between them., Although
the values of the coefficients a and b will probably change
in the nonlinear regime, with increasing Eeynolds number,
the resulis plotted by Chauveteau and Thirriot indicate
that this change is very slighv for the Reynolds number
range they have used and one single straight line, and
therefore one Forchheimer eguation, would fit all their

results, above a Reymnolds number of 20, quite accurately,

Rumer and Drinker (1986) considered flow through o
gravel bed from the viewpoint of the resisting forces of
the individual particles., For creening flow, corres-
ponding to the linear laminar regime, the resistance of
a single particle was assumed to be given by Stokes' law
which expresses a linear relation between the resistance
and the local average velocity of flow around the particle,
Lfter allowing for the presence of other parvicles in the
region, by including effects due to the geometry of the
pore system and due to the porosity, Rumer and Drinker

obtained the macroscopic Darcy Law.

For higher velocities, corresponding to the nonlinear
laminar regime, the resistance of a single particle wes

expressed in terms of a "drag coefficient':

2
FP:Cad.ge'g‘“ 2 m 88 208""’18
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in which Fp is the resisvance of a particles @y is the
area shape Tactor; and CD is the coefficient of drag.
Rumer and Drinker quoted a formula given by Goldstein

(1988} for the coefficient Cps

c j . .
— J+1 7d
CD = R]}‘I 1 + jil (—*l) CjRi\ _ AR R 20 3"'19

in vhich Cl is a constant, Cj are coefficients that depend
only on the geometry of the object, and the index J takes
velues 1, 2, 3, .... If the first terin only of the series
is retained, the analysis can be shown to yield a
Porchheimer equation as an end result., If more terms of
the series are included, a higher order egquation is
obtained, However, as Rumer and Drinker mention, equation
Z2,8=-19 1s only an approximate expression and is not
applicable for Reynolds numbers greater than 2. The
approach is therefore limited to only the lowest flowus

in the nonlinear regime.

Vard (1964) obtained e relation of the Forchheimer

type from & dimensional analysis; this relation was:

VZ

- " e p e 2;3"20

el

= k¥
k+
S

LA (o
"’w}’

. . ap . . .
in vhich %% is the pressure drop per univ lengthy; k_ is
dl * s

the specific permeability of the medium; and C is a
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dimensionless constant which Ward stipulated should be

constant for 2ll porous media.

Experimental results for a substantial range of
porous media indicated that a value of .550 for C would
give good agreement with equation 2,3-20., However, there
is some scabter of the experimental measurements about whe
theoretical curve, I{ should be noted also, that Vard
plotted his resulis of frietion factor against Reynolds
aunber on logarithmic paper, and ithe use of such a
logarithmic scale sometimes tends to indicate better
agreement visually, than is actually obtained when
percentage deviations from the theoretical curve are

calculated.

Ward's analysis is probably more restricted than he
indicated because it does not allow for all possible
variables of the flow system. ¥For exomple, individual
changes in such properties as porosity and particle shape
were ignored and, instead, it was assumed that these could
all be taken into account in the one factor called
permeability, This would suggest that the dimensionless
constant C mey vary for different media and should not be
expected to have a unique value for all systems, Vaxrd
employed a Keynolds number based on a length dimension

equal to the square root of the specific permeability.
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Although the highest value of this Reynolds number was
less than 20 for the experimentel results, the lleynolds
number defined in the usual way (in terms of the average
particle diameter) would have an gquivalent value of over
700, The agresment of the experimental results with the
Forchheimer relation over this range of Reynolds numbers
is therefore significant, especially as beitter agreement
could probably be expected for one particular medium then

errors due to particle shape etc. would be avoided,

Sunada (1965) a2lso used a dimensional approach in
approximating the terms of the Navier~Stokes equations.
The analysis included both the steady laminar terms and
the average temporal components of the Navier-Stokes
equations. Using the avproximations for the hydraulic
gradient, as directly proportional to velocity for wvery
small wvelocities, and proportional to the square of
velocity for very high velocities, Sunade concluded from
his dimensional analysis that an equation of the
Forchheimer type would governm flow in porous media and

that the form of the eouation would hold for nonlinear

laminay as well 28 nonlinear turbulent flow,

Ls with all dimensional analyses, experimental dats
were invoked to cvaluate the coefficients in the head

loss eguation. Sunada's experimental work on flow through
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glass spheres covered three orders of magnitude of
velocity (0.0l em/sec to 14 cm/sec) and = Forchheimer
equation was fitted to all results by a proportional
least-squares analysis. A standard ervor of estimatve,
defined as vhe rootv-mean-square of the average percentage
deviation aboutv the fitted curve, was evaluated in order
to determine the accuracy of fit, IFor the complete

range of velocities used the svandard error of estimate
wvas 4.4 percent, indicating that a Forchheimer curve can
adequately describe the velocity head loss relation for

a cousiderable range of Reynolds numbers,

Irmay (1958) derived a Forchheimer relation from the
fundamental Navier-Stokes equations for the general case
when inertia terms are included. The Navier-Stokes
equations, for flow in the x~direction, were written in

the form:

w142, 2 2
gﬁx = (v + ¢v° - u )x - (uv)y - (uw)z -,

+H. (u + u +u ) *« % a0 2.3""'21

in wvhich a subscript implieg differentiation with respect
%o that subscript; double subscripts imply corresponding
second derivaiives; u, v end w are the components of

velocity in the x, y and z directions rvespectively.
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Irmay analysed equation 2,3-21 with respect to a
volume which was sufficiently large to contain a greav
number of grains so that overall homogeneity and isotropy
wvere satisfied, and yet was small enough so that the
overall properties did noi vary much within it. The
spatial averege of terms in the Navier-Siokes equations
over this volume were then computed by an essentially
dimensional approach, Por example, the spatial average

of the term (v2 + wg)m was obbtained as:

SR 2

(vz + ?'7-2)..{ T e 0”;1 sae e 2. 3—22

in which the ber denotes a spatial averaging; o is a
numerical "shape factor™; L' is the distance between
graing of the medium. By epproximating the spatial average
of a2ll terms in this way, Irmey showed that the energy
gradient could be represented by the sum of a viscous head
loss term (proportional %o velocity) and an inertial head

loss term (proportional to velocity squared).

Stark and Volker (1967) have showm that Irmay's
analysis basicelly assumes a constant velocity profile
for all flows and so the values of & and b in his
resulting Forchheimer equation will only be constan®
provided the velocity profile does not vary appreciably.

In practical applicabions it is likely that a pariticular
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velocity profile will apply over a substantial range of
Reynelds numbers and so Iimay's result would give good

correlation with experiment.

Stark (1968) solved +the Nevier-Siockes equations
numerically for Z-dimensional flow through arrays of
square cylinders., The numerical approach used was based
on that outlined by Thom and Apeld {1961) in which the
inertia terms are included in the amalysis., The results
apply only to the laminar regimes because no allowance
was made for unsteady turbulent effects and, because of
the complexity of the numerical analysis, only idealised

particle arrays were investigated,

Stark's results showed that the coefficients in any
head loss relation would not be strictly constant fox
different Reynolds numbers, as he had predicted from
theory., However, he showed that macroscopic head loss
eguations could be applied over extended ranges of
Reynolds number with small ervor, For example, the
numexrical solutions Fox the arrangement shown in Fig.
2~3-1 indicate that a Forchheimer relation, with constant
values of the coefficients a and b, will depict the head
loss within an accuracy of 2 percent for the Reynolds

number range C to 50,
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FiG. 2=-3-1 SQUARE CZLINDER ARRANGRMENT
(After Stark, 1968)

Asguming the length of the gide of a square cylinder
ig .01 £t and assuming a fluid with a kinetic viscosity
coefficient v = 1,0 x 107° ftg/sec, Stark's dimensionless
results can be converted into acivual velocities and
hydranlic gradients. A macroscopic flow relation can
then.be fitted bo these resulss by a proportional least-~
squares analysis, The proporitional leasit-squares fit is
necessayy because an ordinary least-squareg £it places
too much emphasis on the higher Xeynolds number values

compared to the lower values.

A Porchheimer curve fitted by proportional least-
squares, in the Reynolds number range C to 50, gave ao
value of a = ,05853 sec/ft. end a value of b = ,136356

20,2 . .
sec“/£+°, The maximum discrevancy of any curve value of
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hydraulic gradient from the corresponding numerical
solution was 1.5 percent and this is in accordance with
the value of 2% given by Stark. The standard error of
estimate of the curve was ,86 percent. An exponential
relation was fitted in the same way and showed a
maximum discrepancy of 3.3 percent and a standard error

of estimate of 1l.75 percent.

The minimum Reynolds number used {above zero) was
.05 so that the range .05 to 50 represents three oxders
of magnitude. If curves are fitted to all results in the
Reynolds number range C to 150, the Forchheimer curve
shows 2 maximum discrepancy of 3.4 percent and a stendard
exror of estimate of 1,82 percent while the exponential
curve heas o maximum discrepancy of 5.5 percent and a

standard error of estimate of 2.25 percent.

It appears therefore that over the range of Reynolds
numbers 0 to 150, macroscopic flow equations with constant
coefficients will depict the velocity head loss relation-
ship with sufficient accuracy for pracitical calculations

under prototype conditions.

Above z Reynolds number of 15C, it is doubtful if
the numerical solutions are relevant for comparisons with
flows in actual media, The numerical resultis are

applicable only for laminar flow and assume that no
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turbulence is initiated. Jollsapnd Hanratty (1966) showed
experimentally that the transition from laminar io
turbulent flow in a dumped bed of spheres occurred in the
Reynolds number range 110 to 180, and it is therefore
likely that durbulent inertia effects will be evident in

actual media above a Reynolds number of 150,

The numerical wesults are particularly useful in an
analysis of the accuracy of the macroscepic flow equations
in the low Reynolds number range, however, because they
are not affected by difficulbties of accurate measurement
of low velocities and low hydrauvlic gradients, The
lowest hydraulic gradient in Stark'’s results (above zero)
is 2.92 x 107% at & velocity of 5.C x 10™° £4/sec, With

present day equipment, it would be extremely difficulv,
if not impossible, to measure accurately such lowr
magnitudes of velocity and hydraulic gradient, The
numerical solutions do contain errors resulting from the
numerical analysis but Stark has shown these errors are

small for low Reymolds numbers.

Bxperimental work by How Lum (1966) on flow of water
through glass beads showved that a Forchheimer relation
would depict the head loss over wide ranges of Reynolds
numbers (50 to 30,000) with e standard error of estimate

of less than 6 percent, His results hovever, showed that
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hetter aceuracy of fit could be obtained by allowing for

2 or 3 separate groups of Heynolds numbers and allowing

a and b to vary between these groups. Each group
incorporated a considerable range of velocities and, as

an example, for flow through 15 mm beads in the Heynolds
number range 5000 to 30,000 the standard ervor of esitimate

of the fitted Forxchheimer curve was less than 2 percent,

Stark and Volker (1987) obtained results for floir
through arrays of idealised particles in a parallel plate
model. Velocity and hydraulic gradient measurements in
this model showed that a Forchheimer relation fitted the
experimental results accurately. PFor cpen arrays of
squares, cylinders and hexagons in an arrangement similarx
to that shown for Sterk's square cylinders in ¥Fig,2-3-1,
the results indicated that best accuracy of fit could be
obtained by allowing for three groups of Reynolds numbers
in the range 500 to 160,000, However, for a lower porosity
arrangement using two sizes of square particles, as
depicved in Fig.2-3-2, it was shown that 2 single
Forchheimer relation with constant coefficients would

adequately cover a similar range of Reynolds numbers.

2.3.2 The exponential relation

Missbach {1937) postulated the exponential head loss

equation of the general form given as equation 1,1-3 and
repeated here for convenience:

i = V™ vees 2.3-23
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FIG, 2-3-2 ARRANGEMENT JF SQUARES OF 2 BIZES
(After Stark and Volker, 1967)

White {(1985) was chiefly concerned with the flow of
gases through packed towers in which a countercurrent of
ligquid is circulated over the packings. However, for the
case of flow of gases through dry packings, White showed
thaet his own results, together with others obtained by
previous researchers, satisfied an eguation of the form
of 2,3-23 with m approximately equal to 2. Better
correlation foxr some resulits could have been obtained
with a value of 1,88 for m, but Vhite considered this
refinement unnecessary in view of the changes caused by
porosity veriations on repacking e tower with the sane

material.

Bazhmeteff and Feodoroff (1937) suggested that for
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high flow velocities the head loss relation could be
either & Forchheimer relation or an exponential relation
yith m increasing from 1 for Darcy flow to "somewhere near
2", IExperimental results obteined from flow through lead
snot indicated a graduasl increase in m from 1 to an
apparently stable upper limit of 1.8. By plotting the
results on a graph of PRN againgt RN, Bakhmeteff and
Feodoroff also indicated that two Forchheimer relations
would adequately depict the head loss in the Reynolds

number range O to 2600,

)

scande {1958) reported the results of experiments
using crushed rocl particles of avnproximately 2 inch
mean size. He assumed that for particles of this size,
the flow must be fully turbulent and suggested that the
value of m must egual 2. However, Wilkins (1955) carried
out tests on crushed rock of a number of sizes and
obtained 2 value of m = 1.85 for all sizes, VWilkins
uged parvicles of up to 3 inch mean size in a tube of 9
inch diameter and with this arrangement there is likely
vo be a significant wall effect although he claimed that
the use of a 22 inch diameter tube gave no signifieant
difference for one or two measurements he checked, In
another series of tests, Wilkins used larger particles

which passed an eight-inch sieve and which were reteined
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on a 7 inch sieve. These btests were carried out in a

3 £t. diameter pipe and & significant wall effect could
agein result, Tilkins used a compearatively limited range
of velocitieg in 2ll experiments and included only about
ten points on his graphs. However, his experiments
represent one of the few avtempits to obitain velocity
head loss corrvelations for particles of diameters approach-
ing the size which can be expected in prototype rockfill
constructions. More work on these larger particle sizes
will be required for applicaiions of flow equations %o
actual rockfill although an alternative experimental

approach may be necessary to eliminate wall effecvis.,

Voan der Tuin (1960) also used large particles {(mean
size 15 inches) but he conducted his experimeants in an
open channel. e suggested a value greater than 2 for
the exponent m for one series of tests, although
researchérs have often posiulated an upper limit of 2 for
fully ‘urbulent flow, The values of m given were 1.92

and 2,23,

Slepicka (1881) indicated that an exponential head
loss relation would aponly to flow in porous matberials
with different values of the exponent for the prelinear,
linear =nd vpost linear regimes., Anandekrishnan and

Varagdarajulu (1968) reported the results of tests on a
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number of sizes of sands and showed that a number of
different values of m were required to cover the regimes
of flow. For coarse sands three different wvalues of m
were necessary to depict the head loss relation even

though all flows were above the linecar laminar regime,

Parkin (1963a) obtained results for two aggregate
sizes from tests in circular pipes and in a tilting fiume
and obtained a value of m = 1,85 for all results. Dudgeon
(1968) used a2 special permeameter to eliminate wall effects
in 2 study of flow through coarse granular materials for a
wide yange of hydraulic gradients. The results when
plotted to a logarithmic scale indicated & number of flow
regimes with different values of m and with reasonably
abrupt changes between the regimes. No theoretical
explanation of a number of abrupt changes in fleow regimes

has been formulated at this time,

2.23.3 Other head loss relations

S REA—C

A great variety of correlations between head loss
and velocity have been given in the literaturc as a
result of work in a wide range of disciplines. For
example, Rose (1951) and Rose and Rizk (1949), by
dimensional analysis, obtained an equation in terms of a
resistance coefficient together with functions of cfher

dimensionless groups. Vith all factors held constant
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excent the head loss and velocity of flow, the equation

-4 N ad

cen be reduced te the Torm:

2

i=a.V+ b ved v cre. 2.3-24

1 1 ooy

in wvhich 2y bl and. ¢y are constants determined by the

f£iluid and the medium,

Martin (1948) gave a2 veview of some of the friction
factor versus Reynolds number corrvelations thai have been
reported for both laminar and turbulent flow conditions.
Zabrodsky (19638) has outlined some of the relations most

commonly used in chemical engineering avplications.

These relations have not been used in the analyses
undertaken in this thesis and will not, therefore, be

congidered further.

2,3.4 Summary

From the results reported in the literature and from
theoretical considerations it has been showm that for a
wvide range of Reynolds numbers the coefficients in either
the Forchheimer ox the exponential head loss relation will
nov be stricitly constant, Hovever, both experimental and
theoretical results have showm that a Forchheimer relation
will be accurate for a considerable range of Reynolds
numbers on either side of any particular Heynolds number

under consideration., Similarly an exvonential head loss
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relation will be accurate over limited ranges of flow.
Thether or not allowance must be made for a change in the
coefficients of either equation, in the solution to a
given flow problem, will depend on the range of Reynolds
numbers encountered in the problem, and on the degree ‘o
which any change in coefficients affects the results.

It may be, that although the coefficients actually change
by a small amount, an accurate macroscopic solution for
variables such as the discharge rate and the piezometric
head can be obtained using 'best fit" values of the

coefficients over the range of iZeynolds numbers involvead,

The Forchheimer ecuation has been used, to a great
extent, in the analyses undertaken in this thesis because
most theoretical work reported, together with a substantial
volume of experimental work, has tended to support this
form of head loss wvelation. In addition, an analysis
of some of the results reported (for example Parkin 1963a;
Dudgeon 1964) has shown that a Porchheimer relation can be
fitved to the resulvs, at least as accurately as the
exponential relations given., It is considered that a
calculation of the percentage deviations of experimental
results from fitted curves should be employed more widely
as a check on the accuracy of postulated relations,

rather than relying on 2 visual observabion ¢f Titidd
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curves and lines, especially where logarithmic scales

are employed,

One further point may be noted in favour of the use
of a Forchheimer relation. For the exponential relation
the value of the exponent m must be 1 in the linear
laminar regime to agree with Darcy's Law whereas at higher
velocities it must approach 2 to agree with experimental
observations., It is obvious therefore that any particular
value of the exponent m can cover only a limited range Qf
velocities, Tor the Forchheimer relation however, it is
possible that the linear laminar regime may correspond to
velocities such that the term sz is negligible compared
to the term aV, whereas in the turbulent flow regime the
sz term may become predominant so that the head loss
approaches a value proportional o Vg. It is therefore
possible that the coefficients a and b could remain
constant for a larger velocity range than could be covered
by constant coefficients ¢ and m in the exponential

relation,

There is, of course, a considerable advantage to be
obtained in analytical work if the coefficients can be
maintained constant without appreciable error., The
experimental and numerical analyses discussed in later

chapters were designed to investigate actual flow conditions
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with a view to determining the accuracy of solutions based

on constant coefficients,

2.4 Tield Eouations for Flow Analyses

Problems vhich require the solution of a differential
equation throughout a physical region or "field" are often
called field problems; in this context the diffexential
equations wvhich aonly throughout the field may then be

termed the field equations.

¥hen dealing with flow through porous materials, the

velocity head %g can usually be neglected in comparison
with the piezometric head h, even when velocities are

large enough to cause a noniinear head loss equation, This
1s borne out by calculations using measured velocities and
heads in actual flows. Thus the complete solution to a
problem can be obtained if the piezometric head distri-
bution is known over the region of flow. Other quantities
can be obtained from the values of piezometric head; for
example, the discharge rate can be evaluated by calculating
the hydraulic gradient and substituting in the head loss
relavion to obtain velocity and integrating over any
particular area. Consequently, in the work which follows,
the unknown will be considered as the piezometric head h

whose value is required for all values of the co-ordinates

X and y in the region of flow, The field equation then is



57 .

written in terms of piezometric head as the unknown

function,

2.4,1 The Laplace eguation for Darcy flow

Darcy's Law given as equation 1.1-1 may bhe rewritten

in terms of piezometric head as:
V:—k'—"‘" ¢ &0 o0 204:"'1

since the velocity head may be neglected, Assuming
2~dimensional flow, the vector velocity ¥V in the s direction
may be written in terms of its components in the x and y

co—ordinate directions:
YV=ui+vj seon Z2od=2

in which i and j are unit vecltors in the x and y directions
respectively, Similarly, the gradient of the scalax field

h may be written in terms of its components:

8h _ _ %h . 3h .
85 .§ - ax -:!-'- + ay ;1. sao0e 204:""3
in wvhich § is a unit vector in the s direction.
 Substituting equations 2.4-2 and 2.4-3 in 2.4-1:
. . ah . 2h .
u'-:-L.- + V;L - = k (8}{. ,_:!;. -+ 83?. l) PN 204:"""4:

and equating components in equation 2,4~4:

gh

u = -k Eyw

dh

)

)

% vens 2.4=5
vE-kay )
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The continuity condition for 2-dimensional flow may be

yritten:
gu ov _
8}{ + ay - O Pown e 204—'6

Substituting equeation 2.4-5 in 2.4-8 and assuming & is

constant:

8% , 8% _
> 5

ox ay

O 3 K 2.4:"'7

This is the Leplace equation for 2-dimensional flow in

terms of the piezometric head.

Scheidegger (1960b) suggested that an alternative
form of the differential equalion might be acceptable in
which the coefficient of permeability is included in the
function under the derivative sign. However, Hubberd
(1940) indicated, by a thermodynamic analogy, that

equation 2.4-7 is valid and Jones (1962) has also
supported equation 2.4-7 as heing the correct differential

form of Darcy's Law.

2.5 PField Equations for Nonlinear Flow

Kristianovich (1940) considered a general flow

equation of the type:

i= @g(v) vese 2.5-1

in vhich $(V) is a function of velocity and may +take

different forms depending on the particular problem in
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hand, Thus:

g(v) = % (Darcy's Law) g
)

B(V) = aV + BHY2 (Forchheimer equation) g.,2;5—2
)

G(V) = cV" (exponential equation) g

The continuity condition for 2-dimensional flow (equation
2,4-8) may then be combined with equation 2,5-1 to give

the system of equations governing the flow.

Kristianovich introduced the velocity vector ¥ and
its angle © tothe x axis in lieu of the velocity components
u and v in the x and y directions. With piezometric head
h and & flow function ¢ as independent variables the

system becomes:

® _ g oy _, )
3 v2 ohn )
; o0 w @ 2.5—3
1
38 . ¥¢ (V) 3V _ )
Bl + v Y 0 )

in which @'{V) represents the derivative of @(V) with
respect to V. This system was then reduced to a system of
four equations by the introduction of auxiliary independent
variables’g and n and Kristianovich outlined & method of
solution in which the problem is first solved in +the E, n
Piane and values of x and ¥y are then obtained from intég}al

relatvions,
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The system of equations to be solved is complex and
Kristianovich offered only an approximate method of
solution., For complicated boundary conditions likely to
be met in practical flow situations, the solution of the
problem by this method would be very tedious, even if it
is possible at all. Xristianovich therefore devoted a
special section of his paper to the application of an
electrical analogy method fox the study of groundwater

motion which does not obey BDarcy's Law.

2.5.1 Field eguation based on the Forchheimer relation

Engelund (1953) used a slightly different approach to
the one outlined by Kristianovich to obtain the differential
equation for seepage. The general Tlow equation was

written in the form:
- grad h = B(|V])V cooe DeB—d

in which V is the vector velocity; |V| is the magnitude of
V; and £(|V]) is a function of the magnitude of the velocity.
Engelund assumed that grad h and V are oppositely directed
vectors and for 2-dimensional flow the appropriate

equations, in the x and y co-ordinate directions, then

become:

- == = P(|7])u

e aae 205""

(%3]

Nt Vgt it Mottt

i

F[V])v
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These equations may be combined with the continuity
equation to give the complete system describing the flow.
Gngelund comsidered a Forchheimer relstion +to obtain

?(]V|) for the nomlinear flov range. Thus in this range:
F(lVi) =&L+blV| o0 00 205""6

However, with F(|V|) defined as in equation 2.5~6
the equations 2.5~5 are nonlinear and are difficult to
solve analytically so that Engelund introduced new
variables in order to linearise the resultant differential

equation. This final equation becomes:

5
5 Y oh, ., 1,1, F \a%h _
7 () FEF YT )882 =0 soee 2.0-7

in which the independent variables are the velocity V and
the angle © between the wvector velocity V and the x axis;
and I' is the differential of the function F with respect
t0 velocity. Although equation 2.5-7 is linear, it sbill
remains intractable to direct solution for complex
boundary conditions encountered in practice. Engelund
gave =a solution for one flow problem with simple
boundary conditions and outlined a possible method of

solution by series,

The derivations of Zngelund and Krisitianovich involve

the introduction of new independent variables in place of
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the cartesian co-ordinates x and y in order to simplify
the analyses. This will usually involve more work in
interpreting solutions once they are obtained, Vith
progress in numerical analysis iV is now possible do
obtain solutions for differential equations as complex

as those encountered in nonlinear seepage flow, and it is
therefore unnecessary to introduce new independent

variables.

Irmay (1958) gave & brief discussion of the use of
the Forchheimexr equation in deducing a differential field

equation, This resultant field equaetion may be written:
div(is) + (iz).grad 1n £(lil) =0 ceoe 2.5-8

in which s is @ unit vector in the direction of the

hydraulic gradient i; 1ln denotes a natural logarithm; and

£(]1i]) =[(-§) +\/(§-’2) +J%[} coss 2.5-0

Irmay suggested that equation 2,5-8 be solved by the

method of Kristianovich discussed previously.

The field eguation for Forchheimer flow can be
derived as follows. Assuming that grad h and V are
oppositely directed vectors, as has been assumed by
Kristianovich, Engelund and others, equation 2.3~1 in

vector form bhecomes:
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- grad h = (a + b|V|)¥ cees 2,5-10
If the unit vector s is normal to the surface of constant
h in the scalar field at any point, then:

oh
- grad h—u—as s eoso 2.b=11

. . P 3 oh a1}
Adopting the notation hs = 553 h = Fy and hy = 3%,

according +to the usual vector notation in which i and j

and

are unit vectors in the x and y directions respectively,

it can be shown from vector theory that:

- hsé - hxi - hyl "om e 2;5—12
also -hs = (a + p|V])Y ceeo 2.5-13
= {a + b|V]) (ui + vi) ceee 25-14

Baguating components of corresponding vectors in 2.5-12 and

2.5“14:

1
=y
il

(2 + b]V])u

[ - I - 2.5“15
(a + blVl)v

o
[
£
l
bl
]

From equation 2,5-12:

hx EI
—S-=E__3-'-+h l . B q B 205'—16
S 5
&nd Since ul + vi = vﬁ eroae 2»5*17
h b
. i+ v =VeE i+ Vg sves 245-18
3 S
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But from eqguation 2.,5~13 it is obvious that V and h5

opposite in sign so thats

vo__1vl
hS hSI
_ v )
Thus u = = hx fﬁﬁT ;
_ Ivl )
v =~ hy Ih )

s]

Again from equation 2,5-133

S

2 h
+J(%€ v sl

b

|hg| = [{a + b}V])V]
R
and IV] = - 5
;o 2.
Thus u£-—[- 5T,

s
b

2 h
Hlg” o el -

el

. 0 L2 h
vj_=[-—"2“i;+ (Zp) +

On application of the continuity condition, the
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5 | 2 By (Px)
Bx [... %ﬁ +\/(%}3—) + § } lh::l

h—

B 2 |h h
g a J a l sl Y (= 'Y)j —
+ 5 [.. eI ol ol EERT b

Zguation 2,5~25 is the field equation governing flow in a
o-dimensional flow field vhere equation 2.3-1 is the

relation between head loss and velocity,

2.5.2 Field equation based on the exponential relation

Brooker (1961) derived a field equation for systems
obeying the nonlinear exponential head loss relation,
Parkin (1963a) used a vectorial approach for deriving
Brooker's eguation. After combining the exponential
relation with the continuity condition, the resulting

differential flow equation may be written:

(B * Byy) (hx2 + hy?) + (2~ 1) (hxzh

x + Ehxh

h
s X

y Xy

+ h % ) =0 vees 2.5-26
vV Yy

This eguation reduces to the Laplace egquation for the
condition m = 1 as would be expected since the exponential
head loss relation, with m = 1, is simply Darcy's Law.
Parkin indicated that equation 2.5-26 would be anplicable
to flow through rockfill dams but suggested only a possible

method of solution by sketching. Curtis (1965) employed a
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finite difference form of equation 2,5-26 to analyse

flow through rectangular shaped rockfill banks.

Mohar (1966) exsended the differential field eguation
to allow for spatial variation of the coefficients ¢ and m
throughout the entire region of flow, Mohar applied this
extended equation ‘o investigate floir throﬁgh a permeable
wall with vertical upsiream and dovunstream faces. The
results of the analysis showed however, that the
magnitudes of the terms resulting from the spatial
variation of ¢ and m were negligible compared to the terms
with constant coefficients (which are the terms of
equation 2,5-26) for the particular flow conditions
investigated. Kirkham (1967) used a similar equation %o
that derived by Mohar 1o investigate confined nonlinear
flow in a special model. The.model was well suited for
a finite difference numerical solution of +the extended
flow equation and good correlation between experimental

and theoretical results was obtained.

The field equation based on the exponential relation
can be derived as follows, by a procedure anmalogous to
that used for the Forchheimer relation. Equation 2.,3-23

in vector form becomes:

~hs = (V™Y = (V™) (ui +ovi) ... 2.5-27
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and - hx = (C|V|mnl)u %

g 009 205""28
- m—~1

- hy = (C]VI ) )

Wi bh ui = - h_ el i )

[2s] {
; as s 205"29

: lv] . )

Y lhs{ - )

the continuity relation gives:

é@}_{ {lh—il}l/m%_%{% +5%‘ {f_l_f_l_ ]l/m.(_l‘_zz)l- L

e‘u L 2lu 5"'30

Bguation 2.5-30 is the field equation governing
2—-dimensional floyw when the head loss relation is of

exponential form,

The field relations 2,4-7, 2.5-25 and 2,5-30 are the

equations analysed by numerical methods in Chapver 4,



CHAPTER 3

APPLICATION OF THEORY TO SOME PRACTICAL

FLOW SITUATIONS

3,1 Groundwater Fiow to a Well in a Confined Aguifer

Analyses of flows in aquifers are usually based on
a number of simplifying assumptions. The aquifer
material is assumed to be saturated, homogeneous ;nd
isotropic and of uniform thickness, while the well is
assumed to penetrate the euntire aquifer. For horizontal
confining layers, the flow conditions may be represented

e e . ey .
Original water level
e I S Lt AR S
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RADIAL FLOYW TO A WELL IN A CONFINED AQUIFER

If the flow obeys Darcy's Law with a constant
Permeability k, and if the head h, at radius r, is

assumed to be unaffected by the well, then the relation

68.
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between the piezometric head h at radius r, and the

discharge Q is given by:

T
h - h = —2= 1n =&

=4 2171{B ™ R owo 3.1-—-1

in which B is the thickness of the aquifer. This equation
is known as the equilibrium or Thiem equation (Thiem,
1806). For natural aquifers of large lateral dimensions
the head h increases indefinitely with increasing radius
so that steady flow is both theoretically and physically
impossible (De Wiest, 1965). Under these conditions,
equation 3.,1-1 is applicable only within close proximity

+to vhe well.

Theis (1935) investigated the problem of unsteady
flow in an extensive confined aguifer and showed that the
piezometric head is a funcition of radius and time

according to the equation:

3%h , 12h _5on 5 1.2
oo2  ror  TO% soee Sol-

in which S is the storage coefficient of the aquifer and
T (=kB) is the transmissivity. Solutions to equation
3,1-2 for specified boundary conditions have been widely
used as the basis for field determinations of the aguifer
properties S and T. However, for most aguifer materials,

it is only in the area adjacent to the well that nonlinear
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effects will be important so that no analysis, either
experimental or theoretical, of unsteady flow conditions

was carried out in this thesis.

One particular example of confined flow, for which
equation 3.1-1 gives an exact solution, is %that of a
well discharging from a confined aquifer at the centre
of an island. The flow situation is then as depicted

in Fig., 3-1-2.
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FIG. 8-1-2

WELL DISCHARGING FROM A CONFINED AQUIFER ON AN ISLAND

If the discharge Q is a constant and if the flow
obeys Darcy's Law throughout, then the equilibrium equation

will hold without error.

Ingelund (1953) solved the problem of Fig, 8-1-2

allowing for a zone of nonlinear flow around the well.
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Darcy's Lav was assumed accurate for radii greater than
Ty the so-called radius of burbulence, but inside r, &
Forchheimer relation was employed to link head loss and
velocity. In view of the considerations of Chapter 2
in which it was shown that a Forchheimer relation is
accurate over a considerable range of flows, the flow
situation depicted in ¥Fig. 3-1-2 may be solved on the
assumptbion that a Forchheimer relation governs the head
loss throughout bthe entire aquifer., Thus if Q is the

constant discharge, then +the velocity at any radius v is

5#%55 and since i = - %% = g% s substitution in equation
1,1-2 yields:
2
2h
22 = a(gikg) + b(———gg%—z) veer 84128
47

After integration between the limits o hW and T he
the result is:
a0 Te  b0% (1. 1
h -~ h_= I ==& (;_ - =)

e v 2T n rw 4ﬂ232 " re

[ N 301-4

The derivation has assumed that velocity heads are
negligible so that the piezometric head h can be used in
lieu of the total head H and that there is no loss of
piezometric head as the water enters the well, This
latter condition would be Ffulfilled if the veloeity head

of the water passing through the well screening is equal
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to the head lost on entering the well., This is similar
+o the assumption usually made vhere a closed conduit
discharges into a reserveoir: -that the head loss at the

exit is equal 1o the velocity head of the flow,

If the external head he and the height of water in
the well hw are known as well as the coefficients a and
b for the aquifer material then equation 8.1-4 may be

solved for the discharge §.

Anandekrishnan and Varadarajulu (1963) have given

a similar result for an exponential head loss relation.

Thus the velocity at any radius r is E?SE and substitution
in equation 1,1-3 yields:

oh o _\"

B C( ) 4 0 50 301-5

Integrating between T h_ and Ty he’ the result is:

W

- 1~m - 1~m
h - h — Cdn e . w
e w (2?7]3)51 1 = m

[ ] 8.1""6

Bquation 3,1-6 may then be solved for the discharge Q.

The flow situation shown in Fig. 3-1~2 can be
simulated in the laboralory and, since it can be solved
without recourse to numerical methods, provides a
convenient initial problem for consideration of nonlinear

effects in flow through coarse grained aquifers,



73.

3.2 Groundwater Flow to & Well in an Unconfined Aguifer

The assumptbtions usually made in analysing unconfined
aquifer flows are gimilar to those made for confined
aquifers. Some solutions have been obtained for more
general conditions such as flow to partially penetrating
wells (Forchheimer, 1930; Boreli, 1955; Kirkham, 1959;
Hantush, 1961); flow to wells in sloping sands
(Forchheimer, 1886; Hantush, 1962a); znd horizontal flow
through aquifers vhere permeability varies with depth
(Youngs, 1965). However the analysis of flow problems
is considerably si@plified when the assumptions of fully
penetrating wells, horizental leyers, uniform permeability,
etc. are made, and most investigations reported have been

based on such assumpiions,

The situation of unconfined flow to a well may be

represented as showm in Fig, 3-2-1.

————

~ e e e

]

’
" — aad

' - * " ;. . ~ " . .
R f_‘___o_l;igina,l yater level » -
. ~ . LY ot .ot
.t IR R oo
- N AT ‘ S
) . N - Unconfined,
- o N " . Aquifer oy
N 1 * . . C e
A N "= o ! AR
N ! | [ hw'-"‘ \ ‘:1
: . 2 : i i o : W
fAu/////////qy///////////////////////////
il
[~ ! >
s e or T
W
FIG. 3-2-1

RADIAL FLOV T0 A WELL IN AN UNCONFINED AQUIFER
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The aguifer is assumed to be homogeneous and isotropicy
the saturated thickness before pumping starts is assumed
uaiform throughout and the well is assumed to penetrate

to the horizontal impermeable base of the aguifer.

Dupuit (1863) solved the problem of Fig. 3-2-1 on
the basis of further assumptions which have become known
as Dupuit's conditions. These are:

(i) the velocity is horizontal across any

vertical sectiong
(ii) the velocity is uniform over the depth of flows

(iii)  the velocity is proportional to the tangent
of the slope c¢f the free surface insvead of

to its sine.
For steady flow conditioms and assuming Darey's Law
is valid throughout, Dupuit's solution may be stated as:s

nk (h 2 - h ?)
Q: = A o aow 302"‘1

1n { I.e/ r.)

This expression is often called the Dupuit-Forchheimer
formula. At an intermediate radius r where the piezometric
head is h, equation 3.2-1 may be rewritten as:

2 _ 9 T ] 2
h b 'ﬂ'k 131 ( /I‘W) i h'W' LI I 8n2""2

Because there are actually large vertical components of

flow neglected in Dupuit's assumphions, equation 3.2-2
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fails to describe accurately the drawdown curve near the
well., In practice there is found to be a seepage face
at the well as shown in Fig. 3-2-2 and this is no%

accounted for in equavion 3.2-2.

TQ
wvater level
after pumping
seepage face
7
height of wazer
in well

v
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FIG., 3-2-2
SEEPAGE FACE AT WELL IN UNCONFINED FLOW

However, equation 3.2-1 has been shown to give
accurate values of the discharge (Muskat, 1946), while
Hantush (1962b) has shown that this cgquation can be

rigorously derived between the limits hv’ T

and h , r
7 e

e
allowing for a seepage face at the well., A similax
result for flow in damsg with vertical sides was given

by Huard de la Marre (1956), Thus while equation 3,2-1
gives accurate discharge values for Darcy flow conditions,

equation 3,.2-2 does not accurately predict the drawdown

in the area adjacent to the well.
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In view of its importance in groundwater applications,
a number of theoretvical and experimental investigavions
on the problem of unconfined flow to a well have been
reported. Although most of these have dealt with Darcy
flovw, the methods involved can be applied, with suitable

modifications, to nonlinear flow analyses.

3.2,1 DLxperimental investigations

Sand models, including sectors of a circle, have
been used extensively in investigations of flow to wells.
The results obtained by Wyckoff, Botset and Muskat (1932)
using such a model indicated the importance of capillary
effects in unconfined flow through sands. Their results
also showed that Dupuit's curve gave good agreemeni with
values of piezometric head measured along the
impermeable base of the model. A comprehensive set of
experiments was carried out by Babbitt and Caldwell
(1948) using a sand model and also an electric carbon
wedge analogy. From their results, Babbitt and Caldwell
derived an empirical formula for the free surface, 1o
replace Dupuit's curve which is inaccurate in the

vicinity of the well,

An account of some of the experimental precautions
vhich must be taken to prevent air entrainment was

given by Hansen (1953) who used a 90 degree sector for
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model tests on unconfined flow through sand, The effect
of the capillary zone was shown to be important at least
for the sand size used in the experiments. Hansen also
discussed the occurrence of the secevage surface at the

well face and showed that it was not due to well loss

alone.

Flow into a bubular well was studied by Peter (1955)
who compared his results with the vheories of a number of
previous workers. DMogg (1959) investigated the effect
on well drawdown caused by nonlinear flow in the aguifer
around the well., The results indicated that nonlinear
effects would be gignificant only for gravels and coarse
sands. Mogg suggested an empirical method, based on 2
varying exponent of velocity, for calculation of head
losses and his work involved no fundamental analysis of

nonlinear flow.

A 3Q degree sector of sufficient size to limit errors
to 3 percent was used by Greic (1961) in his experiments
to determine the height of the seevage surface for
various conditions. Greic showed that, for coarse sands,
the height of the seenage face was affected by nonlinear
flow near the well, although he recognised the difficulty
of accounting for these effects analybically., Unconfined
and confined aquifer flows were both summarised by Glover

(1964) in a general report covering various %ypes of
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Various analogies have been applied to the solution
of groundvater problems, For example, Lawson and
Hendrick (1965) applied a membrane analogy to the
solution of well flovw problems including multiple wells
with a number of boundary conditions. An elecirical
analogue was employed by Macawaris (1966) in studying
flow to wells with wedge shaped boundary conditions
formed by rivers and impervious foundations, Macawaris
analysed the flow situations using complex wvariable
theory and checked his results with the aid of the
elecitrical analogue. Prickett (1967) also used
electrical analogues in simulating pumped wells, <o
determine vhe effect of variables such as radius,

length of screening and degree of penetration.

B3.2.2 Numerical solutions

L number of numerical solutions to unconfined flow
problems have been obilained in recent years, one of the
first of these being obtained by Yang (1949) who analysed
steady-state flow to a well in an unconfined aquifer by a
modification of the relaxation method of Shaw and Scuthwell
(1941). 1In his analysis, Yang assumed that the free
surface could be approximated by the grid points which

were closest to it throughout the flow field. Boulton
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(1851) also used the relaxation process to solve four
cases of unconfined well flow, A graded mesh was
incorporated near the well and near the free surface
and g modified form of the finite difference equations
was employed, assuming logarithmic variation of
piezometric head with radius in the area adjacent to
the well. The value of the discharge calculated by
Boulton from his numerical solutions agreed with the

Dupuit discharge to within 0.3 percent.

Numerical golutions were also obtained by Luthin
and Scott (1952) for unconfined flow 4o a well at the
instant pumping sterts; in this case the water table
could be assumed horizontal so that treatment of the top
boundary was considerably simplified. The results are
therefore of little practical application, although
consideration was given to nonhomogeneous formations

separated by horizontal interfaces.

Some different forms of the relaxation egquavion for
irregular grid lengths were discussed by Boreli (1958)
vho indicated their relevant merits with respect to the
nmumber of iterations required to obtain a given accuracy
in a solution. Hall (1954) gave a comprehensive historical
review of groundvalter flow to wells, from the time of

Dercy and Dupuit until 1954. Yang's method of step
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representation of the free surface was used by Hall (1955)

in a2 relaxation solution for unconfined well flow.
Associated experimental work was carried out with a

sand model using a2 15 degree sector and the effect of
capillary action was considered in some detail. Murray
(1960) solved a number of free surface problems by the
relaxation method including flow through a vertical sided
permeable wall, flow through an earth dam with a ceniral
core, and unconfined flow to & well. A digital computer
was employed by Hendrick (1965) in a relaxation analysis
of unconfined well flow, to obtain a comparison with

the resulls of his membrane anzlogy invesvigation.

3,3 Flow Throupgh Rockfill

The application of rockfill to the comstruction of
dams was considered by Vilkins (19568)., Wilkins carried
out permeamever tests on rockfill of large particle size,
to determine the appropriate head loss equations and
applied these equations to the design of dams. Sandie
(1961) undertook a series of experiments on the self-
spillwvay type of rockfill dam proposed by Wilkins and
suggested vthat there were four main regions of flow az

shown in Fig, 3-83-1.
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FIG. 8-3-1 FLOW REGICNS IN A SELF SPILLWAY DAM
(After Sandie, 1961)

These regions are:

a the unstyeam region, which is the part of the
i g 3

flow upstream of the impervious cui~off wallg

P
e
o

the crest vegion, adjacent to the crest of
the cut—off wallj;

(¢) +he freefall region, where the water falls

freely through the rockfill;

(@) +the dowvmstream region, where the water flows
through the rockfill along the horizontal
impervious base dowvanstream of the cut-off wall.

Sandie also investigated the stability aspects of
these dams and undertook theoretical considerations of
the free surface profile in the downsitream region, Sharp
(1961) considered the height of the exit point at the

downstream bank of self-spillway rockfill dams.

The results from fTurther model studies on inbuilt

spillway rockfill dams were discussed by Lawson, Trollope
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and Parkin (1963) who suggested methods of analysis for
some flow regions. Although the upstream region was
considered intractable to direct analysis, approximate
methods of sclution were formulated for the other regions,
Plow in the crest region was considered to be related to
three representative lengths, the vertical depth of flow
at the top of the spillway, the minimum width of flow in
the crest region (at 45 degrees to the vertical), and
the horizontal width of flow at the crest. Flow in the
freefall region was shown to correspond to unit energy
gradient while the downstream section was analysed by

assuming uniform horizontal velocity at any section,

& comprehensive study of hydreulic characteristics
of rockfill dems with inbuilt spillways was carried out
by Parkin (19632) who formulated methods for their design.
Fenton (1968) obtained numerical solutions for Fflow
through rockfill banks with no impervious membrane by a
finite element anslysis of the field equation based on
the exponential law for head loss. Fenton investigated
discharge varistions as well as stability aspects for a
number of values of the exponent m in the head loss

relavion.

The stability aspects of rockfill have been invesi-

igated by a number of authors including Lewis (1965), who
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briefly discussed the shear strength of rockfill and the
difficulties involved in measuring it. Wilkins (1963)
drew flow nets from medel tests on rockfill, but he
indicated that there were considerable difficulties
involved in measuring piezomebric heads for turbulent
flow through rockfill, Based on the flow nets and other
considerations, Wilkins formulated a method of stability

analysis and suggested most appropriate arrangements of

steel bars to stabilise the downstream slone.

Deep seated slip failures of roekfill were
investigated by Parkin (1963b) who applied the systematic
arching theory developed by Trollope (1957) to the
analysis of the stability of the downsiream slope of
vockfill dams. Discharge and stability aspects of floyw
through rockfill were considered by Parkin, Trollope and
Lawson {19668). They indicated how non-Darcy flow could
be analysed on the basis of an exponential head loss
relation and discussed stability aspects in some detail.
Design charts were produced for both stability and
discharge calculations, Guidici (1967) commented on the
mesh reguirements for proteciion of the downstream face

of a rockfill dam.

Sparks (1967) discussed the possibility of the two

types of failure: erosion and sloughing, of the dowvnsiream
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slope, He employed a tilting analogue model 1o simulate
the activating forces on the slope. Sparks used the
tilting analogue results and a nonlinear flow net
obtained by the method of Wilkins (1963) to analyse the
gtability of the slope and 4o predict reinforcement

requirements,

A comparatively recent development in dam
construction methods is the practice of passing flood
flows through and over rockfill coffer dams and partly
completed earth and rockfill dams. Veiss (1951)
discussed economic benefits of the use of the technique
in the construction of a number of dams in Mexico, A
comprehensive set of experiments on flow through and
over rockfill was carried out by Olivier(1967). He
considered the profiles established by rock when placed
under various conditions in flowing water. Olivier
developed a method for stability analysis based on the
tractive force exerted on a rock by the flowing water and
suggested a means of calcuiating the surface profile

within rockfill from a modified open channel flow egquation.

Model sbudies were reported by Speedie, Tadgell and
Carr (1967) for +two dams with upstream impermeable
membranes, The model tests investigated the passing of

flood flows through and over the rockfill during
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construction and involved a consideraticn of the
protectvion of the downstream face against erosion and
slip feilure. Lane (1987) discussed experience obtained
in placing rockfill under flowing water, as a conseguence
of actual dam and coffer dam constructions chiefly in
Africa. The results of model tests which were under-
taken beforehand and observations of prototype flow
conditions during construction showed that economical
coffer dams may be achieved by designing rockfill +to

undergo several overtoppings.

Curtis and Lawson (1967), experimentally and
theoretically, studied flow over and through rectangular
shaped banks of rockfill, They considered overtopping
flows by comparison with modified formulae for broad
crested weirs,: Flow within the rectangular shaped banks
vas analysed by a numerical solution of the field equation

based on the exponential head loss relation.,

Flow through jointed rock masses involves different
principles from flow through rockfill because the particle
size in the former case will usually be much larger than
in the latter., Investigations such as that due to
Barenblatt, Zheltov and Kochina (1960) have dealt with
flow through rocks from the point of view of water

movement in the fissures themselves rather than through
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g homogeneous porous medium. Snovw {1965) considered
flow through joints in rock masses and suggesied a
parallel plate model to represent this flow condition.
wittke and Louis (1968) analysed laminar and turbulent
flow within fissures and considered the effects of normal

and shear stresses on the rocks,

Because of the larger particle size encountered in
jointed rock masses, the analysis of flow conditions will
usually need to be based on flow within the fissures,

The assumptions made in the derivation of the paritial
differential field equations will oflten not be applicable
so that analyses based on these equations will become
inadequate. The solutions obtained in this thesis will
therefore only be applicable to flow in rock masses, if
the rock mass can be considered as a homogeneous porous

medium; and, even in this case, a linear flow solution

would nsually be adequete.



CHAPTER 4

METHODS OF NUMERICAL ANALYSIS

4,1 Tinite Difference and Finite Element Approaches

The field equations for steady saturated flow in
undeformable porous media, derived in Sections 2.4 and
2.5, are partial differential equations of elliptic type
and as such are amenable to solution by a numerical field
approach, To obtain solutions to these equations it is
necessary to delineate a region of flow and to specify
relevant boundary conditions over a closed curve
surrounding the region, The approach in obtaining a
numerical solution to such problems is to solve for
piezometric head values at a finite number of points
throughout the field. Equations are written vwhich involve
the function wvalue at diserete points throughout the
field so that the solution of the problem reduces to
the solution of a finite number of algebraic equations.
This process is often referred to as discretization.

The discretization procedures utilised in this thesis
are the direet finite difference method and the finite

element method,

The finite difference method is based on an
approximation to the differential terms in the field
equations by finite difference formulae involving the

87.
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Punction values at a node and its surrounding nodes.
The differential equation at each interior nodal point
ig thercfore replaced by an algebraic equation; the
resultant set of equations, together with relevant
conditions on the closed boundary, specify a unique set
of values which may be obtained by solving the equations.
The set of simultaneous equations may be solved by direct
or iterative methods but because of the large number of

unknowns, iterative methods are usually employed,

In an iterative solution, initial values of the
function are assumed at all points and then better
values are calculated from the surrounding nodal wvalues
by application of finite difference formulae. Southwell
(1940; 1946) pioneered the relaxation process which
involves calculation of the residual difference betireen
the value ot any point and the improved wvalue obtained
from the finite difference equation. The relaxation
process allows a systematic reduction of the residuals
at all points until the solution is obtained to a

reguired degree of accuracy.

L slightly different iterative approach, called the
method of squaring, bad previously been developed by
Thom (1928a, 1928b) and is described in detail by Thom

and Apelt (1961). This approach has an advantage over
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the relaxation process when computers are employed
because it does not require the storage of residuals at
all points in the field. The iterative finite difference
formula is applied at all points until the change between
successive values is smaller than some specified amount.
The method of sqguaring has been employed in the finite

difference solutions obtained in this thesis,

The finite element approach relies on the
variational method of setiing up the difference equations
for the field. The region is divided into a finite
number of elements in each of wvhich the variation in
properties is assumed to be linear. The problem of
solving the differential equation is converted into a
corresponding extremum problem invelving the minimi s~
ation of an integral throughout the field. Minimisation
with respect te each nodal value again yields an equel
number of algebraic equations which are usually solved

by iterative procedures.

In both the finite difference and finite element
methods, the continuous field is assumed to be well
represented by the solutions obtained for the nodal

peints, with a linear variation between the nodes.

4,2 PFinite Difference Form of Field Zauations

4.2.1 The Lanlace equation

The Laplace differential equation, which was given
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as equation 2,4-7 is of fundamental importance to a wide
range of problems including steady heat flow, ideal
fluid flow and linear laminar flow through porous media,
For this reason, the numerical solution of the equatbion
has been well treated in the literature {Shaw and
Southwell, 19413 Thom and Apelt, 19613 Jeppson, 1968a).
However a brief ocutline of the procedures invoived will
be given here as an introduction to the numerical
approach vhich is similar to that used for the nonlinear

filow field equations.

Consider a point 0, in a flow field, surrounded by

other points in a regular array as shown in Fig, 4-2-1,

Ay
22,45 10 14 -
16— st 18
=d | | +a .
il D B N R 9
d
17— ZR— 20
23 4 ‘24

is 12 19

FlG. 4-2-1 PFINITE DIFFERENCE HNETWORK
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The following commonly used shorthand representation of
differentials will be used frequently throughout the

remainder of this thesis:

oh _ 3% )
By Tax 5 Bxx T L2 )
dx )
)
ah 3%h g

h =22 3 b =3 s 4i2-1
y y YY  ay )
)
)
xy  9xdy ’ ¥yX  oyox )

A Taylor series expansion about 0 in the positive and

negative x directions then yields:

Do

h.l :h "I"'dh. + d h + a e LI N 4:92""2
o ox 2, Toxx
d2
h =h ""dh ,+.n-_h - o 008 # ooo 402"’8
3 0 ox 2! Toxx

in which d, as used in this Chapter, represents the grid

length of the finite difference mesh.

Combining equations 4.2-2 and 4.2-3 an expression for

33h

the derivative —3 at the point O is obvained as:
2x

~ hl + h, - 2h0

3
hoxx - d2

cves 4.2-4

provided that terms of megnitude d4 and above may be

neglected. A similar analysis in the y direction yields:
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_h2+h4-—2h

b = ) = cces 4,2-5
oyy a

Substitution in eguation 2,4-7 results in a finite

difference form of Laplace's equation:

s = s 080 ] 6
hl + h2 + h8 + h4 4h0 0 4, 2~

provided again that terms of the order d4 and above are
negligible. Thus the finite difference equation to be

applied at all poinits throughout the field is:

h, + h, + h, + h

h o= - g B4 vees 4,27
0 4

This is the so-called "unit square!" formula. In
view of the assumption that terms of the order 64 and
higher are negligible, an obvious means of increasing the
accuracy of a numerical solution is to decrease the grid
size. However a decrease in grid sige effectively
increases the number of nodal points so that more eguations
have to be solved and, in computer applications, more
variables stored in the memory. Thus the number of grid
points should be chosen to give the required degree of
accuracy with a minimum amount of computer storage and

time.,

An alternative method of increasing the accuracy of
solution for a given number of iterations is to use

finite difference formulae which include more points in
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the field and so reduce the truncation error, Thom and
Apelt (1961) gave an account of some higher-molecule
formulae and their possible applications. Examples
include the '20 formula', the '100 formula' and the

1476 formula' which, for the points shown in Fig, 4-2-1,

may be written as:

- 5 2 4.4 5
20h = 48, + S, - 8d°V"h - 47V h, + 0(d”)
_ 2 215 4.4
100h_ = 108, + 75, + S, - 118d Vzho - 22 atvhy
1.4.4 6
~3d°Dh  + o(d")

4.4

476h = 46S. + 325 + 9S. - 576d°ven - 176a%v4n
o} 3 4 5 0 0

- 48&4D4h0 + 0(a%)
- I I - -] 4.2“"8
2 2 4 4
(5]
in?rhichvzg 82-;- 2;V4E 84.;_84
ox Oy ax oy
== ” b -
oX0y axzayz

and 0 means a texrm of the order of the function in the
brackets; ands

S, = hl + h2 + h8 + h4

(92]
il

3 h5 + h6 + h7 + h8

S3 = h9 + th + h11 4 h12
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h19 + h20

5 h21 -+ h22 + h23 + h24

n
H

=8t o0 4‘-02"9

For Laplace's equation, Thom and Apelt indicate that
the '100 formula' allows a solution to be obtained most
quickly at least when using a desk calculator. However,
it cannot be applied at points adjacent to the boundaries
and the '20 formula' is therefore applied at these points
when the boundaries are regular. At ncdes adjoining the
free surface, the situation is more complex because
irregular grid lengths are involved. At these points a
modification of the unit square formule for unegual arms
is therefore employed. Fig. 4-2-2 shows a possible
configuration where short arm lengths occur on both the

vertical and horizontal grids.

#1G, 4-2-2 IRREGULAR GRID LENGTHS AT FREE SURFACE
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The shorter horizontal arm is of length Gld while the

vertical one is of length G.d, where d is the normal grid

2
length. Taylor series expansions about the point O again
enable a finite difference expression to be derived. For

two-dimensional flow and for the configuration of Fig.

4-2-2, this expression iss

11 = Gl(h2+G2h4) -4 Gz(h3+Glhl) o0 8 40 2_"10
o (1+G2) (G1+G~2) (1+Gl) (G1+G2)

If only one short arm occurs, eguation 4,2-10 still applies
with the value of the other ratio, Gl or G2 set to unity.
Bgquation 4,2-10 reduces to the unit square formula when

both ratios Gi and G, are unitv. However if either Gl or

2
Gz differ from unity, the truncation erroxr for the
irregular star equation is of the order a° which is an

order of magnitude larger than that for the unit square

formula,

The preceding finite difference formulations of
Laplace’s equation apply to two-dimensional linear laminar
flow through porous media, such as would be encountered
in flow through & vertical sided permeable wall. Tor
axisymmetric flow to a well, with co-ordinates as showm
in Fig. 4-2-3, the corresponding form of Laplace's

equation may be written:

5%h 1 8h . 8°h
Sg sty Sy
aI‘ azd

=0 cave &,2-11
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FIG. 4-2-3 CO-ORDINATES FOR AXISYMMETRIC FLOW

Substituting r for x in Fig. 4-2-1 the finite difference
approximation to the term %% may be obiained by

subtracting equation 4,2-3 from 4,2-2:

1 3 or
h h
_ L. 3 A o
or hor = 54 voee 4,2-12

; . 3
where the truncation error is of the order d°. The
complete finite difference formulation for the axisym-—

metric Laplace equation may then be written ass

hy +h,+ h, +h h, - h

2 3 4 1 3 a
ho"" 4 + I'Bd_ I ] 4&2“"‘10

where the unit square approximeation to the term

8%h, 9%h
5% + —5% has been used. Observation of the higher
or Az

molecule formulae, equation 4,2-8, indicates that in each
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of the '20, 100 and 476 formulae' the term V4h0 must be
zero before the truncation error is reduced to the order
of d6 and in the '100 and 476 formulae' the term D4h0
would alsc have to be zero. For itwo-dimensional flow
the condition of V4h0 being zero is satisfied from the
fact that V2h0 is zero, However, for axisymmeiric flow,
equation 4.,2-11 indicates that V2h0 is not zero and for

small values of r the term % %% will be quite significant,

In representing the term Vzho then for axisymmeiric
flow the truncation error in +the higher molecule formulae,
equation 4.2-28, is effectively increased %o the order of
d4, As a result there appears to be little advantage in
using these formulae instead of the unit square formula
especially when the increased time per iteration is
considered for the higher molecule approximations. For
example Fromm (1963) and Stark (1968) in computerised
solutions of the Navier-Stckes equations showed that there
was no advantage in the use of the '20 or 100 formulae'
because, while the number of iterations to achieve a
required accuracy was reduced, the total computer time
was longer because of the increased bime per iteration
with the more complex formulae, Also, the '100 formula’

for example, cannct be used at nodes immediately adjacent

to the boundary and the 20 or unit formula must then be
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applied; and as error terms differ from equation to
equation, combining these formulae in effect introduces
new error terms which may be of increased magnitude, For
axisymmetric flow, eguation 4,2-13 has therefore been
applied throughout the finite difference netvork to

vield successively betler approximations to the true

value of piezometric head at each point,

For points adjacent to the free surface, equation
4.2-13 must be revised for short arm lengths. The

derivative %% becomes:

2 2
ah G by - B 1 )by

8r» ~ Tor G

g+ (1-G
4,0
d(l'!"c"’ o000 -~02 14

1 1)

Dividing equavion 4,2-14 by r and adding to the finite

2% . 2%
difference expression for 5 + 5 yields the appropriate

or Oz

axisymmetric finite difference equation for short arm

lengths:s

h ((6.46.) - ng(l—Gl) _ Gl(h2+62h4)
ol L1 M2 or (1+G

+
5)

2
a6, ( &y “hy~hy)

2T (1+G. ) sece
A

GE(Glhlfngl .
(1+G1)

45 2-15

Equation 4,2-15 then is the iterative formula for a node

with unequal surrounding grid lengths.
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Because the free surface necessitates the use of
cumbersome finite difference equations to allow for
irregular grid lengths, Thom and Apelt (1961) suggested
an alternative method of solution for free-streamline
problems, This method is based on the property that if
¢ and ¢ are conjugate functions which satisfy Laplace's
equavion in the x-y plane then x and y will be conjugate

functions satisfying Laplace's equation in the ¢, ¢ plane.

Thus if 33¢ 32¢ _ )
—5 + ~3 = 0 )
ax"™ oy )
4,2-18
2 2 ) o B0 Q =~ o
and §~% + E—% =0 )
8x O ™ )
)
2 2
then 9 x + 9% =0 %
8¢ ay°
) © 9 00 ‘j:n 2""17
a° a2 3
and ~—% + =—% = 0 )
S

For porous media fiow obeying Darcy's Law a potential
funchion ¢ can be defined as:
¢ :""'kll LIRS 452“"18

and & streamline function ¢ can be defined as:

Q‘w—x:v and%z"u Q0 00 402‘*19

The functions ¢ and ¢ can then be shown to satisfy equation
4,2-16 so that equation 4.2-17 also applies in the inverse

plane. The solution in the inverse plane has the advantage
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that it is often possible to obtain a field of rectangular
shape so that the finite difference grid can be fitted
exactly without recourse to short arm lengths. Jeppson
(1966) used this method to solve a number of problems
including seepage from ditches, axisymmetric jel flows

and seepage through a dam with a horizontal downstream
under—drain. Cassidy (1965) obtained solutions for flow
over spillways by the inverse function approach vhile
Markiand (1966) solved the problem of a free overfall at

the end of an open channel.

However the method has two major disadvantages in
the problems analysed in this thesis. The main object of
obtaining Laplace solutions was to give reasonable initial
values for the nonlinear solutions. For the nonlinear
flow equations no corresponding simple relationships
between conjugate functions can be obtained so that the
method of inverse functions cannot readily be applied.
Since the nonlinear solutions are carried out in the
physical plane, it is logical to obtain initial values

from Darecy flow solutions in this plane also.

In addition, the problems discussed herein have
usually involved a seepage surface, either at the down-
stream bank of a dam or permeable wall, or at the well

face in unconfined flow to a well. This seepage surface
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is neither an equipotential line nor a streamline so that

the boundaries on the inverse plane do not form 2
rectangular pattern. The situation is illustrated for

seepage through a two-dimensional vertical sided permeable

vall as shown in ¥Fig. 4~-2-4.

M‘——“MW
v G
= !
"y
\D
seepage
hu‘ ¢u }’ surface
E [ <n
)
! ! b ¥

L T s T o //A// -

PIG. 4-2-4 FLOW THROUGH PERMEABLE WALL - PHYSICAL PLAWE
The impervious base AB and the free surface CD are
streamiines while the upsitream and downstream boundaries
below water level, BC and AE are equipoﬁentiél lines,

but the seepage surface DE does not belong to either
category. Thus in representing the flow field on the
inverse plane as shown in Fig, 4-2-5, DE forms an initially
unkinown section of the boundary. The boundary configurm
ation is therefore not rectangular so that short grié
lengths and associated cumbersome Finite difference

formulae will still be necessary. It is, however,
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u

FIG. 4-2-5 FLOVW THROUGH PERMEABLE WALL - IWVERSE PLANE

possible that the free surface adjustment procedure may
be simplified in the inverse plane but btwo fields of
values, x and y, have to be solved whereas only one field
of h values need be considered in the physical plane,

The numerical solutions outlined in this thesis have
therefore been obtained by solving for piezometric head

values in the physical plane.

2.2 PForchheimer field eguation

a

In secvion 2.5.,1 the Forchheimer field equation for
two-dimensional flow was derived as eqguation 2,5-2b. For
finite difference applications, eguation 2,.5-25 can be

more suitably restated as:

- h

2 X 2 - '
5 = * 55 = 0 .wd.2-20

h
Y
2, 12 4 pyn —Q‘+§E+bh
5 Tl 4 s 5 W2 | %5 ]



103,
To simplify the derivation, the term hs will now be taken
4o mean the magnitude of the head gradient. That is hS

w11l be written instead of lhs ]

~1
P & 8'2 2-21
If i = f(lls) - "'2' -+ Z“ 4 th a o a0 40 -

of 8 Ja 2 1 a2 e ahs
then 7= = (—-1){"‘;3' tAT T bhs] "2"('4“ + bhs) be 55

LI 4:n 2""22
N > -
2 2 2 %h
of a \/a, l,a s
and By ( 1)[2 7 + th} 2(4 + bhs) b. 5y
o B o0 40 2"‘"‘23
Now at any point, the hydraulic gradient in the direction

of flow is given by:

h,os=h_i+h j H
y % oo a0 402—'24
h? =nd +n? )
S X v
5h )
Thus 2h 5'1:;'{5* = 2h )
*.'X. )
) vooa 4o2=25
ahs hx )
or TS = S
th. s ;
8h h
Similarly 5’5-‘3 = EE vees 4,2-26
v s

o

gh Oh ch dh oh

s _ S X
Then 2% "ahx * Ox +

h
= -2 h +Elh veee 4o2-27
s
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2h  h b
Similarly g;ﬁ = EE Bt pE . B ceo. 4,2-28
5 S

Substituting equations 4.2-21 and 4.2-27 in equation

4,2-22 yields:

|
o

of _ £E§(§§n+ bh ) (E§ h + EE h ) 4,229
ox 2 ‘4 S hs XX 11S yE e 0

Similarly equation 4,2-23 becomes:

QL

o {Hb
rﬁ

of o
| [=a
o

3

a Fap! —
g (hxf) + 5y (hyI) = 0

or h Lirn +n EZirn =0 vees 4.2-31
x OX XX vy oy NAS

Substitution of equations 4,2-29 and 4,2-30 in eguation
4,2-31 gives the field equation for Forchheimer flow in a

form suitable for direct application of finite difference

approximations:
—.1-'
ht‘f a2 ?
hox - E; E'b(“Z * bhs) (hx Bex T hy hYX)
L
o A i
- = —_— h h =
+ hyy R, 3 b(4 bhs) (hy - + h hxy) 0

40 60 402"82
The finite difference formulation for equation 4.2-82 is

best carried out in a number of steps. For the arrange-~
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ment of nodes shown in Fig, 4~2-1 the derivatives hox and

h become:s
oy

N Ml S

ox 2d )
) a8 e 0 402“38

G Dl B

oy 2d )

The gradient hos can then be calculate@ Trom equation
4,2-24 and substituted in equation 4.2-21 to obtain the
function f. Having calculated hos and f, a number of terms
in equation 4.2-32 can now be grouped into one factor

denoted as FACT:

paf

2

FACT = (%_ + bhs) veee 4.2-34

o

£
h
oS
The second derivative hoyx can be obtained by
evaluating hy at points 1 and 3 and considering expansions

about point O in the x direction. Thus:

h_ -h - h. + h
h o= 28 6l o 1 veue 4.2-85
oyX 4&2 oOXy

Since hoxy and hoyx are equal,

Using equation 4.2-35 and egquations 4,2-4 and 4.2-5,
equation 4,2~32 in finite difference form becomes:
hy + hy + hy + h, - 4h_ - FACT hoxg(h1+h3;2ho)

~ FACT hoyz(h2+h4w2ho) ~ 0.5 BACT b__ h

X oy
(hs“h8"h6+h7) = 0 680 4a2—86
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or on rearranging:

2 2
- ~FACT h
h_ [h1+h2+113+h4 FA T[ . (hl-i—hs)—i-hoy (h2+h4)

‘ 2
+ 0.5 hoxhoy(hE—- h8-h6+h7)}J /(4-2}S‘ACT ho )

p 0o o 402""37

in vhich h and h are given by eguation 4,2-33.
0xX oy

Higher molecule formulae for the Vzho terms are nov
considered since-V2h0 is not zero for nonlinear flow,
while higher molecule approximations to egquation 4,2-37
as a whole, with significantly lower truncation errors
wvould result in very complex iterative formulae with
substentially increased iteration time. Equation 4.,2-37
has therefore been employed as the iterative finite
difference formula for successive application at regular
interior nodal points when the flow is governed by =

Forchheimer head loss relation.

At points adjacent to the free surface, equation
4.2-37 has to be modified to allow for either ome or two
grid lengths to be shorter than the standard length, The
procedure follows the same steps as outlined for regular
grid lengths. Tor the configuration of nodes shown in
Fig, 4~2-2, the derivatives h . and hoy mey be evaluated

a52
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2 2
G1 h, — h_, + (1 - Gl )ho

)

no o= 1 3 )
) o0 6 & 402_88

1 ¢.%h - (1 - 6.9n i

h — 12 - 2 ‘4: B 2 8] )

oy ng(l + Gz) )

The gradient hos is again obtained from equation 4.2-24
and the function f from equation 4.2-21., The combined

term FACT is then calculated according to equation 4,2-34.

3

The second derivatives h and h in this case are
0XX oVy

%

given bys

 2gGyh,+he ~ b (14G)] %
hoxx - 2
G (1+G,)d )
1 1 3 oo 4:2-39
) 2G5h, th, - h0(1+62)} )
oYy Gz(1+62)d2 g

@hg second derivative hoyx is more difficult to calculate
especially if a short arm occurs in the horizontal
direction. Foxr this case, hoyx is calculated from the
values of hy at points O and 1 because it is impossible

to cbtain an accurate value of hy‘at point 3, When only
one short arm, in the vertical direction, occurs hoyx-is
obtained from values of hy_at points 1 and 3. Substitution

of all terms in equation 4.2-32 allows the final finite

difference formula for-ho to be obtained.

For axisymmetric flow to a well, the field equation

4,2-20 must be modified to allow for the radial convergence
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of the flow, For axisymmetric flow, the continuity

equation is:

l-wu--£ u--:-t-: ----Z-z IR EXE ) a
. + - + e 0 4., 2-40

in which Vr and Vz are the velocities in the 1 and z
co-ordinate directions of Fig, 4-2-3, Substituting for

Vr and VZ, equation 4,2-40 becomes:

E by A By o
or 'ag hs r @ Og ]ag
a - & &
5 + T + bhs + T + bhS
[ 3B O 4-2""41

in which V is the velocity in the s direction and is given

h

2
— 2_ . a_ —= -
V-—-——- 2b J(Zb) -} -b t4anew 4‘(2 42

by

It is apparent that eguation 4,2-41 is equivalent to
h
equation 4.2-20 with the extra term o % added to the

11s
left hand side. The finite difference approximation is
therefore obtained by an analogous procedure to that used
for equation 4,2~20. The derivatives hor and hOZ are
first obtained and then hOS is calculated from them,
Substitution of hOS in equatbtion 4.2-21 gives the function
f. The term FACT is again calculated from equation
4,2-34 and all the subsidiary variables can be substituted

into equation 4.2-41 to give the final finite difference

equation for axisymmetric Forchheimer flow:
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_ 2 2
h = |:hl+h2+h3+h4—FACT[hor (hl+h8)+hoz {h2+114)

o 2
+ 0,5 horhoz(hs—ha-h6+h7)}:| /(4-2 TACT hOS )

2 2
+ [hord 1]/[1- {4-2 PACT ho )] ceoe 4o2=d3

since V and f hos are equal, A similar analysis, tc that
for the two~-dimensional flow case, can again be undertaken

when one or two grid lengths are shorter than normal.

4,2,3 Exponential field equation

The field equation for flow cheying an exponential
head loss relation was given in section 2.5.2 as equation
2.5-30., After multiplying by the constant —c in this
equation and writing h instead of ]hs| as before,

equation 2,5-30 may be rewritten:

l-m 1-m
9 /m 9 /m _
T (hs hx>+ o (hs b, }=0 ceao 4.2-44
If M = 1D
1l

then equation 4,2~44 becomes:

h_ b ¥yn o M-
3 X s

M M-1 _
XX Bhs =0

lon +n n¥ 4 n wn
ox oy

& & & B 4.2""45

Using equations 4,2-27 and 4.2-28, equation 4,2-45 becomess

M
h +h_+ Y (b %h 4+ 2h_h heg + =
XX VY 2 ( X TXX X yhxy hyghyy) 0
S vene de2-d6
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This is the equation which has been obtained by Brooker
(1961), Parkin (1963a) and others. Using equations
4,2-4, 4.2-~5 and 4,2-35, equation 4,2-46 may be written
in finite difference form. For the configuration of

points shovn in Fig. 4~-2-1 this becomes:

_ 2 2
b "[hos (h1+112+h3+h4)+hi{hox (hl+h8)+0.5 hoxhoy

2
(hg=h 3 h6+h7)+ h (h2+h4)]/2(2+M)11OS coon 4o2-47

where hox and hoy are.given by equation 4,2-33 and hos is
given by equation 4.,2-24, This is the iterative formula
to be applied at interior nodes when the flow is governed
by an exponential head loss relation. For points adjacent
to the free surface, equation 4.2~47 must be modified %o
allow for short arm lengths. The modification is made

in a manner similar to that employed for the Forchheimer

field equation.

For axisymmetric flow the field equation 4,2-44 must

be modified also and,in c¢ylindrical co-ordinates, becomes:

h h

M
T8

M

0 &,

= -4
, By 0 ceve 4.2-48

Using the configuration of points of Fig. 4-2-1 this

equation may be written in finite difference form as:

B h
~98 _ox 2
h, = [- ( 1 Hhothoth )+ - + M{#or (h1+h8)

2 2
+ 0.5 horhoz(h ~hg-h, +h7)+h (h2+h4)]/2( 2+M)hos

L. 2N B A 4.2-4:9
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For points adjacent to the free surface, the corresponding
form of equation 4,2-49 for irregular arm lengths may be

derived as before.

4,83 Boundary Conditions and Adjustment of the Frec
Surface in the Finite Difference Approach

The boundary conditions and surface adjustment
techniques are similar for two-dimensional flow through
a vertical sided permesable wall and axisymmetric flow
to 2 well. Only flow through the permeable wall will
therefore be considered in the following discussion, the
axisymmetric flow situation being treated by the same
procedures. Consider flow through a vertical sided bank

as shown in Fig. 4-3-1,

< 3D h gh
== ':y ——— =
: on 0
D
hu Tlow Region
— h=
h=h Yy o o
e
h=hd{ ha
/

e 0
z//y///vn/gz//////?///////x

g
]CI>

0
FIG. 4-3-1 BOUNDARY CONDITIONS
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The boundary conditions include a number of types. The
upstream wall AE and the submerged downstream section BC
are lines of constant piezometric head with resultant

Dirichlet boundary coanditions:

On AR h =h )
v )

) ‘s w 8o 4.8—1
on BC h = hd )

Along the seepage surface CD, the piezometric head is
equal to the height above the impermeable stratums

On CD h =y aeee %,3-2
The impervious base AB is a streamline so that the head
gradient normal to this line must be zero, resulting in
a Neumann type boundary conditions:

0

o

OI]. .A.B = 0 g s & 4- 3“"'3

(0]
d

The free surface ED involves a mixed type of boundary
condition. Since it is a streamline the head gradient
normal to it must be zero and since the pressure is
atmospheric along ED the piezometric head must equal

the elevation 2bove the impermeable base:

on o =0 cees 4.3-4
n
&nd h - y 'R 4g3“5

in vhich n represents the direction of the normal to the

free surface at any point,
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The imposition of the Dirichlet boundary conditions
in the numerical solutions is relatively simple. The
piezometric heads at all nodes on AE and BC are set
equal to hu and hd respectively, while at each node on
CD the piezometric head is set equal to the elevation of

the node above +the base.

The Heumann boundary condition on AB could be
imposed by first calculating the normal derivative, in
terms of h values at nodes on AB and at the nodes directly
above them; and when this normal derivative is set to
zere new values of h on AB could be obtained. For nodes
as depicted in Fig. 4-3-2, the following relation can be
obtained by Taylor series expansions f%om hO:

18111 - 9h2 + 2h8 = llho + 6d hoy cero 4.3-6

where the truncation error is of the order d4,

FIG, 4-3-2 NODE ARRANGEMENT AT BOTTOM BOUNDARY



114,

Since hoy is zero according to equation 4,3-3, equation
4,3-6 may be rewritten to evaluate a new value of h0 for
the boundary node:

18h. ~ 9h_ + 2h

_ ol 2 3 7
ho - 11 [ - I 4:08

However, eauation 4.3-7 is derived from one-sided difference
formulae about k_, so that Forsythe and Vasow (1960)
suggested an alternative method using more suitable

central differences. Shaw and Southwell (1941) had also
used this method which is based on the inclusion of a
fictitious row of nodes at distance d below the line AB,

one node of this row being shown as the point -1 in

Fig, 4~3-2. The requirement of zero normal derivative

at 0 is bthen met by putbing:

h-—-l —_ h}_ 08 ¢ 0 4@8"’8

Al though the truncation error in equation 4.3-8 is
theoretically of the order ds, this equation is more
suitable than equation 4.3~7 because it is based on
central differences, and Giese (1958) has shown that
smaller discretization errors occur with centred differ—
ences than with one-sided differences. The row of nodes
AB is therefore treated as an interior row for application
of the Tinite difference form of Laplace's equation and
the bottom boundary condition is imposed by application

of equation 4.3-8 to obtain new h wvalues Ffor the
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fictitious row below AB,

Flow problems involving & free surface usually cause
considerable difficulty in imposing the required boundary
conditions. One treatment of free surface flow has been
incorporated in the "marker and cell" method developed by
the Los Alamos Scientific Laboratery team, and reported
by Harlow and Welch (1965), in which the full Naviewr-
Stokes equations are analysed for fluid flow problems,
However this method, which incorporates a polynomial
representation of the free surface for imposing the
boundary conditions, has been employed in the analysis
of time-dependent problems vwhere the initial position of

the free surface i1is known.

In the present analysis, where steady flow is assumed,
the initial position of the free surface is not known and
an adjustment technique has to be incorporated to allow
for errors in the assumption of the initial free surface
position, The technique described below is similar to
that used by Boulton (1951) (and discussed in more detail
by Mohar, 1966 and Hendrick, 1965) but with some modifi-

cations.

Consider a portion of the free surface at an angle

& to the horizontal as shown in Fig. 4-3-3,
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- FIG. 4-3-3 WOMENCLATURE AT THE FREE SURFACE
Boulton (1951) has shown that the condition expressed by
equation 4.3-4 can be rewritten in terms of the derivatives

with respect to x and y. Thus:
—_— sinza cose 4,39

an& - :“Sina COS o o r e 9 4.3—10

in which @ isg the angle of the free surface to the
horizontal at any point. Because of the curved nabture of
the free surface it is inappropriate to employ ficutitious
nodes above it, and a similar approach to that used for
the bottom boundary is therefore not possible. 4s a
resuld, one-sided difference formulae are necessary and
these also must account for a shortened grid lenghth
between the surface node and the adjacent interior node
in each direction. Consider first a vertical grid lime
intersecting the free surface as showm in Fig. 4-3-4.
Since h = z at the free surface then

z :h » 4 00 403"'11
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God iz %
T~ FIG. 4-3-4

TRy INTRERSECTION OF VERTICAL

d | GRID LINE VITH FREE SURFACE
d a_

| !

d :

h, |

and Taylor series expansions about z o h1 and h2 allow
i to be calculatved as:
oy

2
z_(1+26,) + Gz%lg_‘“ (146, n
Zoy — G‘zd(l+G2) 08 0@

40 3""12

in which the truncation error is of the order d3. More
points b610W’ZO could be employed to reduce the order of
the truncation error. However, since one-sided Gifferences
are used it is considered better to restrict the Taylor
series expansion To points in the immediate vicinity of

Zg3 otherwise the points used for calculating the
derivative extend too far away from the point at which

the derivative is vo be determined. For this reason only
the two closest points have normally been incorporated in
the finite difference formula.

Now from equations 4,3-9 and 4.83-11:

_ .2
Zoy = sin-@ se o 4.3—18
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A value of sinoa is btherefore required at the point R.

Since the finite difference network can only approximate
the free surface by a number of discrete points along it,
the calculation of sina must be based on the assumpiion

of short straight line segments joining these points. The
value of sina at point R is assumed to be the average of
sin¢. and sina, vhere o, and ¢_ are as shown in Fig, 4~3-4.

1 2 1 2

Sinal is calculated from the triangle PQE end sine, from

triangle RST, Once sinza has been determined, a new value
for z  can be obtained by combining equations 4,3~12 and
4,3-13 {to give:

.2 2
) G,A(146,) sin“e + (1+6,) hl_.G;h2

z —_— & » 3w
0 1+262

4,314

The height of the free surface above the base at the
vertical grid line is then set egual to this value of z

and the shortened grid length, G, d from the nearest node,

2
is recalculatved. Vhen the surface is being adjusted

dovnwvards, ecuation 4.3-14 does not aIIOW'zO to decrease
below the value of hl so that once the intercept sz
becomes smaller ﬁhan some preset value, the adjustment is
carried out from the second closest node. FEguation

4,3-14 can still be applied but with G, replaced by

2

1 4+ Gz, h1 replaced by h, and h2 by h This allows the

2 3"

surface adjustment to proceed downwards across
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horizontal grid lines. No similar problem is encountered

in adjusting the surface upwards,

Bguation 4,3-14 is not applied at the upstream and
dovnstream banks; that is to say it is not applied at the
vertical grid lines AE and BD in Fig., 4-3-1. The height
hu to T is fixed so that the position of E remains
constant, while at D, the junction of the free surface
with the downstream face, equation 4.3-14 alone does not
adequately represent the boundary requirement. From
theoretical considerations, Dachler (1934) suggested that
ED should meet CD tangentially at D: but an exitremely
fine net would be required to vepresent this condition
satisfactorily in a finite difference solution. 4
solution was therefore attempled on the basis of
equating the flow across the vertical line DB +to the
flow across the third vertical grid line from the
upstream boundary. The third line was chosen for
calculating the reference flow because it is close to the
upstream boundary where the surface position should be
most staeble and because, at this line, central differences
can be incorporated for accurate calculations of gradients
in the flow determination. The position of D was adjusted
by calculating the magnitude of the grid intercept to the

nearest regular node required to produce a flow across
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BD equal to the reference flow., The change in height

of D for each adjustment was, however, restricted to
less than twice the normal grid spacing d. 4An added
precaution wvas also necessary to prevent the position of
D rising above the height of the free surface at the
closest vertical line, less the increment between this

line and the next closest line upstream.

In coarse grid solutions for axisymmetric flows
it was usually found that the latter requirement was the
limiting one, The flow calculation across BD is based
on one-gided finite difference formulae for determining
the piezomeitric head gradients and, especially with
axisymmebric flow, this results in an inaccurate wvalue
of discharge. It is to be expected then that there may
be some degree of error in the determination of the
height of the seevage surface DC. For this reason a
fine grid was incorporated near the well for some
axisymmetric flow solutions. The fine grid was- included
after the solution had been oblained on the coarser grid
throughout the field. The number of coarse grid lengths
away from the well, which were to be included in the fine
grid section, was read in as data as was the number of
fine grid mesh lengths per coarse grid length., The

initial values of piezometric head at the intermediate
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points on the fine grid were obbtained by interpclation

rom the closest coarse grid values,

Consider now the intersection of a horizontal grid

iine with the free surface as shown in Fig, 4-3-5.

A
"2 G Tt
e d - Gld ‘£ ™~ :
}}_}'Zl

FIG. 4-3-5
INTERSECTION OF HORIZONTAL GRID LINE WITH FREE SURFACE

Application of Taylor series expansions about ho allows

g finite difference approximation to hox:

2 2
Gl h., + (1+2€+l)h0 - hl(1+G~1)

_ 2
hO}: - Gld(l+G1) oo oW '4:«3-‘15

In this case sin @ cos?® is substituted for hox according o
equation 4,.,8-10; sino and cosa are calculated as the
average of the respective functions for &y and oy in

Fig, 4-3-5. However the value of ho cannot change since
it must egual the height of the particular horizontal

grid line above the base. Bguation 4,.,3-15 can therefore

be used to calculate 2 new value of the shortened grid
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1ength Gld at which the grid line intersects the free
surface. This extra adjustment however, is only
necessary for a coarse mesh with a high vertical
component of flow. Provided the mesh is reasonably fine,
the free surface can be well represented by straight line
segments between the vertical grid lines. The mesh size
has therefore been kept small enmough in all analyses so
that this recquirement is satisfied to a sufficient degree
of accuracy. After the vertical grid adjustments have
been completed, the horizontal intercepts are adjusted on
the assumpition of a straight line intercept between the

two neighbouring vertical lines.

4,4 BSelection of Initial Values for Minite Difference
Solutions

4,4,1 Initial wvalues for Darcvy sclutions

Numerical solutions to elliptic partial differential
equations, in vhich a whole or part of the closed
boundary is subject Yo a Dirichlet boundary condition,
may be obteined by initially assuming all interior nodal
values to be zero. However a solution can often be
obtained much more quickly by judicious selection of
initial values, both for the interior nodes and also for
those parts of the boundary, if any, which are subject
to other types of boundary conditions, In free

streamline problems, the accuracy of the assumed initial
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required for a complete soluvion.

o
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£ the free surface alsec affects the time

o

For two-dimensional iFlow through a permeable wall

e

as shoyn in

ig, 4~4-1, the length of the seepage

surface CD was assumed to be one-third of the difference

between upstream and downstream walter levels, so that

hsg in Fig, 4-4-1 is given by:

1
hs = h + e h - h 5 0 4 D 404""1
d 3 ( u d)
¥y
b B
= 3 T ——
'l %M\_‘
y: \
; D
h i
11
C i
S ]
| zhd
v Al \i ¢ ¥ ey
A NN 7 AR N EEEEEN R B,i, 7T -
b L >

FiG. 4-4-1 PERMEABLE WALL INITIAL VALUES

The free surface curve ED is assumed to follow a power

law between hu and hS; thus if y is the initially assumed

height of the frec surface at distance x from the

upstream face then:

n n
y o=h, 5 -

(b ™ = ns™)
u

a4

« & &8

4,4-2
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in vhich L is the length of the wall and n is an exponent
between 1 and 2. Similarly *he piczometric head, h(x),
on the bottom boundary at distance x is assumed to follow

a power law belween hu and hd:

h{x)" = hun - % (huIl - hd?) veu. 4.4-3

For larger flow wvalues, that is where the difference in
water levels is large compared to the length of the wall,
the velue of n was taken as 2 in both equations 4.4-2 and
4,4-3. Although this assumption could also have been
made for smaller water level differences, better initial
values were obtained by teking n as 1.5 in both eguaivions.
The values of piezometric head at nodes between the
bottom boundary and the free surface were cobtained by

linesr invterpolation cover each vertical grid line.

In obtaining initial values for the axisymmetric
flow situation, advantage was taken of some empirical
relations suggested by previous researchers. For
unconfined flow %o a well as shown in Fig. 4-4-2, Hall
(1955) obtained empirical equations for the height of the
seepage surface hs and for the free surface curve ED. Tox
the nomenclature of Fig, 4-4-2, the seepage surface

height hs is given by:
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Z
A
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PIG. 4-4-2 "UNCONTFINED VELL FLOYV INITIAL VALUES

(he_hw)[l-@E) 2.,4}
hs = h_ +

=

r ’ a«a b b-e
i {1+ = 111(-3} [1+ -2 -}

Ty B | e/rv)

wvhile the height z of the free surface at radius r is

4:0 4:"‘4

given by:

Since the flow along the impermeabie base musi be
horizontal, it would seem reasonable to assume thatlthe
initial values of piezometric head could be takern from
the Dupuit curve between he and hw' Viyckoff, Dotset

and Muskat (1932) have shown experimentally that
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Dupuit's relation is approximately true for head measure-
ments along the impermeable base and this was supported
by Hall (1955). If h{r) is the base piezometric head at
radius r, then the initial value for h(r) can be assumed

Yo be given bys

5 ln( /I‘
h(r) = 11 h "" o 0% D 4:94""6
W in e/‘—>

For flow conditions corresponding to larger diffevences

in water levels he and hw’ vhe initial values were
calculated using equations 4.4-4, 4.4-5 and 4.,4-6 and
interpolating along vertical grid lines, between the

base piezometric head and free surface heighi, to obtain
internal nodal values., For medium water level differences
the seepage surface height hs was calculated from the
assumptions:

hs =h_+ % (h_ = h) eee 44T

and equations 4,4-5 and 4.4-6 were again employed o

obtain free surface heights and base piezometric heads

resnectively, For small differences in water levels,
hs was set by equetion 4.4~7 and h(r) by equation 4.4-6
but the free surface height was set by a Dupuit curve

between hs and he°

No attempt was made to investigate the best initial
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value assumptions in terms of representative aquifer
parameters as the choice of initial values usually only
affects computer time requirements and is therefore not
of fundamental importance to the problem being analysed.
However at low differences in water levels it was
observed that initial values calculated from eguations
4,4-4, 4.4-5 and 4.4-6 gave a free surface that was too
low near the well. After a number of iterations the
piezometric heads in the field near the well increased
to values greater than the height of the free surface
vertically above. The free surface adjustment could
not cater for this situation, so that a solution could
not be obtained by the usual method. For this reason
the Dupuit curve between hs and he was employed to
calculate an initial free surface position and a solution
was then obtained without further difficulty. In all
cases, by calculating discharge values at each vertical
grid line, an incdication could be obtained, wvithin a few
iterations, of whether or not the initial assumpiions were
suitable so that the selection of appropriate initial

values presents no real problem.

4.4,2 Initial values for Forchheimer solutions

The computer time per iteration is comsiderably

longer for nonlinear flov than for linear Darcy flow
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analyses because of the greater complexity of -the finite
difference formulae for the former, A saving in computer
time can therefore be effected by solving a given flow
situation on the basis of Darcy's Law and then using the

results as initial values for the nonlinear solutions.

For two-dimensional flow problems, the results from
the Darcy solution were used directly as initial values
for the nonlinear amalyses. For axisymmetric problems,
however, the Darcy solutions were modified to obtain
initial values which further reduced the computation time,
This modification was based on 2 corresponding confined
flow problem for which exact solutions can be obtained
for both Darcy and Forchheimer flow., Observation of the
Dercy and Forchheimer confined flow solutions at corres-
ponding radii showed that the difference betweon the
Forchheimer head value and the Darcy head value, bore an
approximately constant ratio to the difference between the
Darcy head value and the external head hec This
observation led to 2 method of cbitaining better initial

values for the axisymmetric nonlinear analyses.

The value of the discharge QF for confined Forchheimer
flow is obtained from equation 3.1-4 using the same water
levels h_ and he at r and T, respectively, and assuming

o : .

any convenient aquifer thickness B as this does not
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affect the distribution of piezometric heads. The
piezometric head for confined Forchheimer flow, FHC(r),
at any radius r can then be obtained as:

2

170 ) e 20¥ r_ bOoF~ 1 1. _
FHC(r) = yw + S in (r } o+ 55 (r - ) eoe 4,4-8

W 4778 W - e
The corresponding piezometric head for confined Darcy
flow DHC(r) is given by:
r
1n( /rw)

1n{%e/, )
Ir

DHC(r) = hw + (he_ hv) ceoo 4od=9
If FH(r,z) is the required initial wvalue for the
Forchheimer analysis at any point r,z and if DH(r,z) is
the solution at the corresponding point from the

numerical analysis of Darey flow, then FH(r,z) can be
obteined from:

FH(r,z) — DH(x,z) _ FHC{r) - DHC(r)
h, - Di(r, z) ~ b - DHC(x) teet

4 -} 4:""10

The improvement of initial values sc obtained enhanced the
speed of solution by up to 50 percent in some cases. For
low head gradients the relation:

FH(r,2z) _ THC(r)
DH(I’,Z) h DHC(I) c et o

was also found to give satisfactory imitial wvalues for the

nonlinear Forchheimer analysis.
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4,4,83 Initial values for exponential solutions

For two~dimensional flow, the Darcy results were
used directly as initial values for the analysis of
flows obeying an exponential head loss relation. For
axisymmetric flow, initial values were obbtained in a
manner analogous to that for PForchheimer flow. The
discharge QF for a corresponding exponential confined
flow problem can be obhtained from equation 3.1-6, so
that the piezometric head for confined exponential flow,
EHC(r), at any radius r can be obbained as:

) o on" I‘l.--m _ rwl—m
T (emB)" 1-m

EHC(I‘) = h o ama 4.4-12

If EH(r,z) is the required initial value for the
exponential flow analysis at any point r,z, and DH(r,z)
is the numerical solution at the corrvesponding point for
Dercy flow then ZH{r,z) is cobtained from:

EH(r.z) — DH(r,z) _ BHC(r) -~ DHC(r)
h, - DH(r,z) - h, - DHC{ 1)

c e e 4'4—13

vhere DHC(r) is agein obtained from equation 4,4-9,
Albernatively the relation:

EH(r,z) _ EHC(r)
DH(I‘:,Z) - D}IC(I‘) reva 4c'4:'—14:

is employed for low hydraulic gradients.,
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4,5 Convergence of Finite Difference Numerical Solutions:

The iterative method used in the soluticn of the
finite difference equations is the Gauss-Seidel procedure
of successive displacements with an over relaxation
factor. The method, which appears to have been first
introduced for elliptic differential ecuations by
Liebmann (1918), uses the latest values of the function
at all points when calculating the improved value and
also incorporates an over corrcction for the new wvalue.
The method has been discussed at some length by Forsythe
and Wasow (1960), who pointed out that convergence is not

guaranteed for all systems of equations.

The over relaxation process may be represented as
follows:—~ if h(n) represents the value of h, at a
particular node, obtained from the nth iteration and if
h'(n+l) is the value at that node which would be calcul-
ated by direct application of the finite difference
equation for the n+1 U8 iveration, then the over corrected

(n+1)

value actually taken, h ;, 1s given by:

L (n1) = n(m) oy {h'(n-ﬂ) - h(n)] oees 4oBml

in vhich ¥ is the over relaxation factor. The selection
of the optimum over relaxation factor to give quickest
convergence to a solution is & problem which has only

been solved for isolated cases. Young (1954) formulated
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rules for deriving the optimum facior under certain
conditions., Russell (1963) suggested cquations for
determining optimum under relaxation factors (W <1l) for
numerical solution of the Navier-3tokes eqdations.-
However for most elliiptic differential equations the
selection of an optimum value of W cannoi yet be carried
out on completely theoretical grounds and must be
obtained from a trial and error approach. Ghe factor
will usually depend on the finite difference operétor
itself snd also on the shape of the field in which an

equation is to be solved.

Because of the importance of the Laplace ecuation
in many fields, the convergence of finite difference
solutions to this egquation has been reasonably well
studied. Thom and Apelt (1861) evaluated the relative
merit of whe unit square and higher molecule formulae for
solutions to the two-dimensional Laplace equation using a
desk calculator., They showed that, without using an
over relaxXation process, the '100 formula' (ecquation
4:2-8) could be up to five times as fast as the unit
square formula for a square shaped field of values.
However Jeppson (1966), in Laplace solutions to free
streamline problems on the inverse plane, showed that by

using optimum over relaxation factors with each formula,
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the computer time saved by using the '100' formula was
only 25 percent of that reguired to obtain a solution with
+he unit square formula, This does not give an exact
indication of the relative merits of the formulae because,
in free streamlinc problems, not all of the time 1is
involved in applying the finite difference operators;
but it does indicate that, with computer applications
and with aopropriste over relaxation factors, the
diserepancy in relative merits of the formulae is

considerably reduced.

Jeppson {1968) obtained optimum over relaxation
factors for the two finite difference operatlors by
plotting the results of trials with a number of values
of W. His results are reproduced in Fig. 4-5~1, This
shows that for the rectangular field considered the
optimum over relaxation factor for the unit square
operator was approximetely 1.5 while thet for the higher

meolecule formula was approximately 1.83.

The optimum value of the over relaxation factor
varies with the shape of the finite difference grid even
for one particular operator but, for the unit square
Laplace operator, it usually has been found to be in the
range 1.5 to 1,8 and, for the axisymmetric flows analysed

in this thesis, a value of about 1.6 to 1.7 was found to
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CF THE LAPLACE EQUATION (After Jeppson, 1966)

yield best results., ¥or the higher molecule formula
used in two~dimensional flow solutions a lower value was

used in accordance with the results of Jeppson (1966).

The general theory of convergence of finite difference
solutions for nonlinear elliptic partial differential
equations has not been develoéed in any detail and the
selection of appropriate iterative methods is still
largely = matter of +trial and error. For some nonlinear
equations, such as the Navier-Stokes equations for steady

incompressible fluid flow, an under relaxation process
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must be used to obtain convergence of numerical solutions;
that is, W in equation 4,.5-1 must be less than unity.

Tor this rezson a number of trial runs were carried out
with the nonlinear finite difference operators using an
over relaxation Ffactor of unity, or in effect no over
relaxation at all. 4s no difficulty was experienced in
obtaining convergence, a series of over relaxation factors
between 1 and 2 were employed to determine the optimum

over relaxation Factor for a typical problem,

The surface adjustment affects the solution at interior
nodes although surface adjustments are best carried out
with a reasonably settled field of wvalues so that; in
devermining the optimum over relaxation factor, the free
surface was assumed constant and the solution obtained
for the field of values under thig surface. IFor a range
of values of ¥, the number of iterations required to
obtain a given accuracy of solution was determined. The
accuracy was svipulated as 2 maximum change between
successive iterations of 1 x 107° in the value at all
points in the field. Fig, 4-5-2 shows a plot of the
number of iterations reguired to obtain this accuracy,
against the corresponding over relaxation factor for the
particular problem investigated (in the case of

Yorchheimer flow).
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The optimum over relaxation factor from Fig. 4-5-2 is

approximately 1,7. The curve depicted in Fig., 4~5-2

shows the results obtained from a particular two-
dimensional flow problem but the value of 1.7 was found

to give a comparatively fast rate of convergence for all
the Forchheimer finite difference analyses including those

for axisymmetric flow.

The results of & similar investigation into the

convergence of ‘the exponential finite difference solution
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for the same problem are shown in Fig, 4~5-3.
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TI1G, 4-5-3 OPTIHMUM OVER RELAXATION FACTOR FOR
EZPONENTIAL TFINITE DIFFERENCE SOLUTIONS

From Fig. 4-5-~3 the optimum over relaxation factor for

the exponenitial flow solutions is approximately 1,6,

In obtaining the numerical finite difference
solutions allowance has to be made for adjustment of the
boundary values both at the free surface and at the
bottom boundary. The position of the lower imfermeable

base is fixed and the finite difference form of the

boundary condition at this boundary is applied each
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iteration +o obtain improved values, However the iree
surface adjustment involves a change in the boundaries
of the actual field being solved and, for a stable
adiustment bechmique, the free surface boundary condition
is applied only after the field of values is reasonably
well 'settled dowm'., Thus for the first three oxr four
surface adjustments, twenty or more iterations were
carried out per surface adjustment until the Tfield of
values was fairly stable, after vhich only three or four
iterations per adjustment were needed. The exact numbers
of iterations veried for different problems and the most
appropriate values were determined at the time of

olution,

V]

4.6 Generel Progrem Arrangement and Ouitpvut of Finite
Jifference Solutions

The finite daifference numerical solutions were carried
out using the University College of Townsville's IBM 1620
computer with exvended memory capacity. Most of the
programs vere written in PDQ Fortran, which is a
modification of Fortran II and which operates approximately
three times as fast as Fortran II, although it has limited
error detection facilities. The programs were arranged
in sets of link programs using a 'common' data storage

area so that the maximum number of nodal points could be

included for each problem analysed. DBecause of the
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amount of computer time recquired on the IBM 1620, the
programs werc written so that the iterative process could
be interrupted at any stage and then continued on from
this stage at a later tvime.

The interrelation between computer programs is
shown in Fig, 4-6=1. The initial position of the free
surface is calculated in the initial input program foxr
Darcy fiow; the finite difference grid is set to- a.
predetermined scale throughout the field and the short
arm lengiths, where the grid lines intersect the free

-n
L

surface, are calculated. Initial values Ffor piezometric
head are then set at all points in the field. The Main
Program for Darcy flow is ealled into the working section
and the iterative solution of the finite differcnce
eguations is carried out including automatic adjusiments
of the free surface. The flow calculation program can be
called a2t any stage to print out the flow across each
vertical grid line. A comparison of these flows serves
as a continuity check and gives some indication of the
accuracy of the solution. This feature was incorporated
because it is somebimes difficult 4o ascertain the
accuracy obteined simply from the change in value at a

Point between successive iterations. After completion

of the flow caleculation, the program can either reburn
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to the Main Program for more iterations or proceed to

plot equal head lines and lines of equal flow.

The Darcy solutions for piezometric head were then
converted to initial values for either Forchheimer or
exponential flowv analyses; Tor two-dimensional flow, the
solutions were input directly as discussed in section 4.4,
The procedure for solution of either the Forchheimer or
exponential flow problems was similar to that described
for the Dercy solutions. In vhe case of thé Forchheimer
solutions for axisymmetric flow, provision was made for
the inclusion of a fine grid area near the well 1o

increase the accuracy in determining the height of the

seepage suriace,

The average value of discharge calculated from the
finite difference solutions was printed out while a flow
net for the problem was produced by the on-line plotter,

-
L

The flow net showed equal head lines and lines of equal
flow throughout the field including the fine grid area

when +this was incorporated in a solution.

4,7 Finite Ilement Methods of Analvsis

Many problems involving elliptic partial differential
equations can be related to the minimisation or meximi-
sation of an integral. This property, which is discussed

more fully by Courant and Hilbert (1953), leads to an
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alternative variational formulsastion of the problem.,
Instead of attempting 1o solve the partial differential
equation in its originel form, the problem is converved
to one of maximising or minimising an integral throughout

the field.

Llthough originally developed as a direct application
of the principles of structural analysis, the method of
finite elements hes since been shown to have wider
applications. De Veubeke (1985) showed that it could be
interpreted on the basis of minimisation of the total
potential energy of a physical system, and in effect
becomes a numerical method for the solution of problems

oL

analysed by the varietional principles of mechanics,
which were discussed by Lanczos (1962). Zienkiewicaz
and Cheung (1965) demonsirated the logical extension of
the method of finite elements to solve the alternative
variational formulation of Tield mproblems involving
elliptic partizl differential equations. The specific

tions Whey solved were those of Laplace and Poisson.
The method is ideally suited to the analysis of problems
involving nonhomogeneity and anisotropy for linear flow
through porous media, as shovn by Zienkievicz, Mayer
and Cheung (1966), while Finn {(1967) and Taylor and
Brown (1967) have demonsirated its versatility in

handling free streamline problems with the Laplace equation.,
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4.8 Mathematical Considerations and Boundarv Conditions
with the Finite Zlement Methcd

Houations 2.,4-7, 2,5-25 and 2,5-3C are the differen-

tial equations for which soluvions are required in the

flow domain. For purposes of discussion, consider flo

et

7
through the dam with 2 lower impermeable boundary as

depicted in Fig. 4-8-1,

#1G. 4-8-1 FLOV THROUGH A Dil

A Tunction h is required vhich satisfies equation 2.4-7,

2.5-25 or 2.5-30 inside the domain ABCDEA, The boundary

conditions are similar +to those outlined for flow through
o permeable wall, in sectvion 4.3 and can be stated

briefly as follows:

h =h : on AB
u
h = hd on DE
h = v on CD
Jh

= 0 on BC in vhich n is the

ol
i
(!
o
]
o
ol
=1

direction of the normal to the

boundary at any point.



The mathematical theory behind the variational method
has been developed in some detail for limear parvial
differential cquations. It has been shown (Forsythe and
Vasow, 1960) that only seif-adjoint preblems can be solved
by minimising an eguivalent integrael expression. For a
given differential cquation:

L(h) =0 coee 4.8-1
the reguirement for a self-adjoint problem is that the
operator L itself be self-adjoint and that the boundary

conditions vaike a snhecial form:

oh oh
C!h "{")\: "E"ﬁ an+ Sas“‘“‘O p o 2 @ 4:8”2

in yhicha, A, f,0 are continuously differentiable
: o ch . .

functions of s on the boundary; §é is the inner normal

s 3h L . . )
derivative and Epe the positive tangential derivative on the
boundary. Conversely if the boundary conditions take the
special form (4.8-2) and if the operator L is self-adjoint,
the problem is also self-adjoint and may be solved by the

variational method.

Tor the general veriational preblem:

B(h) = %{ G (n, b, by %, y) dxdy ceee 4.8-3

the Zuler eguation, from the Caleulus of Variations
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(Pars, 1962) for the minimisation of E in the region R is

olr 0 9G 8 ,0G 3 |
ah_“ax (ah ) “ay(ahy) = 0 e &0 0 4,8 4

and if vhe boundary condition is c¢f the special form
(4,8-2) it is called the natural boundary coadition because
it is automatically satisfied by the function h minimising
(h), without being imposed (Forsythe & Wasow, 1960). For
the expression given in eguation 4,8-3 the values of a, A,

B, 96 can be shown to give the natural boundary condition:

26 dy , 3G dx _ )
"ahx ds+ahvds‘”0 e 2 08 4\-.8 5

Thus if the actual boundery condivicns in a given problem
are of this "natuvrall type, the variational method is 2
powerful analytical technique because it requires only the
minimisation of the integral &(h) without any special

allowance for boundary conditions.

The mathematical baclkground for the application of
the variational method to nonlinear partial differential
equations appears to be velatively undeveloped and, av
this svage, guidance can only be obtained from the
conclusions reached for the linear case, Thus, for -
given nonlinear equation, if it is possible to derive an

integral expression E(h) such that minimisation of E(h)

according to the Duler equation yields the original
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differential ecguation and if the boundary condition is of
the special form of equation 4,8~5;, then such a nonlinear

ecuation should be tracteble by a variaticnal formuleation.

It should be noted that the boundary condition may
differ from the natural one for some sub-section of the
boundary, provided this new condition is then imposed on
the solution; such a condition is the regquirement that h

have prescribed values on AB and CDE in Mig. 4-8-1.

4.8,1 Darcvy floiw

According to ecuations 4.8-3, 4.8-4 and 4.8-5, the

U

el

Lapl

A

voion is mathematically eguivalent to minimising

(‘:‘Q

ce e
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ntegral
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fode
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)

Eh) = 55 {(n + (hy)g} dxdy caoo 4,8-6

with the natural boundary condition:

- 2} —-id‘ Wd}{ = oy -
dﬂ.x dS + 2hy ds O ¢ e O e 4-‘08 7
a
or '8-‘% = G o0 ¢ 0 40 8""8

The natural boundary condition 4.8-5 agrees with the actual
one along the free surface and along the impermeable base
since zero head gradient perpendicular to the boundary

fulfils the requiremeni of no flow across itb.

4,8,2 Honlinear flow

In crder to express eguation 2,5-25 as eguivalent 1o
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minimising an integral, according to the general expressions
4,3-3 and 4.8-4, the following recuirements must be metb:

3G

7 - 9
s n
26 -, - ¢ {_ ml-;/(~&)2 2el 1 Ry) %
ahx 1 2b ~ v 2b IS J IhS‘ )
)eeg 4o8“9
)
e R _ 2 h (~h_ ) ¢«
g—;(-: :vzcl{w-éﬁ,;_\/(_g{g) +i§l] hV %
Y | %5 )

in vhich C1 is any consvant value, IT C1 ig put equal to

-1, these requirements are fulfilled by the function

3
2
2 h /
P - 2 . Lnél} 4. Q-
b= - 2b [hsl + Sb {(Zb) -+ b e 6 & o ‘Lo 10

and the integral to be minimised is
3
2
2 h /
ah) 8 2 oay o sl }
(h) = [f] - o !hs} + 8b{(gb T } | dxdy
soes 4.8=11
The natural boundary condition is

8G dy , 3G ax

- h de 4 G
ah dS ah ds O R g D 12
x Yy
or u ds v‘ds O o000 498 18

-h h
X Sy - dx _ o4
or Tg:ET?TT P + {gx%Tva ds = 0 cses 4.8-14

N

This reduces 1o
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o W dx _ %h _ vee. 4.8-15
x ds hy ds on -

which 2gain agrees with the actual boundary condition on

the free surface and along the impermeable base.

A similar anclysis for the differential equation

2,5-30 shows that the integral to be minimised 1is

(-
31
m-r

i .o ]hszm AXAY  eces 4.8-16

1
c /m m+1

7ith the natural boundary condition:

For ¢ and m constants the integral tc be minimised reduces

to

i'&.}
21+
]

EB(h) = [f hs dxdy eeoe 4,8~18

4,8.3 Concepts of energy minimisation

In treating problems of flow through porous media,
velocity is usually considered as the superficial velocity
or flow per unit total area, ignoring the presence of the
gsolid particles; the piezometric head value at a point is

considered to be the average of wvalues over a region of

H

fluid and medium centred on the point in gquestion. Fo
analytical purposes therefore, the fluid-medium system is
replaced by an imaginary fluid occupying the total wvolume

and which behaves in a manner governed by the velocity
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head logs relation for the flow.

When Darcy's Lawy is valid the imaginary fluid
behaves analogous Lo an ideal fluid in irrotational flow;
because, although all the energy is assumed to be
dissipated in friction, the head loss relation is of such
a form that the imaginary fluid occupying the total volume
can be considered as a frictionless fluid within the same
boundaries.

From hydrodynamic theory {(Lamb, 1932), it can be

A A

shown that the integral:
op op | _
1w 53 + v 5;) axdy coee 448=19

(for two-dimensional flow) rvepresents the rate at vhich
the pressure forces do work on the bounderies of all

o
L

elements of 2 fluid in a given region. “Yhen the work done

by gravity is included, the integral becomes:

1(u g2+ v 21 axay Ceve 4.8-20

This work done on any portion of the fluid has two possible
effects, It may either increase the kinetic energy of the
fluid or it may be dissipated as some other type of energy,
for example heat energy, due to the action of viscous
stresses in the element.

The rate of iacrease of kinetic energy is given by

é%ij%(uz + vg)} ot any point., That is:
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du dv
O A
or au ou . . 24 . ox ,.@.Z+,§£ 4.8-21
St ey Py Pty T gy e 408

In deriving Darcy's Law on a theoretical basis from the
Navier-Stokes eguations, it is assumed that all terms of
the type included in brackets in the expression 4,8-21 are
negligible., This, in effect, means that the rate of
increase in kinetic energy at any point in the fiow is
considered negligible, so that, if Yarcy's Law applies
then all the work done by the pressure and gravity forces

el

‘riction.

e,

e}

must be dissipated as

¥

In actual practice the expression 4.8-20 will only
exactly give the rate of energy dissipation when there is
no change in the velccity components throughout the flow.
This is also the only situation in which Darcy's Law will
hold exactly because, if there is a change in veloeity then
there will be a change in kinetic energy, and some of the
vork dome by vhe pressure and gravity forces must be
responsible foxr this change. As a result the integral
4.8~20 would nov then precisely express the rate of energy

dissipation.,

However when Darcy's Law applies, the integral 4.3-20
Goes represent the rate of energy dissipation as showm by

~

Muskat (1948). Thus in apnlying the method of finite
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elements to Dercy flow, the minimisation of the integral
4,8~6 has physical significance in that it is the
recuirement for the rate of energy dissipation in the flow
to be a minimum, as discussed by Zienkiewicz, Hayer and

Cheung (1966 .

Engelund (1953) briefly considered the Calculus of
Variations as applied to groundwater flow. He considered
a nonlinear velation in the form:
i=F(|V])V coee 4.8-22
in vhich F(IV]) = a + |V | eroo 4,8-283
After obtaining expressions for uv ard v from ecuation

7,

4,8-22 and substituting in the continvity equstion, th

o

systvem describing the flow becomes:

. (Eﬁ) + 9, EI) =0 4.8-24
aX F ay F - - ¢ L

bngelund suggested that ecuation 4.8-24 was, by virtue of

Zuler's theorem, ecuivalent to minimising the expressicn:
1 2 1 2
o h) +M h)] dC]L' o8 0 O 408"‘25
I [F( « 7 (B xdy

However when F is defined as in equetion 4,.,8-23, it is a
function of V and therefore of hx and hy so that application
4

of the Euler theorem tc the expression 4,3-25 does not

vield equavion 4.,8~24 in this case.

In addition, the expression 4,8-20 has not been shown

to represent the rate of energy dissipation when Darcy's
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Law does not apply. The reason for the application of a
nonlinear ecuation, rather than Darcy's Lew, is to account
for the contribution of térms such as those included in
brackets in 4.3~21. Thus for nonlinear flow the rate of
change of kinetic energy can no longer be considered
negligible. This means, in effect, that the integral
4,5-20 now represents the sum of the rates at vhich
kinetic energy is being increased and at which energy is
being dissipated in friction. Hence for the case of
nonlinear flow in porous media, although the integral
4,3-20 can still be evaluated, any physical significance

43
RS

in terms of minimising the rate of energy dissipation, is

lost,

4,9  Details of the Metvhod for Triangsular Slements

The numerical technique of finite elements has been
applied to lincar seepage problems as noted earlier
(Zienkiefsficz7 leyer and Cheung, 1966; Finn, 1967; Taylor
snd Browym, 1967), vhile Fenton (1968) adopted the technique
for the analysis of flow governed by the exponential
relation and compared solutions for diiferent values of

the exponent m,

Consider 2 general region divided into #triangular
elements with one particular element denoted by nodes I,

J, M as shown in Fig., 4-9-1.
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FIG. 4-9-1 THE FINITZ ZLEMENT FORMULATION

The clements are assumed te bée small enocugh so that
the nodal values of h accurately define the piezometric
head funcition within each element. Then by representing
the funcition asg 2 linear polynomial in each element and
minimising the integral E(h) in ecuation 4.8-8 with
respect to each nodal value, Zienkiewicz (1967) hzs shown
that, for Darcy flow, a solution ig obtained from 2 set of
simultaneous eguations in hI where hI is the piezometric
head value at node I; I has values 1 to N for N nodes.
These equations may be solved by an iterative method for
the unknown velues of h1°

Por the parvicular element IJM, h may be expressed as:

h = (aI + byx + cIy)hI + (aJ + byx + ch)hJ

+ (am - bMX + CMy)hM esos 4,91
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. . *37w T Mg
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and the remaining coefficients are obtained by cyclic
permutaticn of subscripts; and 24 = 2 x area of triangle
IJM.

The process of minimisation of the integral E is best
accomnlished by evaluating the convribution to e=ach
differential, such as %%_, from a typical element, then

i
adding all such contribuvions and equating to zero.
L similar avproach based on triangular elemsnts will

be used in the present analysis for the nonlinear flow

problem.

For flow governed by the Forchheimer cquation the
integral E(h) to be minimised is given by equation 4.8-11.
- e . : )

If B is the value of E associated with an element

(implying an integration limited to the area of the

[83]
o
’_»!
[

element) then:differentiating equation 4,8-11 yields:

@D

L
e 2 h 2y 91h
9E _ [ - =& ((-«.i.i 4.!..;3.!_} _..L_S:’..L dxdy

o T dh

6 0% o 4‘.0‘9""3
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L s ", 2 2
but |bg] = (b7 + b ) cooe 4,94
d.th l 1
so that ahs = (h bI + h ¢ ) svas 4,9=5
I ! s] y
and since hs9 hx and hy are assumed constant over ithe aresa
of the element then:

1
2

8E® a a, 2 lhgl 1

5 = [* + { 2b) + o (hxb1+ hyCI)fdedy

hI 2b b S
* ¢ @ & 4:09"’6
From equation 4.,9-1 it may be shown that:
oh
= e —
by = 5% = Prbyt Dyhy + byhy %
) 2 9 20 409""?
b — ua-s}u.-]; —_— P o) o A b A
1 - e 0 ez d H A e hd , gl J
vy Oy I'I JJ MM
and since [fdxdy = A4 esoe 4,9-8
_%_.
.;.hen ,@._E_.e — ,___é___ - il + (,_....a’_ 2 + EI.S.J.
“ oh h 2b 245] b
I |%s]
[ (b h + b h + b. hM) + CI\C hI + thJ + cmhm)
o o 4 44-9““9
or o = Ab (bshy + b;h. + b h,.) + sc {csh ¢ h-+e, b )
hI N1 JTd MM rCrhy *oeghgteyhy

o o 9 ® 4@9"‘10

1
2 h :
in which A = “iL“ [~ — +{: =5 -+ irﬁi:} } ssee 4:9-11
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Since any element conitributes to only three of the

Aifferentinls associated with its nodes:

- ~

2 o a O 4.9"‘12

Y
¥} fol)
:rlm
[0
At
H
AN
Dl oy
=18
o
v—

o
0%°
9h,
\_ Mo
e )
then {ggm = [8] {he§ oooe 4,9-13

in which an example of one element of the S mairix SIJ iss

— i 4' —
SIJ- = AVIDJ -+ A.CICJ et o 914

A

The final equations are obtained by adding all parts of a

Q2

differential such as == for all elements connected to

2
[

i

Hode I and eguating to zero.

GH ZaEe ;
] foed sma— T C » o 0o 409'—i5

3h1 hI

Z[S] {hv} = O 5 000 4209"'16

For flow governed by the exponential relation the
integral to be minimised is given by equation 4.8-18. The
process of minimising %he’integral associated with an element
again leads to eguation 4.,9-18 in which one term of the 3

matrix is given by equation 4,9-14 except that in this

case the factor A is:



Lgsembly of the total derivative for any node again yields

w

equation 4.9-1

o

FPor all nodes the result is a narrvow band width set

of simultaneous eguations in h19 hJ, hyos oo etc which may
be solved by an iterative method. The iterative procedure
used was the accelerated Gauss-Seidel method with an over-
relaxation TYactor of approximately 1.7; this has been

shown to give rapid convergence of the finite difference

solutions and was found to be satisfactory for the finite

glement solutions also. It should be noted thatl the
expressions for A as given by cequations 4.,9-11 and 4.9-17

contain the derivative hs which must be evaluated in terms
of the nodal wvalues hI, h,. and hM' Thus, in order to solve
[

Eal
L

or values of h av the nodal points some initial value at
each of these points must be known. The solutions to the
Darcy flow situation provide convenient starting values

for h at the nodes. The procedure is to calculate the [§]
matrix in terms of these initial values and then solve for
more accurate values of hy, hy, hy etc; then use these more
accurate values to re~form the [S] matrix and calculate
more accurate values still, The process is repeated until
the change in successive values of h

1 5 :
19 }1(}-9 11&{15 6 oo o G—LC 18
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m 3

76 debtermine the optimum number of iterations

é

negligibles
performed between successive formations of the [S] matrix,
& compromise has to be reached between: (a) the time
taken by more iterations producing only small changes in
the values, and (b} +the extra time involved in setting up
the matrix more times at an earlier stage with less
accurate valuces of h atv the nodes. This optimum number
will depend on the problem in hand but for the problems
solved in this thesis, from 10 to 15 iteravions beiwecn
successive formations of the [8] matrix were found to give

shortest overall computer time requirements,

The method used for handling the free surface was

similar to that outlined by Tinn (1967). If v and h ave
both nmeasured from the impermeable basge as datum then one
boundary reguirement on the free surface is that h = v,

The initial position of the free surface was taken as the
result obtained for Darcy Tflow. Surface adjustments to make
¥ = h on the top boundary were carried out after the

values cf h had 'settled down' under the assumed boundary

at any time, Usually only 1 or 2 adjusiments were neecded

to obtain an agreement between y and h ‘o within 1 percent
for the flows with no cut=off wall; however, for the flows
with cut-off walls the increased complexity in the bottom

boundary shepe necessitated more adjusiments to the free

surface,
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The initial position of the free surface for the
analysis of flow through a dam was obtained by sketching
vhile the initial values of piczometric head at the nodes

wvere guessed from the adjacent free surface height and

were incorporated with the input data for the nodes.

The finitve element soluvions were output by plotiting
the elements with the on-line plotter, and printing outv
values of piezometric head at cach node and velocity
components for each element., The position of the free
streamline was therefore obtained auvomatically from the
plotter output while egqual head lines could be skeiched by

AacCToEs

n
j+7)

hand from the nodal head values, The digcharge
s number of vertical grid lines throughout the field were
caleculated and the average of these gave the finite
element soluvion for discharge. Because of the difficultly
of writing a general computer program to plot ecual flow
lines from a random arrangement of elements, these flow
lines were not usnally included in the finite element
outputs. However, there is no disadvantage in this
because all the desired information about any particular
flow problem can be obtained from the plot of piezometric

head wvalues.



CHAPTER 5

EXPERIMENTAL APPARATUS AND PROCEDURES

5.1 Permeameter Tesgts

To determine appropriate values of the coefficients
in the head loss relations, permeameter tests were
carried out on the aggregates used in the experiments.
The constant head permeamebter was an upward flow vertical
type of length 3 ft. 6 in., with piezome%ric head
measurements being taken over a 1 ft, 6 in. central
section., The permeameter was comstructed from 1/8 in.
perspex tubing of 6 in. outside diameter. Four brass
taps, spaced 6 in. apart vertically, and at each corner
cf the four guadrants of a circle, served as outlets to

manometers for pressure measurement.

Vater was inlet to the permeameter via a steel basin,
1 ft. 0 in. deep and 1 ft. 9 in. in diameter, which was
partly filled with coarse gravel to dampen anmy fluctuations
in the flow. The sample of aggregate was supported on a
gauze covered ring at the bottom, and held in place with
another gauze covered ring et the top. 4n overall view

of the permeameter is shown in Fig.5-1-1.

A thermometer was inserted in the flow to record
temperatures; and the flow rates were measured gravimet-

rically. Petrol ether was used in the manometers, at

160,
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low flow rates, to increase the accuracy of measurement,
while for larger flows water manometers were used, For
porosity determinations, the permeameter was weighed
empty, and again when filled 1o a measured depth with
dry aggregate., Aiter obtaining the specific gravity

of the aggregatve material, the porosity of the sample

in the permeameter could be calculated.

5.2 Circular Tank Apparatuszs for Well Mow Exveriments

5.2.1 Construction details

The circuler +tank of 20 £4. diameter was constructed
with 6 ft, high walls and with a base formed by a
reinforced concrete slab 25 ft. square. The walls were
attached to the slab via a circular metal band which was
rolled from 4 in. by 3/8 in. flat steel and which was
set 2 in. into the slab, The band and slab reinforcing
were spot welded, and the band was levelled with a dumpy
level before the concrete was poured, to ensure that it
was horizontal. Special precautions were taken when
pouring the concrete, to produce a slab surface which
was as uniformly horizontal as possible., A check on
levels talken over the 25 ft. square, after the concrete
had sei, showed that the maximum deviation of the slab
from the horizontal was less than 1/4 in.

The walls of the tank were constructed from flexiform

vhich consists of 2 £+, by 6 fi., 14 gauge metal sheets,
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braced in the longitudinal direction by light angles at

8 in. centres. This allowed the sheets, when bolted
together, to flex and take up the required circular

shape. The joint between the sheets was sealed with
secostrip (a sealing compound in long thin strips), as

was the joint between the walls and the metal band in

the slab. The tank was braced in the circumferential
direction by 1} in. diameter pipes, rolled to the diameter
of the tank. Fig. 5-2-1 shows details of the flexiform
construction, with circumferential pipe bracing, and

longitudinal angle bracing on individual sheets.

Twvo larger removable panels were constructed from
3/16 in, rolled steel plate to allow access of trucks and
end loaders for filling and emptying the tank. These
panels were also braced with angles in the longitudinal
direction and circumferentially with pipes. Fig. 5-2~2

shows the tank with these panels removed.

5.2.2 Inlet arrangement

The constant head required at the external radius
of the simulated aguifer was produced by a porous wall
of hollow concrete building blocks. The blocks, with
openings in the vertical direction, were stacked in a
single layer around the circumference as shown in Fig,

5-2~3, The water could then seep through into the aquifer
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material horizontally at the outer boundary. The water
for the experiments was supplied from a constant head
reservoir via a 5 in, ziuminium pipe and hexagonal ring
main., The ring main was supported on brackets atvached
to the circumference of the model and water was conducted
into the layer of blocks by & number of 1% in. diameter
tubes spaced around the ring main, The flow to the tank
was controlled by a gate valve in the lime from the
constant head reservoir, The inlet arrangement including

the ring main is shown in Fig. 5-2-4,

5.2.3 Qutlev arrvangement and flow measurement

The well at the centre of the aguifer was constructed
from pipe which was drilled over the section subjected
to flow. A 4% in. outside diameter pipe was used for the
confined flow experiments, vhile one of 8% in. exiernal
diameter was used for the unconfined tests. The holes
were drilled at close intervals so that only a skeleton
of metal remained to support a fine gauze, which covered
the holes in an attempt to prevent movement of fines from
the aquifer material. For example, with the 8% in.
diameter pipe, holes of 13/16 in. diameter were drilled
at 1 in. centres. In this way, negligible additional
head loss would be incurred as there is little increase

in curvature of the flow lines at the slots. Although
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some slight head loss may result at the highest velocities,
due to the small amount of metal remaining between the
holes, the well can be assumed to be uncased for the
purposes of the invegtvigation. In each case the well was
placed at the centre of the tank and rested on the

concrete slab.

The drawdown to the well was maintained by pumping
the water back through flow measuring devices to a
storage reservoir. Two electric pumps were used to
produce constant flows over extended periods of time,
For low discharges, a small self-priming unit capable
of pumping 30 gallons per minute was used while for
lerger flows, a unit capable of up to 1.25 cusecs was
employed. The flow from each pump was regulated by
means of valves on their delivery lines. The flow into
the tank from the main, and the outflow from the pumps
were varied to produce constent head conditions at the
external radius and in the well itself. Measurements
of discharge showed bthat the output from <the eleciric
pumps was constant, to a high degree of accuracy, over

long intervals,

Two methods of flow measurement were used. Most
discharges were measured gravimetrically using a drum

on a set of scales which could be inserted under. the
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outflow for a measured period of time, This method is
depicted in Fig. 5-2-5 in which only the outlet for the
small pump is shown, although flews from the larger pump

were measured similarly in some cases.

The other method of mcasurement involved a 90 degree
vee~notch weir with ivs associated inlet channel, in
vhich a gravel wall was included to act as a baffle
for stabilising the flow on the upstream side of the welr.
The weir had been previously calibrated and the height of
the water above the vee~notch was measured using a hook-

gauge, The arrangement is shewn in Fig, 5-2-6.

5.8 Confined Axisvmmetric Flow Tesgts

5.83.1 Technique for confining the flow

A confined aquifer wes obtained by using viscueen as
the confining medium, This is a soft, yet durable
plastic~like material which is used extensively in
constructing ground-level concrete slabs, to prevent
seepage of groundwater upwards through the slab. A4 sheet
of visqueen 30 ft. sguare was laid over the aquifer
medium and was drawn up at the sides to cover the layers
of bricks above the level of the agquifer. Fig, 5-3~1
shows the visqueen covering the aguifer medium, and
ready to be drawn up to cover the upper layers of concrete

bricks at the outer wall. Sand ballast was then placed
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on top of the visqueen to seal it against the aggregate
in the aquifer and against the outer brick wall. This
method of sealing the flow proved to be gquite satis-
factory and heads of water at the outer boundary could
be obtained up to any desired level, by introducing
sand ballast up to that level. The sand ballast is
shovn in position in Fig. 5~3-2. A section through the
model showing the flow path for the confined aquifer is

givell iIl Figo 5""3""30

5.3.2 Piezometric head measurements

The depth of water in the hollow concrete brick
wall at the outer boundary, was measured by means of a
standpipe attached to a scale, and connected to a
tapping point at the base of the tank via a piece of
flexible hose. A number of these standpipes were placed
around a gquadrant of the circle and the average of their
readings was taken as the external head he’ A comparison
of the readings showed that differences between the
heads measured were small. Iig. 5-3-4 shows the

arrangement for one of the standpipes.

The depth of water in the well was measured by means
of an electrical resistance device. This consisted of a
volt~ohmmeter with its own power source, and a pair of

wires which produced a change in resistance when a probe
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(to which they were attached) passed from air into water.
The srires were bared at the end for ¥+ in. and were
separated by % in., They were wound on a 3/16 in.
graduated brass rod which could be lowered into the well.
The change in resistance when the probe intered the water
yas registered as a sharp deflection on the voli-ohmmeter.

Fig. 5-3-5 shows the probe with bared wire tips, while

Fig. 5-3-6 shows the volt-ohmmeter used.

Since the theoretical calculation of discharge for a
confined aquifer depends on the difference in level,
between the water heightsin the well and at the external
radius, as well as on the magnitudes of the heights
themselves, the meximum possible accuracy must be ensured
in measuring the difference in levels. A horizonital
datum line was therefore set with a dumpy level and the
depths to the two water levels below this line were
measured, allowing an accurate calculation of the

difference between them,

It was originally intended to use porous plug type
piezometers, developed by Casagrande (1949), in determining
the shape of the piezometric head line through the model,
However, as these could not be obtained in time, some

3

alternative piezometers were fabricated from % in, diameter

pipe, which was drilled with 3/8 in. diameter holes and
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covered with gauze for a length of 4 in. at one end.
The end was shaped to a point for ease of insertion in
the aguifer and to ensure that the piezometer rested on
the base slab. Tig. 5-3-7 shows the end section of the
piezometer, drilled and gauzed and shaped to a point,

while Fig, 5-3-8 shows the whole piezometer,

When the piezometers are inserted into the aquifer,
the water rises to the level of the piezomeuric head at
the point. The piezometric heads at a number of radii
can therefore be obtained by measuring the deptvh +to the
water levels in the piezometers, using the electrical

resistance gauge.

5.83.3 Experimental procedure

The model was filled to the required depth with
acguifer material by removing the gate panels and allowing
trucks to enter the model and discharge their loads.

The well was then set into position, the panels replaced
and the aquifer material spread and levelled by hand.

The thickness of the aguifer was checked with a dumpy
level to ensure uniform thickness. The gravel material
used in the experiments was placed to a depth of 1,33 ft.
and a check on the levels showed that the maximum

deviation from the horizontal was less than 38 percent.
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When the aquifer had been levelled, the visqueen
sheet was laid and the piezometers were inserted and
sealed in the visqueen. These were placed in two lines
at right angles to enable an average value of piezometric
head to be determined at each radius chosen., Four
piezometers were included in each line at radii of 1 f£t.,
2 ft., 4 £t., and 8 £t. The sand used to hold the
visdqueen in position was then placed in the model by a
front loader. Fig., 5-3-9 shows the tank prepared for
testing, with the two lines of piezometers and the ballast

sand in position.

Fater was allowed to enter at the outer boundary and
wvhen the level in the well had risen above the aguifer
depth, pumping was commenced., As a gravel was used for
the aquifer material, no problem swas envisaged with air
entrainment, after a large flow had been drawn through
the aguifer initially, to wash out any entrapped air.
However, some small amount may have remained in the
aquifer but it is not considered that this would have

significantly affected the results.

The pump output was set to the regquired flow value
and the inflow-rate was then adjusted unbtil the desired
head at the external boundary had achieved a steady value.

By checking water levels and discharge rates before and
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after each test, it was found that an essentially steady

state could be maintained over long intervals of time.

5.4 Unconfined Axisvmmetric Flow Tests

5.4.,1 Experiments with complete circle of material

The confined flow experiments, described in section
5,3 were carried out using a complete circle of material
so that nc wall effects from side walls were introduced.
However, the agreement of results from the two lines of
pliezometers at right angles indicated that the flow was
accurately axisymmetric as assumed. This demonstrated
that for small gravel sizes, a sector of material could
be uged to represent the complete circle of flow as had
been used by a number of previous researchers, and
discussed in section 3.2.1. However, one set of results
was obtained for unconfined flow %o a central well in
a complete circle of material., This set of experiments
wvas carried out because a sufficient supply of gravel
material was readily available and because, in this case,
vall effects were completely eliminated, and the flow
situation was similar to that lilkely %o occur in practical

applications.

The experimental procedure was gimilar to that
outlined for the eonfined flow experiments except that

the porous plug piezometers had been obtained and were



178,
used, in conjunction with the electrical resistance
meter, to determine the height of the free surface.

These piezometers, which were discussed by Casagrande
(1949) were 2 ft. long hollow tubes, porous throughoutl
their entire length. They were placed so as to intersect
the free surface at a number of points between the well
and the external boundary of the aguifer material,
However, the water level in these piezometers does not
exactly represent the height of the phreatic Lline,
Hantush (1962b) indicated that, in an unconfined aquifer,
an uniined well will register the average of the
piezometric heads taken over that part of its length
below water level. The error, thus incurred in determining
the height of the free surface, can be minimised by
having only & small length of tube below water level;
nevertheless, only an approximate measurement of the

free surface position was obtained.

Measurements of the water levels at the outer boundary
and in the well, together with discharge measuvements,
were obtained as in the confined flow experiments

diseussed in section 5.3.

5.4.,2 Experiments using a sector of material

A fifty-one degree sector was constructed as a part

of the large circular tank described in section 5.2, using
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the access panel section of the larger tank for the
outside boundary of vhe sector, to facilitate removal
and replenishment of aquifer materials. One radial wall
of the sector was consiructed from sheet steel vhile the
other was Tabricated from perspex. Both sheets were
reinforced and braced to withstand the pressure from
the agquifer material and from the water. The sheets
were sealed against the concrete base by bolting to
steel angles which were in Hturn bolted to the concrete.
The well casing was also bolted down and sealed agains®
the concrete slab, while the radial walls were attached
to the well via wvertical angles welded fo the casing.
The well, of 8% in. outside diameter, was drilled and
gauzed only over the section enclosed between the
sector walls., & view of the empty sector, with the
outside wall removed, is showyn in Fig. 5-4-1 looking

tovards the well,

A row of hollow concrete blocks was agoin used at
the outer boundary to allow water to percolate into the
aquifer from a constant level, However, in this case,
an overflow was arranged at the outside wall to enable
a constant level to be maintained with a minimum adjust-
ment of the guantity of incoming fiowo Water was
conducted to the sector via a 5 in. aluminium pipe

terminating in a tee~section, from which six 1% in.
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diameter inlet tubes were fed into the hollow concrete
brick wall, Five standpipes were spaced around the

outer boundary to check the water level and, by

adjusting the flow in each inlet tube, the external

head h_ could be maintained constant to within 1/10 in,
over the complete scctor boundary. The inlet arrangement

to the sector is shown in Fig, 5~4-2.

The water level hw’ in the well, was also measured
with a standpipe attached to a tapping point in the
sealed section of the well casing. Both levels were
measured from the same horizomtal datum, to eliminate any

small errvors due to variation in the concrete base level.

Piezometric head measurements throughout the flow
were obtained from brass taps inserted into the radial
steel wall at various points, Fig. 5-4-3 shows the
arrangecment of tapping points which were used for

measuring piezometric heads.

The position of the phreatic surface was obtained
by plotting along the transparent pevspex sheet. Although
surface tension effects were small for the gravel
materials used, they did slightly affect the free surface
height along the perspex sheet, To minimise these effects
as TYar as possible, the material was excavated next to the

Perspex sheet, almost to the free surface level., The
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vhreatic line was then drawn on a square grid which had
been marked on the perspex sheet. This facilitated the

recording of the free surface position for cach test.

The measurements obtained by this method were shown
to be satisfactory, by checking the levels in a glass
tube, of sufficient diameter to nullify surface tension
effects, which was inserted next to the perspex wall.
This procedure was described by Boulton (1951) vho used

it to check his free surfaece heights.

One free surface line is shown as drawn on <the

perspex sheet in Fig. 5-4-4,

5.5 Tyo-Dimensgional Flow Hxperiments

5.,5.1 Gravel bank tests

The two-dimensional flow tests were carried outv in
an open flume 2 ft, wide, 2 ft. deep and with one clear
perspex side for vieving purposes. Water was supplied
to the flume from the congstant head reservoir via a 6 in,
diameter pipe discharging into a stilling basin on the
upstrecam side of the flume. The inlet arrangement and

an overall view of the flume are shown in Fig., 5-5-1,

At the outlet end, the flumc discharged into a
calibrated measuring tank. A set of scales and a weighing
drum could also be set under the outlet, so that flow

rates could either be measured gravimetrically with the
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scales or with the calibrated +tank. The scales are

shown inside the calibrated dank in Fig, 5-5-2,

In the experiments on flow through gravel dams and
banks no abttempt wes made to model actual dam conditions,
as the purpose of the investigation was simply %o
determine whether the numerical solution of the
differential equations for nonlinear flow, could predict
accurately the position of the phreatic surface and the
quantity of discharge, for known boundary conditions
and material properties. For larger flows therefore, a
wvire screen was positioned at the tow of the gravel dam
to prevent scour of materiel on the dowmstream end; the
flow then ended in a vertical drop off at the screen
resulting in zero tailwater depth. For smallef floﬁs
however, the grazvel material was stable without the use
of the screen and a finite value of tailwater depth
occurred at the dowmstream end of the flume. No
experimental or theoretical analysis of stability

aspects was contemplated in this project.

The gravel used in the dam flow experiments was %+ in,
nominal size and no difficulty was encountered with
surface tension effects. The free surface position was
drawn on the perspex side of the flume and was recoxrded

from the grid of lines marked on the perspex. Tig., 5-5-3
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shows two phreatic lines drvawn on the transparent side

of the flume.

Measurements of piezometric head in the experiments
were obtained from tapping points on the steel side of
the flume. The arrangement of these tapping points is

shovn: in ¥ig., 5-b~-4.

Some of the dam flow experiments involved an
impervious cut-eff wall which was sealed at the bottom
and sides of the open flume. A cut-off wall is shown in

position in Fig, 5-5-5,

5.5.2 Tests on permeable walls with vertical sides

These experiments were also conducted in the open
flume., The gravel, in this case;, was retained between
two vertical sheets of gauze placed perpendicular to the
direction of flow. The experimental procedures for
measuring discharge, piezometric head, free surface
position etec, were similar to those discussed in section
5:9.3. 4 view of the flume showing a bank of gravel

between the gauze retainers is given in Fig. 5-5-6.
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FIG. 5-5-5 IMPERVIOUS CUT-OFF WALL

FIG. 5-5-6 ARRANGEMENT FOR VERTICAL SIDED
PERMEABLE WALL EXPERIMENTS



CHAPTER 6

DISCUSSION AND COMPARISON OF RESULTS - PART T

6.1 Confined Axisyvmmetric Flow Experiments

§,1.1 Coefficients in head loss eguations

The material used in the confined flow experiments
was a gravel of nominal size 3/16 inch, To obtain the
appropriate coefficients to be inserted in the head loss
relations, permeameter tests were carried out on the
material being used. If the coefficients are to corres-
pond exactly with those which apply to the material in
the actual well flow experiments, the sample taken from
the circular tank should be packed in the permeameter in
the same way as the parent material is packed in the tank,
with porosities, arrangement of solid particles, ebe being
identical. However this requirement of identical packing
can only ever be approximately met and the coefficients
obtained from the results of the permeameter tests were
therefore checked by comparing one calculated flow with
the experimental result from the tank experiments. This
is somevhat analogous to obtaining the Darcy coefficient
of permeability from a well pump test, except that no
associated permeameter results are required for the Darcy

coefficient,

For correspondence of the coefficients, the Reynolds

number range in the permeameter should also coincide with

189,
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that in the circular tank.. Since the material is assumed
uniform, the particle diameters will be equal and the
Beynolds number criterion reduces to a requirement that
the velocity to viscosity ratios be equal. Since the
coefficients in the head loss eguations are affected by
the viscosity of the water, the axisymmetric well flow
experiments were carried out at temperatures which were
sufficiently uniform to render variations in viscosity
negligible., By carrying out the experiments at similar
times on successive days, no difficulty was experienced in
maintaining the temperature constent to within 1 or 2

degrees Fahrenheit.

During the permeameter tests, however, the temperature
range vas greater and the temperatures at which the tests
wvere carried out differed from that of the well Tlow
experiments. In order to eliminate differcences due to
viscosity the permeameter results were reduced to
equivalent readings at the temperature of the well flow
experiments, Because the arrangement of the material in
the permeameter is constant, the Reynolds number criterion
of similarity can be applied to reduce the actual results
to corresponding results at the reference temperature., For
similarity of flow conditions the Buler numbers are aléo

equated since the flow in the permeameter is confined and
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gravity effects do not influence the flow pattern. Thus
if the subscript o is used to denote the reference state
and if the subscript 1 is used to denote properties
actually mecasured in the permeameter then the following
relationships apply. TFor the two states of flow to he

dynamically similar the Reynolds numbers must be equal:

Vods Ny 6 1.1
v - v s 0% 0@ a -
o] 1

and since d = d then
o) 1
s

V = V _9_ oe 8o 6:1"'2

's} 1v1

Also since pressure forces predominate in the permeameter,
the FEuler numbers must be equal:

v V.
b Q ‘—"":"'""—m];-‘_—-'ﬂ c o8 s 6.1"’"3

’2Apo/p0 ’ZAPl/pl

and because ‘the pressure drops are measured over the same

length in the permeameter then:
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vhence equation 8.1-3 may be written:
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Thus eguations 6,1-2 end 6,1-5 can be used, if necessary,
to reduce the permeameter measuremends Vi, iys to Vog-io
at the standard temperature at which the well flow
experiments were performed. With the elimination of
effects due to viscosity differences, the requirement of
a similar range of Reynolds numbers in the permeameter will

be satisfied by including a range of velocities similar to

those occ&iing in the tank.

The nominal size of the aggregate was given as 3/16
inch butl calculations from sieve analysis results showed
that the arithmetic mean particle diameter (afier Dalla
Valle, 1948) was ,110 inches. The ratio of diemeter of
particle to diameter of the permeamever is therefore less
than 1:50, There still appears to be some contention as to
the required ratic of these dimensions to eliminave wall
effects., Mott (1951) showed that for spherical particles
the wall effect was negligible for ratios of less than 1:10;
but that for irregular shaped particles the wall effect was
present at smaller values than 1:10, Recent worlk by
Dudgeon (1967) indicates that some wall effect may be
pregent at very small values of the ratio of mean perdicle
diameter to permeameter tube diameter. However, both Mott
and Dudgeon used particles of essentially unifoim size and

the wall effect is then likely to be more pronounced than
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with a graded material as used in the experimental work
discussed here. Pranzini (1968) suggested that for field
work a2 ratio of 1:10 should be sufficient, while for
research type vork a ratio of 1:40 should be atitempied,
to eliminate wall effects. The ratic of 1:50 invelved
yith the 3/16 inch nominal size material is less than both
the suggested figures, and no further consideration was

given to the wall effect.

The coefficients in the head loss equations were
obtained by fitting the appropriate curves to the
experimental data by a least squares analysis. Because
of the wide range of rcadings taken, a direct least
squares curve Tit was unsuitable as it placed teo much
emphasis on the higher readings and tended tc¢ ignore the
lower order results. A proportional least squares analysis
was therefore employed to yield values of the ceocefficients
which would enable accurate prediction of the head loss
for the full range of wvelocities encountered. Sunada
(1965) introduced a proportional least squares procedure
to £it a Forchheimer relation to a wide range of experi-
mental results. This procedure involved.minimisation of
the square of the ratio of the difference between the
observed and calculated gradients to the corresponding

velocity. A4 slightly different approach used by How Lum
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(1966) minimised the scuare of the ratio obtained by
dividing the deviation of the calculated hydraulic gradient
from the measured gradient by the measured gradient itself.
The latter approach was utilised imn this thesis and was
extended ©o a proportional least squares fit of the

exponential relation.

Thus if ?k represents the theoretical hydraulic
gradient calculated from the fitted curve and if Gk is the
observed or experimental wvalue of the gradient, both
corresponding to tae kth veloecity reading Vk, then the

function to be minimised is:

2

O
;( ) ¢ 5 00 601"‘6
ke

in which n is the total number of experimental readings
taken,
For the PForchheimer curve, equation 6,1-6 becomes:

2

2

avV, +bV, =0,

SEZ( I{Ok 1&> L 601""7
k k

Since S is to be minimised with respect to a and b then:

o

8s aVy#bVy =0, Vi _
a - 2; T = 0 * 000 6 » 1”8
a 0 0
k Ik

2 2
V. V.
k k
or a Z --—> + bz ---) v =Z -—--) B I Y
Ok k Ok k k Ok
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similarly on minimising S with respect to b, the resultl is:
v 2 V. A2 R

a,%((—)f:) v+ b%(f) v ° =Zl:§<"0"§>ok ceee 6.1-10
Equations 6.1-9 and 6.1-10 may then be solved simultancously
to yield the coefficients a and b.
in estimate of the accuracy of fit of the Forchheimer curve
yas obtained by celculating a standard percent error of

estimate defined as:

L n (/v v, fo 2
e "‘""Z {( = = S) X 100 ] ocn.o Gul—ll
) Oy

For the exponential relation, the curve fitting process is

S

=

not as straightforvard since logarithms have to be taken
before the least squares analysis is performed; thus

lni = Inc.+ mlnV eson Gal=l2
Zquation 6.,1-6 might then be written in terms of the

appropriate logarithms:

n lnTk-—ank 2
S= ) ( ) cees 6.1-13

By minimising S with respect to ¢ and m the coefficients
may be calculated. A standard error of estimaete for the

exponential relation may then be obtained as:
2

m
n eV, -0,
)y {( —--—~1¢~5——1’—5> x 1001 veo. 6.1-14
k=1 k

(3]

=

H o
S
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However, by wvirtue of taking logarithms, the effective
range of values is decreased; as a result, a2 least squares

curve fit was obteined by minimising the following quantity:

i? (lnTl_“ank)2
S = - RN 601_15
K= 1m0y

After trials it was found that this process resulted in a
curve with a smaller standard error of estimate (defined as
in eguation 6.1-14) +than the curve obtained by minimising

S in equation 6,1-13. Thoe coefficients ¢ and m were
therefore obtained by this method. Minimising 8 with

respect to ¢ in equation 6.1~15 gives:

88 _ o - 222 (1nc+m1nd—ank) o
dc k 1n0y -
»
inV
1nc Iz
or 2Rl 4 ) ~-),1=0 cees B,1-16
i 100y i 0 %

Similarly minimising 8 with respect to Yk results in the

equation:
IneclnV, (ank)z
e ) L1y =0 L 6.1-17
k Tl k k k

Thus the coefficients ¢ and m can be obtained by

simultaneous solution of equations 6.1-186 amd 6.,1-17

The experimental results and fitted curves for the
material used in the confined flow experiments are plotted

in Fig. 6-1-1.
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The coefficients in the head loss relations and the
standard error of estimate SE for each relation are given

in Table 6-1-1.

) , a(sec/ft) b(secz/ftg) SE !
Forchheimer Relation e
3,054 83,813 4.5%
. c -oom SE
Bxponential Relation * :
15,8355 1.283. 11,4%

W%ABLE 6~1~1 'éaéFFICIﬁéTS FOR CONFINED FLOW EXPERIMENTS

As there was no guarantee that the porosity of -the ﬁaterial
in the permeameter would be the same as that of the material
in the tank, a check was made on the coefficients by
-comparing one of the experimental flows with the corres-
ponding calculated flow, Thus for the external head

he = 3.156 f1. and the internal head hw = 2,696 ft., the
experimental discharge was ,177 cusecs., The theoretical
value obtained from the Forchheimer relation was .179 cusecs
but that from the exponential relation was .191 cusecs.
However, in view of the close agreement of the Forchheimer
result with the experimental one, the coefficients obtained
from the permeameter tests, and given in Table 6-1-1, were
accepted.

6.1.2 Ixperimental and analvtical résulibs

For the confined flow problem, analytical solutions

are aveilable for each of the Darcy, Forchheimer and
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exponcntial relations., In the analytical solutions it
wag assumed that no additional loss of head occurred at
the well screen., As was noted in section 5.2.3, the well
was perforated at close intervals and covered with gauze
so that little distance between openings occurred. IFor
this reason, the assumption of an uncased well should be
valid within the limits of experimental error. The
assumption is made that the exit head loss at the well
surface is equal to the velocity head of the water entering
the well, Also, as the velocity is very small at the
external boundary, no inlect loss of head i1s considered.
Thus the boundary conditions for piczometric head in the
analytical solutions are that h = hw at the well oand h =

he‘at the external boundary.

To obtain a discharge value from the Darcy solution,
the permeability must be known. However, it is obvious
from the permcameter results that the permeability varies
continuously with velocity and, for this reason, a reference
value of the coefficient of permeability was obtained in a
manner similar to that which would be employed in practical
situations. The coefficient was calculated from one of the
well flow tests, this test being the onc which was used to
check the coefficients in the nonlinear equations., The

value thus obtained for the permeability coefficient was



200.
,181 f4/sec., A comparison of the accuraby of the solutions
obtained from the linear and nonlinear head loss relations
could then be made directly. Four flows were carried out
and are designated as flow Nos. 1 to 4 in order of
increasing magnitude of discharge. Ilow Vo.l was taken
as the reference flow, Some of these results have been

reported by Tapiolas {(1967).

The experimental results obtained for flow No.3 are
compared with the Darcy, Forchheimer and exponential
solutions in Figs, 6-1-2, 6-1-3 and 6-1-4 respectively.
The pieczometrie head curves are plotted in each diagram

and the radii o L internal and external heads hv’ h
1

w? e

and the experimental and theoretical discharge values in
cusecs are &lso given in each figure. The corresponding
results for flow Nos. 1, 2 and 4 are given in Figs, A-I-1

to A-I-C inclusive, in Appendix I.

A comparison of the discharges for flow No.2 shows
that the Forchheimey relation gives by far the most
accurave value vhen compared to the experimental one,
However inspecvion of the piezometric head lines shows
that the Darcy result compares most favourably with the
experimental result, wvhile the Forchheimer and exponential
lines showv & substantial devialion from it. This is

surprising in view of the fact that the permeameter results
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show tha+ Darcy's Law is decidedly inaccurate over the
range of velocitics which occur between the external radius
and the well for any particular flow. A study of the
results for flow Nos, 2 and 4 shows similar trends, although
for flow No.4, the discharge obtained from the exponcntial
relation agrecs slightly more closely with the experimental
result than does that from the Forchheimer relation,
Considering the closce agrecement of the Forchheimer calculated
discharges with the corresponding eXxperimental ones over the
range of flows investigated, it would be expected that the
Forchhecimer piezometric head lines should agree accurately

with the experimental resulis.

It is congidered that some of the discrepancy betweon
the experimental piezometric head line and the corresponding
analytical result from the nonlinear relations may be due
to experimental error, Some difficulty wes experienced in
forming o watertight scal around the piezometer tapping
points which penetrated the visqueen impervious layoer, and
consequently the piezometric head mecasured may have been
less than that which actually occurred. This hypothesis is
reinforced by the fact that even the Darey calculated head
lines are higher than the recorded results. However in
spite of the discrepancies between caleulated and measured

Piezometric head lines, the flow results showed that
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solutions based on the nonlinear rclations could accurately

predict discharge values over a range of head differcnces.

In Fig, 6-1-5, the cxperimental and various calculated
discharge values are plotted against the corresponding head
difference between the extornal and internal radii. 4s the
depth of aquifer is constant the discharges arc plotted

directly against the head differences causing flow,

50
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Fig, 6-1-5 shows that, while the discharge calculated
from the Forchheimer relation agrees accurately with the
experimental value for flow Nos. 1, 2 and 3, it exhibits
o larger discrepency for flow No.4 although it is still
more accurate than the Darcy calculated value. The velocity
at the well radius for flow No.3 is asbout .15 ft/sec whereas
the largest valucs involved in the permecametver experiments
are of the oxder of .06 ft/sec. The radius ab which the
velocity decrcases o .06 £t/sec is approximately 6 inches
so that this represents the extent of the area in which the
Reynolds numbers in the tenk cxceed those in the permeameter.
For flow No.4 the velocity at the well is about .25 £t/sec
wvhile the radius at which the velocity decrcases to .06
ft/sec is 8% inches. There is thus a larger area in which
the Reynolds number range of the permeameter testls is
exceaded and, in addition, the discrepancy is greater than
for flow No.3. Il appears that some of the difference
between the observed discharge and that calculated from the
Forchheimer relation for flow No.4 is due to the fact that
the coefficients are applied too far outside. the Reynolds
‘number range for which they were ascertained. It is clear
therefore that, as far as possible, the coefficients in tho
nonlineor head loss cequations should be obtained over the

Reynolds number range for vhich they are to be applied.
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The situation of steady confined flow to a well at
the centre of an isliand, as examined in the confined flow
experiments, occurs rarely in practice, where confined flow
situations usually involve unsteady flow over a large areca.
The confined flow experiments were undertaken as a prelude

to steady unconfined flow,

6.2 Unceonfined Axisvmmetric Flow with Complete Circle

6.2.1 Permeamcter tests

The material used in this set of experimenis was
similar to that used in the confined flow tests, being
gravel of 3/16 inch nominal size. However it was supplied
at & different time and contained & higher percentage of
fines which.caused a marked difference in the flow
properties from those of the material of the confined flow
expoeriments, Omnc of the problems involved in determining
the flow properties of an insitu material from permcameter
tests is the necessity to duplicate the porosity of the
insitu material in the pormcamcter, and this problem was
found to be accentuated by the higher percentage of fines.
Engelund {1953) noted that, for sands, a small change in
the porosity could have a merked offeet on the value of
the Forchheimer coefficients, Vith a cohesionless substance
such as sand or gravel, it is difficult to obtain an

undisturbed sample and for this reason a method was devised
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to obtain the coefficients in the head loss equations from
actual flow tests in the tank, in conjumction with
permeameter tests on samples of the material at two
different porositiés. The theory of obtaining the
coefficients from an unconfined flow test is outlined in
section 6,2.2.

In an attempt to cover a wide range of porosities of
the material, one sample was placed loosely in the
permeameter with only light tamping to maintein uniformity
of packing, while another was placed as tightly as possible.
The loosely placed material resulted in a higher porosity
gsample on which permeameter tests were carried out for a
range of Reynolds ‘numbers. Average seepage velocities and
corresponding hydraulic gradients were calculated, A4 study
of these results showed a continuous variation in the
permeability coefficient indicating that Darcy's Law is
again invalid for this material. The coefficients a and b
in the Forchheimer equation and ¢ and m in the exponential
relation were obtained by least squares curve fitting to
the results. A proportional least squares fit was apain
employed in order to obtain representative coefficients +to
cover a wide range of Reynolds numbers. Precautions were
talkken to reduce the permeameter results %o equivalent
readings at the temperature of the well flow experiments.

The results for the higher porosity sample together with
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best fit Forchheimer =nd exponential curves arc ploivted in

Fig. 6-2~1.

The other test was carried out on a
compacted os much as possible by ramming
the permeamceter.,

and the experimental results together wiith the fivted curves

are plotited in Fig. 6-2-2.

sample vhich was
and temping in

This resulted in 2 low poresity sample

The standard errors of estimate of the curves were

obtained as described in secdion 6.2.1.,

The coefficients

in the head loss eauations for the two samples and the

gstandard errors of costimate of each fitted curve arc set

out in Table 6~2-1.
High Porosity Sample
a jo) SE
Forchheimer RHelation
2.499 67.617 3.06%
c m Si
Ikxponential Relation :
23.834 1,499 13.38%
Low Porosity Semple
a b SH
Forchheiner Relation
4,850 133,224 5.51%
Exponenticl Reladion ° . oK
39,363 1.394 16,22%
TABLE 6-2-1

COEFFICIENTS FOR UNCONFINED FLOVW WITH COMPLETE CIRCLE
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The permeability k varied continuously with Eeynolds
number, therc being a range of +67 to -43 percent of the
mean value in the high porosity sample, and +62 {o -49

percent of the mecan value in the low porosity samplc.

6.2.2 Determination of appropriate coefficicents frpm an
actual flow

The problem of determining appropriate coefficicnts
for the nonlinecar heod loss equations, which will apply to
materials under practical flow conditions,; has already been
mentioned. This problem appears to be of greater importance
wvith finer grained gravels and coarse sands than with coarse
grained graveis (of say 3/8 inch nominal size and above),
where packings at sgimilar porosities arc more easily obtained,
Fox and Ali (1968) studied unsicady unconfined flow through
a porcus medium consisting of 5/8 inch stone chippings and
employed a Forchheimer relation to deduce the head loss
gradient, To determine the correct coefficients a and b,
they obtained o stcady state draw-dowm curve to the well,

and the corrcsponding discharge value. From these results

T

A

2 plot was drawvn of surface gradient %% at any yadius »,
against the mean radial velocity at that radius. The value
of the coefficient & was obtained from the tangent to this
curve at the origin. The cooefficient b was determined by
plotting the surface gradient against the mean velocity on

logarithmic paper and by teking the extrome case where head
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loss was assumed proportional to the square of the
velocity. An alternative method also based on the latter

assumption was used vo check the valuc of b.

These methods used by Fox and Ali thus depend on 2
number of approximstions. The assumption is made that the
value of a, which is determined at the lowest Reynolds
number will be valid for the entire range of Reynolds
numbers encountered, whereas a does in fact vary with
Reynolds number (Stark and Volker, 1967)., Likewise the
term aV will usually have a finite value compared to sz
even. at the largest velocities involved and this will
result in some crror in determining the coefficient b.
The method also assumes that the mean velocity at any
section corrcsponds to the surface gradicnt and this will
be true only for ncarly horxizontal flow. The approach used
by Fox and Ali has the adventage that it reguires no
permeamecter results for the material at equivalent
porositices but it depends on the availability of an
accurate drawdoyn curve for the well. This would not
usually be available under prototype conditions where a
large number of obsorvetion wells would be required and
where precise depth mecasurements would be necessary to

¢h

produce sufficiently acecurate values of the gradient e

for plotting the curve against the mean velocity.
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In the present analysis therefore, a method was
devised by which the appropriate coefficients were obtained
from permeometer tests, in conjunction with the results
from one actual well flow, for discharge and depths of
wvater at the well and at an external radius. Fielad
permeability tests in unconfined aquifers have long been
based on the Dupuit-Forchheimer exprossion (equation 3,2-1)
Tor well & scharge. This cxpression depends on Daxcy's
Law and vhen Darcy's Law is invalid it is obwvious %that the
permeability obtained at ome particular discharge will not
held at any other discharge, Although the derivation of
the Dupuit-Forchheimer eguation was originally based on the
Dupuit assumptions, it has since been shown (Hantush 1962b)
te yield an exact velue of the discharge for unconfined
flow to a well on a horizontal impervious base. in
analtogous set of assumptions for flows with low hydraulic
gradients were made to obtain an approximate analysis of

nonlinear unconfined flow.

Consider the unconfined flow situation depicted in
Fig. 6-2-3. It is assumed that velocities are horizontal
and uniform over any vertical section., The velocity atb

radius r is therefore given by:

V = 6.2-1

27mrh e
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in which Q is the discharge to the well and h is the height
of the free surface at radius r. If the hydraulic gradient
at radius r is assumed to be %%, then since h is considered .

to be independent of z, substituntion in the Forchheimer

relation yields:

dh _ . 2
a7 = aV + bV
2
:a—"g‘—"i"-b""""g"""" cese 0o2~2
2mrrh 4 2 2h2
T T

This is an ordinary differential equation which cannot be
readily integreted betweon the limits T hw and re,'he to
'give an expression for the discharge § in terms of known

variables. Howvever the equation can be solved by a
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numerical method. A BEunge-Kutte solution was therefore
carried out to obtain the discharge Q from the known
boundery conditions after having substituted the
appropriate coefficients in the head loss cquation. The
steps involved in the Runge-Kutta solution are outlined
as Tollows:

An initial value of the discharge is calculated from
the Dupuit-Forchheimer expression based_on an average
permeability from the permeameter tests. Thig allows a
value of g% to be calculated at the well radius T by
substitution in equation 6,2-2, The field is divided into

an cgual number of incremeonts of radius and the value of
an
dr
Runge~Kutta method used was Merson's fourth order process

at each successive radius is then calculated. The

for which the basic equation may be stated as:

pItoT _ 4T 32. (K4 +K,) tees B.2-3

1 74

iy el An

in which h is the free surface height at radius r+ér

and h' is the height at radius r. If f(zr,h) is written

for the right hand side of equation 6.2~2 so that:

2
TRt b TEE
T 47 rgh

then the terms Kl to K5 in equation 6.2-8 are given by:
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= &
K, = Sarf(r,h) g
K, = j—L'Slc'f(“_r-—f«?f«S:f: h+K ) g
2 7 38 3°Fs |
S PV L ) 5
K8 = Sﬁrf(r+88r, h+3 1+qK ) ) veea Bolmb
_ 1 1 3 )
K, = 88rf(r+§8r, h+8K1+~K3) !
= Lsog _ . )
K, = Zorf(r+or, h+2K 2K 6K, ) )

Starting from the known head hw at the well, the piezometric
head at cach successive radius can be obtained (from
equation 6.2-3) out to the piczometric head at the external
radius T If the discharge velue is correct and the
assumptions are sufficicently accurate, then the head
obtained at T should coincide with the known valuc—hen
Initislly there will be a discrepancy between the calcul-
ated value hl at T, and the true value h_, due to the error
in the assumed value of the discharge, This discrepancy
cen then be used to calculate an improved approximation to
the discharge., In integrating from the well to the external
boundary, the particular valuc of %% assumed at the well

has most influence on the result foxr piczometric head at
the external boundary. Thus to calculate an improved valuec

for discharge, the assumption is made that the ratio of the

nevw gradient (dh/dr)n ;

to the old gradient (dh/dr)old is
given by:
( )nev h ~h

= el veeo Bo02-8
( )cld 1y
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in which h. is the caleculated valuc of head at re'and he is

1
the actual value. Or if the improved discharge result is

designaved by QI’ thens:

2

a - 2

“QI bQI - (he hw)( a0 + bQ~ )
wow 4W2rwghwg hl—hw 2ﬂrwhw 4ﬁ2hﬁ2rw2

beve Bo2=7
in which @ is the initially assumed discharge. The improved
value of discharge QI can then be obtained from equation
6.2~T7,

The proccess ig an iterative one with the calculated
value of hl converging to the correct value he as the
discharge Qc-ccnverges to the required final result. The
iterative procedure is repcated until the correct
piceczometric head he is obtained at the external radius,
at which stage there is negligible change in successive

calculated values of QC, which then givesthe required value

of discharge for Forchheimer flow under the assumed conditions.

The numerical process is subject to discretization
errors but these can be minimised by using 2 small grid
length; and since the solution of the ordinary differential
equation does not involve a ficld solution, a small
increment in radius can be used without difficulty. The
solution is, however, subject to error caused by the

agsumptions oi completely radiel flow and of no variation
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in-h with the height z. This error will be small provided
only those flows arce analysed which invelve low hydraulic
gradients and therefore closely approximate horizontal

flotw.

A similer soluvion for horizontal flow =ccording Vo
the exponential relation was carried out but the resultant
differential cquation in this case could be integrated
directly to yield an expression for the discharge G,
without the need for a2 numerical solution, Thus for
horizontal flow vhere the piezometric hecad h is assumed a
function only of radius r and is independent of the height

z, bthen the exponential relation at any radius may be

written:
an _ﬁL_In
dI C(Z'ﬂ'rh) v 602"'8
or ban =~ Qﬁ cess 602-D
(2m)}" =

Integrating between T hv and T he gives:

m+1 m+1 Y
e ”hw - c Q" (re ~r
1+m (2.“_)]11 1—m

h

X vess Bo2-10

Thus Q may be obbained directly from eguation 6.2-10 after

substituting for the known variables.

The solutions for discharge from both head loss

relations can therefore be emploved in successive inter-
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polations to obitain the appropriate values of the
coefficients in the two reclations, 4 wvalue of the discharge
can be calculated using the coefficients obitained from cach
of the low porosity and high porosity samples. The
experimental discharge should then lic between these two
extremes, since the material in the tank will usually be

at some porosity between the minimum and maximum porosities

obtained in +the permeameter.

The coefficicents in the head loss equations depend on
some function of the porvosity but the form this function
should take has been stated differentiy by various authors,
Engelund (1958) gave a review of some of the suggested
functions for the coefficients a and b in the Forchheimer
relation. Dudgecon (1968) also discussed some of the

porosity functions recorded in the literature and showed

ck

hat none of them should be cxpectcd to have general
applicability. In view of the uncertsziniy associated

with the dependence on porosity, the simplest approach was
used, wvhereby the coefficients a and b {or ¢ and m) vwhich
vould produce the experimentally measured well discharge
were calculated by direct interpolation between the extreme

values fitted to the two sets of permeametor results,

some. improvement on this approach may have been

pPossible by using a range of porosities in the permeameter
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between the +two extremes. However, in field applications,
the interpolation process to produce an actual well
discharge will usually have to account for some non-
uniformity of the medium in vhich the well is situated,
so that as a first trial, only the two sets of results
were used and the interpolation carried out directly
between them. The results were found to be satisfactory

soc that no further sets of permeameter tests were undertaken.

The two coxtreme values of ( are calculated and more
accurate values of the coefficients are determined by
interpolation, to give a closer approximetion to the
discharge valuc obtained experimentally for one particular
well test at a low hydraulic gradicent. The process again
is a repetitive one. After new coefficicnits are obtained
by interpolation, a new discharge is calculated with these
coefficients; this value will usually not exactly equal
the oexperimental value and o scecond interpolation is
carried out to obtain more accurate coeffiecients. The
proccess is repeated until the difference between the
calculated and cxperimental dischaerges is negligible. The
coefficionts so obtained are accepted as the values 1o be

employed in the analyses.

Scven flows in all were situdied for the unconfined

axisymmetric experiments with the complete cirele, with
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discharges ranging from ,341 cusees to .87 cusees, There
arc conflicting limitations on the flow conditions to
produce greatest accuracy of £it of the coefficiocnts.
Small head diffcerences should be used so that the
curvature of the free surface is small end the flow is
approximately horizontal. However at low differences in
head, the relative accuracy of measuring the drawdovn is
reduced, Vhile the relative error in measuring cach water
level, at the well and al some exvernal radius, may be
small, the accuracy of discherge calculations depends on
the accuracy of measuring the differcence in water levels.,
Thus a small erxror in measuring cach of the water levels
separately may produce a substantial error in the value
obvained for the difference in levels, The well test with
the second smallest discherge was thereforce employed in
interpolating for +the nonlincar head loss relation coeffic~
icnvs and in determining the permeability coefficient ki
for, while the drawdown is small and the flow is nearly
horizontal, the difference in water levels is sufficicnt
to give a reasonable accuracy of mecasurcment of this
difference,

For the cxperimental well discharge of ,414 cusecs,
the water levels measurced were:
h_ = 2,59 £t. at ¥ = .35 ft,
W 15

and h = 3,08 ft. at r,

it

9.6 ft.
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For o = 2.499 scc/£t and b = 67,817 secz/ftz,
then Q = ,602 cusccs and for a = 4,850 sec/ft and
b = 133.224 secz/ftz, then Q = .372 cusecs. Direct
interpolation betwecen the two sets of coefficients gives
a = 4,42 and b = 121.22 ot which a discharge of .414 cusces
would be expectoed. However calculation with these
coefficicents shows that the discharge would be ,395 cusecs,
Further interpolations show that coefficients a = 4,21 sec/
ft. and b = 116,93 secz/i‘t2 produce a discharge of 412
cusces which is within 4 percent of the experimental value
of .,414 cusecs and these coefficicnts werc accepted for
subsequent analysis of the unconfined flow conditions for
the experiments with the full circle,

For the cxponcnitial reclation, similar calculations
are carried out for the same Tlows:
Thus for ¢ = 39,36 and m = 1.39, then @ = .367 cusecs,
and for ¢ = 23.83 and m = 1.45, then Q = ,609 cuscecs.,
Interpolation yiclds coefficients ¢ = 86,043 and m = 1.405
at which a discharge of .414 cusccs would be expected,
However recaleculation shows thet, for these cocfficients,
the discharge is actually .405 cuseccs. Subsoquent trials
and interpolations yield cocfficients ¢ = 85,45 and m = 1,41
‘at wvhich tho calculated discharge is ,413 cuescecs. These

coefficicnts were then omployed in the analysis of the
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well flows when the exponcntial relation was considered.
I+ may be noted that for these results, even though the
exponcntial curve fits the permcameter resulws less
accurately thaen the Forchheimer curve, the well discharges
calculated from the two relations differ by only zbout 1%
at cach of the two porositiecs involved, The Darcy
coefficient of permeability k, calculated from this flow,

is 158 T4/sec,

6.2.,3 DIxperimental results and finite difference solutions

Seven flows were investigated in this set of experiments
and are designated as flow Nos. 1 to 7 in order of increasing
magnitude of discharge. The experimentol free surface was
obtained approximately by measuring the depth to the woter
surface in piezometers located near the surface as discussed
in scction 5.4.1. The theoretical analysis of the uncon-
fined flow conditions involves a. finite differcnce
numerical solution os discussed in Chapter 4. The
boundary conditions cssumed for the piczometric head
funetion at the well and at the outer boundary were the
same as those uscd in the confined flow experiments. Thus
an uncased well was assumed end the piceczometric head ot tho
well was vaken as the height of woter in the well and the
loss of head as the water enters the stabionary pocel in the

well was equated to the velocity head of the water entering

the well,
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In accordance with discussions in Chapver 1,
exponential solutions were not obtained for all flows.
However solutions for the exponential relation were
carried out for flow Nos. 5, €6 and 7 for comparison
purposes, as these were the highest flows in the Tange
considered, The finite difference solutions for flow No.6
for Darcy, Forchheimer and expomnential flow are ploitted in
Figs. 6-2-4, 5-2-5 and 6-2-6 respectively. The plots
include lines of equal piezometric head as well as equal
flow lines. The flow lines were not plotted from stream-—
line function values even for the case of linear Darcy
flow. For nonlinear flow, the flow lines are most
conveniently plotted by joining points helow which the
quantity of flow is constant, and this procedure was
adopted foxr Darcy flow also. The experimental free
surface position is plotted in each of Tigs. 6-2-4, 6-2-5
and 6-2-6, The water levels hW and he, the radii T and
r_, the experimental discherge Q(EXP), and the calculated

discharge Q(CALC}, are also given in each figure.

The results obtained for Darecy and Forchheimer solutions
for flow Nos. 1 %o 4 inclusive.are plotited, together with
the experimental free surface, inm a similar manner in
Figs. A~II-1 to A-II-8 in Appendix II. The finite

difference results for Darcy, Forchheimer and exponential
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solubtions and the experimental free surfaces for flow
Nos., 5 and 7 are plotted in Figs. A-II-9 to A-~II-14, also
in Appendix IL. The discharge obtained from the
Porchheimer finite difference solution for flow No.2
agrees with that obtained from the Runge-Kutta solution
to within 1 percent, thus justifying the assumption of
completely radial flow in the process for obtaining

appropriate coefficients in the head loss relation.

A comparison of the results for flow No.6 shows that
the Forchheimer solution gives the most zccurate discharge
wvhen compared with the experimental resvlt. The Darcy
solution for discharge is considerably in error, as would
be expected from ©the change in permeabilitly encountered
in the permeameter tests. The exponential relation
however, gives a more accurate vesult. The free surfaces
- obtained from the Forchheimer and exponentiél solutions
also agree much more accurately with the experimental free
surface then does the Darcy solution. 4 study of Figs.
A-TII-1 %o A-1I1-14 shows that similar conclusions can be

drawn for the other flows.

The comperison of the experimental and numerical
results raises the quesition of accuracy of the finite
difference solutions., The solutions were carried out

using a grid length of 3 inches.over the flow field., The
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grid network together with the calculated free suxface, is
shovn in ¥ig. 6~2~7, The finite difference solutions were
carried out until the difference between head values,
obtained from successive iterations, was less than ,00010
£t,

A further indicetion of the accuracy of the numerical
results wes obtained by comparing discharge values
calculated at each vertical grid line for any particular
solution., For example in the Dercy, Forchheimer and
exponenvial solutions for flow No.6, the total discharge
calculated at the grid lines designated A-A 4o D-D in

Fig. 6-2-7 are tabulated in Table 6-2-2.

Grid line as marked Total Calculated Discharge
in Fig, 6-2-7 {cusecs)
1 Darcy | Forchheimer | Exponential
.Y 8156 .708 . 738 !
B-B .942 712 o T47
C-C - .944 714 740
D--D « 944 .691 722

TABLE 6~2-2 DISCHARGE CALCULATIONS AT VERTICAL GRID LINES

- The maximum discrepancy between the values at the
different grid lines gquoted for flow No.8 for any of the
solutions is therefore about 3 percent. The agreement
between values at different radii cculd be enhanced by

extending the number of iterations, to obtein a still
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smaller change in piezomeitric head value with successive
iterations. However, investigations with a number of Tlows
showed that, once the agreement between discharge values ail
different radii was within about + 3 percemt of The average,
then further iterations caused a very small change in the
average calculated discharge from the finite difference
solutions. The change in the free surface position and in
the flow net diagram was also slight., As a resuld,
solutions were notv generally extended to obtain better
agreement than a maximum difference in discharge of = 2
percent over all vertical grid lines, from the well to the

cuter boundary.

The discharge obbtained in the Darcy flow solution
agrees with that frqm the Dupuit-Forchheimer expression
usually to within 0,5 percent. This result also indicates
that the finite difference solutions, at least for linear
flow, are accurate since it has been shown that the Dupuite
Forchheimer formula gives an exact solution for discharge

for this flow situation when Darcy's Law applies,

A comparison of the results obtained for the seven
flows investigated, shows that the discharge obtained from
the linear Darcy solution is comnsiderably in error, as
compared to the experimental result, when the calculations

are based on the permeability at one particular flow,
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The free surface position from the Darcy solution is 2also
in error €fox +the higher flows. For flow Nos. 4, 5, 6 and
7 the Darcy soluvion for the free surface shows a
substabtial discrepancy from the experimental one
especially in the vicinity of the well, reaching an error
of approximately 10 percent for flow No.7. The mean
velocity increases rapidly as the well is approached, and
therefore the inaccuracy of the Darcy solution is more
marked in this region. The free surface positions
obtained from the nonlinear solutions are accurate, however,
to within a few percent., JFor example the maximum error in
the Forchheimer free surface position for all flows is
about 4 percent, while that of the exponential solutions,

for the three flows analysed, is about 6 percent.

For comparison purposes, the discharge values obtained
experimentally and from each of the theoretical solutions
are plotted against (hez—hwz) in Pig. é~2~8. The quantity
he ~hwz plotted as the abscissa in Fig, 6-2-8 is not
necessarily a completely representative parameter forx
digcharge calculations wvhen the flow is nonlinear, For
linear Darcy flow, provided hw and he are measured at fixed
radii as in the results plotted here, then the discharge is
directly proportional +to hez-hwz, However when the head

loss obeys a nonlinear relation there may be an increase
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. ) 2, 2 :
in discharge for a decrease in he ~h_~ under certain
"

conditions. 7This is exemplified by a study of the points

plotted for fiow Nos,5 and 8 in Fig. 6-2-8, Thus while

[
“~h 2 for flow No.5 is greater then for

the magnitude of he -

flow No.G6, the discharge is smaller. The lJarcy solutions
of course show an opposite trend indicating a higher
discharge for flow No.5. However both the Forchheimer and
exponentiel finite difference sclutions follow the trend of
the experimental resulis, showing a lower discharge for
flow No.5 than for flow Wo.6. A study of the magnitude of
the internal and external water levels for the two flows
shovs that while the difference in levels is greater for
flow No.5, the absolute magnitudes of both levels are
greater foxr flow No.6, Thus when a nonlinear relation
connects head loss and velocity, even though the gradients,
and therefore the velocities, are smaller for flow No.6,
this is more than compensated for by the increase in area
of flow over that available in flow No.5. However for the
linear head loss relation the reverse is true and the
increase in area of flow is not sufficient .to compensate

-for. the smaller velocities in flow No.6.

Nevertheless, vhile the quantity heg—hwz does -not give
a completely representative parameter for discharge

comparisons under these conditions, no dimensionless or
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other quantity is readily available for comparing all
discharge solutions end the plot has therefore been made

against the quentity hez_hwz in Fig, 6-2-8,

Fig, 6-2-8 shows that the nonlinear relations give
solutions for discharge vhich are accurate to within a
few percent for all flows. Apart from flow No.2 vhich was
used as the reference flow for equating experimental aand
all theoretical resulvs, the only accurate discharge
calculated from a Darcy solution is that for flow No.3
vhich is closest to No.2; the errors for the remaining
flows are considerable, riging as high as 38 percent for
flow No.7. Tor & material as coarse as that used in these
experiments therefore, it is obvious that only by carrying
out a comprehensive set of field permeability tests over
a wide range of flows could any accuracy be obtained in
-discharge cazlculations based on the Dupuit-Forchheimer
formula. But even then the Darcy finite difference
solution for the free surface would be in error as it is

unaffected by the permeability coefficient.

The preceding analysis of results, however, shows that
the nonlinear head loss relations do give solutions, both
for discharge and free surface position which are accurate
over o wide range of Reynolds numbers, This accuracy is

obtained by determining two sets of head loss coefficients
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from permeemeter tests over a range of Reynolds numbers,
at two differen® porosities, and by using the results of
one prototype flow as a basis for interpolation to give
the relevant coefficients applicable for the prototype

m edium ®

6,3 Unconfined Axisvmmeitric Flow with Secior

6,3.1 Determination of coefficients

The material used in the unconfined fiow experiments
with the sector was similar to that used in the unconfined
experiments with the full circle, but again with slightly
different properties. Permeameter tests were therefore
carried out on a sample of the material packed at two
different porosities, The experimental results for the
high porosity sample together with the fitted Forchheimer

and exponential curves are plotted in Fig, 6-3-1.

The permeameter results and fitted curves for the low

porosity semple are plotted in Fig. 6-3-2,

The results obtained for the coefficients are given
in Table 6~3-1, together with the corresponding standard

errors of estimate (SE).

The process of interpolating to obitain the appropriate
coefficients for the well flow experiments was carried out

in a manner similar to that described in section 6.2.2.
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High Porosity Sample

a(sec/Tt) b(secz/ftz) SE
Forchheimer Relation
4,62 76,58 4, 6%
c m Sk
pxponential Relation
54,51 1,62 11.6%

Low Porosity Sample

af{ sec/ft) b(secz/ftz) SE
Forchheimer Relation
7.22 128,37 - | 5.4%
L. '] ) : m. - - SE
Ixponentizl Relation :
19.72 © 1,183 20 , 8%

TABLE 6-3-1 COEFFICIENTS FOR UNCONFINED FLOVWS WITH SECTOR

Seven well flows were again investigated in this set of
experiments and the flow with the third smallest discharge
wa.s selected as the reference flow for obtaining the
-permeability and for interpolating the nonlinear head loss
coefficients. The drawdown for this flow was sufficient o
allow accurate measurement of the difference in water levels
but was small enough fo give a close approximation to
horizontal, completely radial flow. The relevaent variables
for the flow are:

r = .35 £+, r = 9,60 Tt.
s e

h = 8.8l ft. h_ = 3,77 ft.

Experimental discharge = ,395 cusecs.
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The results from the Forchheimer discharge calculawions,
assuming hgrizontal flow, weres:
for a = 4.62 sec/TH. and b = 76.58 sec2/ft>, Q = .508 cuses;
for & = T.22 sec/ft. and b =128.37 seco/f4>, Q = .348 cusces.
Repeated interpolation between the coefficients showed that
for a = 6.81 sec/ft and b = 110.13 sec2/f42, then Q = ,391
cusecs, which is within about 1% of the experimentbal result,
so that these coefficients were accepted for the unconfined

Forechheimer flow analyses.

Similar calculations for the exponential relation
yields

for ¢ = 54.51 and m = 1.62, Q = .63l cusecs
and for ¢ = 19.72 and m = 1,13, Q0 = .295 cusecs.
After successive interpolations, the final coefficients
accepted are ¢ = 33,28 and m = 1,32 vhich give a discharge
of .393 cusecs, vhich closely approximates the experi-

mental result,

It may be noted that the Forchheimer ealculation for
discharge, using the high porosity coefficients, differs
from that of the exponential relation at the same porosity.
A-similar remark applies to the low porosity results, The
exponential solution for discharge is higher than the
corresponding Forchheimer result for the high porosity and
lower for the low porosity sample., Thus the exponcntial

discharge varies more rapidly with porosity than the
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Forchheimer discharge., In addition, it is probable that
the process of obtaining relevant coefficients does not
only account for a porosity change but also overcomes some
error due to ‘the inaccuracy of fit of the curves, especially

the exponential, to the permeameter results.

The nonlinear Ffinite difference solutions for the
reference flow, which are reported in section 6.3.2, show
that foxr Forchheimer flow with the coefficients derived
above, the discharge is .394 cusecs, while the corres-
ponding exponential solution for discharge is .397 cusecs.
These values are sufficiently close to the experimental
vresult of .395 cusecs and indicate the validity of
assuming horizontal flow in the procedure for obtaining
optimum values of the coefficients. The Darcy permeability
coefficient from the Dupuit-Forchheimer Tormula for the

above flow was .127 ft/sec.

6.3.2., Finite difference solutions for Darev, rorchheimer
and exponential flow '

The seven flows investigated were designated as flow
Nos. 1 to 7 in order of increasing magnitude of discharge,
Similaxr boundary conditions were assumed in the asnalytical

to those assumed For the solutions discussed in

solutions
section 6.2.3. Solutions were obtained for all flows for

each of the Darcy, Forchheimer and exponential head loss
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relations. The basgic grid size employed in the solutions
was 3 inches., However for Forchheimer flow, after the
solution had been obtained to the required accuracy on the
8 inch grid, a fine grid was incorporated near the well o
obtain a more accurate representation of the free surface.
Nevertheless, this produced only a slight change in the
free surface position from that given by the coarser grid
solution.,

The iterative procedure in each case was extended
until the change in values of piezometric head at any
point was less than ,0001 f+. and until the variation in
discharge at different grid lines was less than about
+ 2 percent of the mean. The basic grid over which
solutions were obitained for flow No.5 is shown in Fig.
6~3-3, with the fine grid used near the well for the
Forchheimer solution superimposed on it. The grid actually
used is bounded at the top by the calculated free surface

position for Forchheimer flow which is shown in Fig. 6-3-3.

A comparison of the calculated discharges forxr each
solution ¢f the flow No.5, a2t the grid lines designated
in Fig. 6-3-3, is given in Table 6-3-2. - The discharges
guoted for the Forchheimer equation are those obtained from

the initial basic grid solutions.
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Grid Linec Total Calculated Discharge
{cusecs)
Darcy | Forchheimer | BExponential
A—A 1,215 .922 931
B-B 1,209 .924 . 927
C~-C 1,212 921 . 919
DD 1.196 .901 .903
TABLE 6-3-2

DISCHARGE AT VERTICAL GRID LINES FOR SECTOR FLOW No.5

The maximum overall variation in discharge for these
“rid lines is therefore about 3 percent. For the majority
of solutions the maximum variation was kept smaller -than
4 percent. The results obtained for Darcy flow agree with
those from the Dupuit-Forchheimer expression at the same

permeability, usually to within 0.5 percent.

6.3.3, Comparison with experimental results

Flow net diasgrams obtained from the finite difference
solutions for each of the threec head loss relations are
plotted separately for cach of the seven flows. The
experimental free surface position, together with equal
head lines obtained from the experimental results, are
drawm on each of these plots. The amalytical solutions
for the Darcy, Forchheimer and ecxponential relaticns for
flov No.5 are plotted in TFigs. 6-8-4, 6-3-5 and 6-3-6

respectively, and the experimental results are plotted on
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each of these diagrams. The boundary conditions rw,hW
and_re, he and the experimental and appropriate analytical
discharge values are given in cach diagram. The discharge
given Tor Forchheimer flow is that obtained from the
numerical solution with the original grid size so that it
can be directly compared with the results from the other
equations, Corresponding plots for each of flow Nos. 1, 2

3, 4, 6 and 7 are given in Figs., A-III-1 to A-ITI-18 in

Appendix ITI.

4 study of the discharge values obtained for flow No.b
shows that the Darcy solution differs from the experimental
result by 80 percent, while both the Torchheimer and
exponential golutions are accurate to within 0.5 percent.
The Barcy free surface solution is also considerably in
error especially in the vicinity of the well, the error
being as high as 18 percent at the well face, The equal
head lines for the Darcy solution exhibit discrepancies
from the experimental results as shown in Fig. 6-3-4.
Observation of Figs., 6-3-5 and 6-3-8 indicates that the
nonlinear relations give much more accurate equal head
lines and free surfacc positions. The Forchheimer solution
gives the most accurate resuld but even then, there is a
difference of 8 percent right at the well face. P@rt of

this discrepancy may be due to well casing loss incurred
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because of the skeleton of metal remaining toc support the
gauze. Part may also be due to variation in porosity of
the aggregate in the sector, although the accurate result
for discharge would suggest that the coefficients employed
in the head loss relation are correct., Some improvemend
may be obtained by using a smaller mesh size in the
nunmerical solutions, although the small change resuliting
from the finer grid Forchheimer solution ncar the well
suggests that a finer grid size still, would produce only

a marginal change in the free surface position.

The experimental position of the equal head line for
3.75 f+t. appears to be separated from the nonlinear
solutions for this value by some distance. However, near
the external boundary, where the piezometric head changes
slowly with radius, & small difference in head values
shows as a wide separation of equal head lines. Thus a
small experimentel error would result in a substential
separation of the equal head line from the true loeation.
Although the nonlinear solutions for the 3.75 ft. equal
head 1ine are locatved at some distance from the experi-
mental line in Figs., 6-3~5 and 6~3-6, the agreement belween
the observed and czlculated piezometric heads at any

particular point in this area is within 2 percent,
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A study of the results for the other six flows shows
that similar conclusions can be drawn with regard 1o the
free surface and equal head lines for these flows. The
error near the well increases with increasing discharge
for all three relations but it is much greater for lincar
Darcy flow than for the nonlinear solutions. Thus for
flow No.7, the error in the frec surface position right at
the well face is 25 percent for Darcy flow, 15 pexcent for

exponential flow and 10 percent for Forchheimer flow,

A comparison of the discharge results shows that the
nonlinear solutions accurately predict the discharge
vhroughout the range of flows., The experimental and
theoretical results are plotited against hez--hw2 in Fig.
6-3-7. A study of Fig. 6-3~7 shows tha% the nonlinear
relations give more accurate discharge results for every
flow apart from the reference flow No.3. The error in the
Darcy calculated discharges is highest for the flows with
greatest drawdovm reaching a maximum of 52 percent of the
experimentel resulv for flow No.,7. The corresponding error
of the Forchheimer solution for flow Ho.7 is 4.6 percent
while that of the exponential relation is 7.2 percent. The
results again show that the nonlinear relations can
adeguately cover a large range of Reynolds numbers under

practicael flow conditions., Although the curve fitting
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results indicated that the Forchheimer relation holds more
accurately than the exponential relation over a wide
Reynolds number range, the actual well tests shov that the
exponential relation gives satisfactory discharge resultits
over the full range of drawdowns, and it is only at the
highest drawdown iancorporated, that the Forchheimer

relation shows any appreciable superiority.

6.4 Unconfined Two-Dimensional Flow througch.a Permeable
Wall

6.4,1 Determination of coefficients Tor head loss relations

The gravel used in these experiments was the same as
wvas used in the axisymmetric experiments with a sectar.
Hence the coefficients for high and low porosity samples
are those listed in Table 6-~3-1, and the curve-fitiing

results are depicved in Figs. 6~8-1 and 6-8-2 respectively.

An approximate sclution for discharge through a
vertical sided wall was obtained from the two nonlineaxr
relations by assuming horizontal flow. The analysis was
similar wo thatv used for the unconfined axisymmeiric flows,
involving a Runge-Kuttae numerical solution for the
Forchheimor relation. The results for one particular flow
in the open flume werc used to determine the wvalues for

permeability k, +the Forchheimer coefficients a and b, and

the exponeniial coefficients ¢ and m.
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Three flows werc analysed in the experiments and the
determination of coefficients was based on the results of
the first of these (with the lowest discharge). The
measured upstream and downstream heads were ,790 ft. and
.443 £t, respectively vhile the length of the wall was
3.00 £t. and the experimental discharge was 012 cusecs.
Analysis showed thet for Forchheimer coefficients
corresponding to the higher porosity sample in the
permeameter, a = 4,62 sec/ft and b = 76,58 Secz/ftz, the
theoretically expected discharge for the above water levels
ig also .012 cusecs, thus indicating that these coefficients
would be accurate for the permeable wall analyses. However
as already discussed in section 6,3.1, the Forchheimer
and exponential coefficienls obtained from the same
porosity sample in the permeameter yield different ealcul-
ated flows through the permeable vall, Although no
interpolation for coefficients is required with the
Porchheimer relation, it is required with the exponential

relation,

For ¢ = 54,51 and m = 1,62, the expected discharge is

.014 cuseccs,

while for ¢ = 19.72 and m = 1,13, the expected discharge is

.006. cuscecs.
Successive interpolation indicates vhat with ¢ = 48.71

and m= 1.53 +the cexponential relation would give a
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discharge of .,012 cusecs for the reference flow, These
coefficients were therefore employed in the finite

difference solutions,

6.4,2 Ixperimental results and finite difference solutions

Flow net diagrams from the Darcy, Forchheimer and
exponential finite difference soluvions for flow No.3 arec
plotted in Figs., 6-4-1, 6-4-2 and 6-4-3 respectively, The
experimental flov net is drawn, and the relevant variables
including length of wall, upstream (HU) and downsiream (HD)
waterlevels, and calculated (Q(CALC)) and experimental
(Q(EXP)) discharges are given in each diagram. The
corresponding results for flow No.2 are given in Figs,
A-IV~1 {to A-IV-3 in Appendix IV. The flow nets axe not
shown for flow No.l but the discharges cbtained from the
finite difference solutions agreed with the experimental
measurement foxr this flow, thus confirming the validity
of the assumption of horizontal flow employed in deter-

mining coefficients.

A study of the results shows that the nonlincar
relations give more accurate solutions than Darcy's Law
both for piezometric head distributions and discharge
values. The Forchheimer relation again gives a small but
significant increase in accuracy over the exponential

relation especially in discharge calculations. There is
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only a very slight difference in piezometric head
distributions obtained from the two nonlinear relations

but the discharge differcnce is apprcecciable,

The discharges obtained from each of the hcead loss
relations and also the expcrimental results are plotted

2ehd2) for each flow in Fig, 6-4-4

against the quanvity (hu
for comparison purposes. IThe increased accuracy of the

nonlinear solutions for discharge as compared to that from

Daxrey's Law is clearly illustrated in Fig, 6-4-4,

The finite difference grid size used for analysing
flow No.2 was 1 inch while that for flow No,.3 was £ inch,
Similar accuracies of the finite difference solutions were
obtained as for the axisymmetric flows and trials showed
that the accuracy could be further improved with increases

in the number of iterations for any particular flow, if

desired,
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CHAPTER 7

DISCUSSION AWD COMPARISON OF RESULTS — PART IT

7.1l Material Properties for Finite Element Analvses

A crushed aggregate of 4 inch nominal size, and
arithmetic mean diameter .55 inch, was used to build up
the gravel banks for the flow tests in the open flume., To
determine the values of the coefficients to be employed in
the head loss relations, permeameter tesgts were carvied out
on the aggregate. The ratio of diameter of particle bo
diameter of permeameter was approximately 1:11 for the
aggregate in this case. The aggregate was graded to some
extent and this would tend to reduce the wall effect as
compared to a uniform coarse material; and in view of the
difficulties in elimineting the wall effect completely, as
discussed in section 6.1.1, it was decided to base the
determination of the ceoefficients on actual average values
of velocity calculated in the permecameter testss It is
noted that there may also be some wall effect, though
probably not appreciable, in the flume tests, due to the
plane surfaces occwring on the sides and bottom of the

gravel banksgs,

The analyses of flov through gravel banks were carried
out because of the need for accurate knowledge of flow
conditions through banks of rockfill in connection with
dam and coffer-dam constructions in practice, In such

261.
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cases, analyses will usually need to be based on material
properties which are obtained prior to any prototype flows.
The coefficients used in the analyses were therefore
determined from permeamecter tests on material packed in a
similar way to the prototype material, With coarser
grained aggregates which contain only a small percentage
of fines, it appears that similar porosities can be
reproduced more casily than with finer grained, graded
materials, The aggregate in the flume tests was placed
loosely without any compacting or tamping, and for the
permeameter tests it was placed similarly. The Reynolds
number range for the permeameter flows should again -
correspond approximately with that in the flume tests.

Thus with the same material packed in approximately the
same way, the temperaturés at which both sets of tests were
carried out were sufficiently close to render differences
due- to viscosity negligible, and the range of velocities in
the permeameter varied from the smallest at which an
accurate measurement could be made to values larger than
any cxpected in flow through the banks. This latter
requirement can be checked after an analytical solution

is obtained.

The values of coefficients a and b in the Forchheimer

relation and ¢ and m in the exponential relation were
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again obtained from the permeameter results by least
squares curve fitting methods., Values of the coefficients
for the material together with the corresponding standard

errors of estimate (SE) are given in Table 7-1-1,

Forchheimer S Exponential ST
Coefficients ' Coefficients
a(sec/Tt) b(secg/ftz) %4 c m %
. 319 11.821 1.57 8.893 1,745 3.02

TABLE 7-1-1 COEFFICIENTS IN VELOCITY HEAD LOSS EQUATIONS

The accuracy of fit of the Forchheimer equa%ion is
seen to be better than that of the exponential relation but
the difference in accuracy is not great. The accuracy of
fit is shoym visually in Fig., 7-1~1 vwhere the permeameter
results together with the fitted curves, are plotted to
scale,

A calculation of the permeability ratio k a2t each
experimental flow shows that permeability varies continuously,
decreasing with increasing velocity as would be expnected.
The mean value of k for all the permeameter flows was ;g;;
ft/sec,: vhile the range of permeabilities is such that the
deviation from the mecan value varies from approximately
+280 percent of the mean to -40 percent. Thus while the

Laplace equation can be solved for piezometric head values

in the region of flow, any meaningful interpretation of
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discharges calculated from thesec head values would be
difficult.,

7.2 TFinite Element Solutions and BExperimental Results
for Actual Flow Tests

7.2.1 Flow through an aggregate bank with no cut—-off wall

Results werc obtainced for two differcent flows through
a bank of the 2 inch nominal size gravel with no cut-off
wall, The finite element analysis of both these flows
showed only a very slight difference in piczometric head
values for soluvions based on the Forchheimer cquation and
the exponeniial relationy the difference at corresponding
points was usually less than 1 percent. In addition, the
piezometric hcad values for the Darcy flow solution did not
deviate much from those of the nonlinear solutions.

Flow 1 Upstream Yoater Level = 0.998 ft.

The experimental free surface for this flow is shomm
in Fig, 7-2-1, together wﬁth the theoretical free surface
for both Darcy and nonlinear flow. The equal head lines
shown in Fig. 7-2-1 are obtained from +the finite element
solution for Forchheimer flow, but thosc obtained for the
exponential relation are virtually eoincident with these
lines.

The cxperimental free surface agrees well with the

calculated position especially as there is a degrée of
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uncertainty associated with drawing the experimental line
duec +to minor variations from individual particles. 4
comparison of experimental and calculated values of
piczometric head was made at a numboer of points throughout
the flowv marked as A to N in Fig. 7-2-1. Table 7-2-1 shows
the experimental wvalues as well as values obtained from the
Darcy, Forchheimer and exponential relation solutiomns. The
experimental measurements wera obtained from the tapping

points on the steel side of the flume.

Point Piczometric Head (1)
Experimentbal || Forchheimer | Exponential. | Darcy
A .99 .99 . 99 . .99
B .98 .08 .98 .98
c1 . .85 .95 .95 .98
1 c2 .96 - .95 .95 .94
DL .39 .90 .90 .88
D2 .90 .50 .90 .88
foal .83 .86 .36 .84
E2 .86 .86 .86 .84
Fl .79 .82 .82 .79
F2 | .80 - .83 .83 .80
G1 .75 .78 .78 - LT5 [
L .69 .71 71 .63
Y .58 .62 .62 .59
N .46 « 50 .50 .49

TABLE 7-2-1 FPIEZOMETRIC HEAD VALUES FOR FLOW 1
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The maximum discrepancy of any calculated piezometric
head from the corrcsponding experimental one is approxim-—
ately 8 percent and for most peints the discrepancy is
less than 4 percent. At some peoints the Darcy solution
for piezometric head actually agrecs with the experimental
measurcment more eaccurately than the nonlinear solutiocn.
However, the diffcrence between all calculated values at
any point is small and all give acceptable agrecment with

the experimental measurcement.

The most significant advantage of the FTinite element
solution for monlincar flow is that it enables an accurate
calculation of discharge. The difficulty in obtaining a
value of the discharge from Darcy's Law has alrecady becn
noted becausec of the continuous variation in permeability
with velocity. This problem does not arise with the
‘nonlinear flow cqguations provided the coefficients can be
assumed eonstant throughout the range of wvelocities

encountered.,

The discharge was calculatced from the nonlinear finite
clement solutions at & number of vertical sections
threughouﬁ the bank. The discharge obtained experimentally
was ,076 cusecs/ft. The average value calculated from the
finite element Ferchheimer solution was 073 cusces/fH,

while that obtained from the cxponential relation was 071
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cusccs/ft. Thus both theoretical velueés agree well with

the experimecntal one.

The numerical analysis was continued until the change
in the piczometric head at any point between successive
iterations was .00001 ft., The finite element nevwork
employed in the solutions is depicted in Fig. 7-2-2.
Although the grid size is reasonably coarsc, evaluation of
discharge at different vertical scections in & continuity
check showed ‘that the variation from the mcan value was
less thon + 0.3 percent. The discharges calculated at the
vertical grid Iines designated in Fig, 7-2-2 arc listed in

Table T~2-2.

Grid Line as Depicted Total Calculated Discharge
- in Fig, T7-2-2 (cusecs/ft) from Forchheimer
Solution
A=h ,0732
B-B L0735
C—'C 00785
D-D L0735
E~-E .0735
F=-F 0785
TABLE T-2-2
DISCHARGE AT VERTICAL GRID LINES FROM THE FINITE ELEMENT
SCLUTION

The table shows that continuity is satisfied to within

a total variation of 0.4 percent for the lines given.



270,

1°0N MOT4 ¥O0JL IMMOMLIN INHWHTH HLINIL 2-8~L "HIA

0y g t;
o Py T

h, / ,,7

o f
_,/\.A,\ N /\ NERS

/1l

AN

\.\_.\‘ /\\_ﬂ

NN
s \u_”‘.f\.\\. \\\, A .

1
tr\ —
/_/
L
, e /
e, ...:wf, ~ J.f.ﬁ/.a. ..\\.\. ..f/—/ /.rf/t/.
U. Qe

/_/., \ f.._
TIN LY

x

f s
AN P

|

\ff\// \




271,
Since the discharge guantities arce obtained from the
velocity and theo length of grid by an integration procedure,
in which the errors in the numerical results tend to
accumulate, the agreement between the quantities at the
different scctions indicates. a satisfactory numerical
solution. Analysis of the results from the Darcy and
exponential relations leads to similar conclusions regarding

the accuracy of the numerical solutions.

Although the piczometric heads calculated from the
two nonlinecar solutions generally agrce to within 1 percent,
the difforence in discharge values is greater, with the
Forchheimer result giving slightly better agreement with
the experimental valuc. Similarly, although there is only
a small differencce between piczometric heads obtained from
the Darcy and nonlinear solutions, the effect on discharge
is significant., Thus, if an attempt is made to calculate
the discharge by applying onc of the nonlinear flow.
equaticns to the Darcy hoad values, it is found that there
is a discrepancy of up to 20 percent between discharge
values calculated at differont seections throughout the bank.
It is oxpected that this discrepancy would be considerably
magnified in flow through protetype rockfill banks and in
such flows the advantages of the nonlincar solution would

also bo morce significant,
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Flow 2 Upstream Water Level = 1,215 ft.

The experimental frce surface for this flow is showm
in Fig. 7-2-3, together with the theoretical free surface
for both Darcy and nonlinecar flow. The two nonlinear
relations, Forchheimer and exponential, again give virtiually
coincident results and the equal head lines shown in Fig.
7-2-3 are obtained from the finite elemenit solution for

Forchheimer flow.

A comparison of experimental and calculated values of
piczometric head was made at the points throughout the flow

marked A to N in Fig, 7-2-3 and these are given in Table

7-2-3,
Point Piczometric Head (£1)
Experimental || Forchheimer | Exponential Darcy
A 1.21 1,21 1.21 1.21
B 1,21 1.20 1.20 '+ 1.19
C1 1.16 1.16 1.16 1.14
cz2 1.18 1.18 1.18 1.16
Di 1.09 1,10 1.10 1,07
D2 1.11 1.11 1.11 1.08
El 1.02 1,05 1.05 p 1,01
B2 1.05 1.06 1.066 1.02
F1 - 296 .99 . 9¢ «95
w2 .98 1.01 1,01 - 97
G1 « 90 .93 .93 .89
G2 90 295 «95 4 .90
L « 30 .83 .83 : ¢ 18
M 64 .68 "« 68 « 65
N .48 .51 .51 - - B1

TABLE 7--2-3 PIEZOMETRIC HEAD VALUES FOR FLOVW 2
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Tho results show trends similar to those which were evident
with flow No.l, the meximum discrepancy of any celculated
piezometric head from the corresponding experimental one
being approximately 6 percent in this case.
Discharge calculations again yield good agreement with
the experimental result:

.114 cusecs/f+4

Il

Experimental discharge

.110 cusecs/ft

Il

Theorctical discharge (Forchheimer)
Theoretical discharge (exponential) = ,107 cusecs/ft.
The Forchhecimer result again shows a small but significant

inecrease in accuracy over the exponential one.

The finiitc clement network used was similar to that
for flow No,l and discharge calculations at various
vertical grid lines showed that continuity was satisfied o

2 similar degrec of accuracy as for flow No.l.

T.2.2 Floy throush a bank with an impervious cut—off wall

A solution was carried out for two flows +through a bank
with a sloping impervious cut-off wall., For flow No.l the
headwater height was 1.383 ft. and there was no tailwater.
The free surface position obtained from the Forchheimer
flow equation and ithe exponential relation are in close
agreement as are the equal head lines., The frece surface
line and the equal head lines for the Forchheimer solution

are plotted in Fig. 7-2~4. The positiong of the



Nonlil_lear finite element solution

— - —. Experimental free surface

— —— Darcy free surface

FIiG. 7-2-4 FLOW NO.,1 WITH AN IMPERVIQUS CUT-OFF WALL

*S12



278,
experimental free surface and the Darcy free surface are
also shown in Mig. 7-~2-4, A comparison of the experimental
and calculated valuces of piezometric head at discrete points

(marked A to N in Fig. 7-2-4) is given in Table 7-2-4,

Point Piegometric Head Value (f£ft)
Bxperimental || Forchheimer | Expohential | Darcy
A 1.383 1.382 1.382 1.380
- B. 1.379 1.37% 1.379 1.371
CL .35 .95 95 s 36
C2 1.358 1,356 1,356 1,331
c3 1.379 1.374 1.374 1.371
D1 .85 295 .95 .98
D2 1.16 1,17 1.17 - 1.17
Bl .83 .93 .93 .96
B2 .84 .95 .95 « 98
B3 .38 .98 .98 1.00
F1 .80 - .89 .89 .90
F2 .81 .90 .90 .91
F3 .88 .91 .91 .93
Gl I o716 .84 -84 .84
G2 .75 .85 - 35 .34
Ll .68 L5 75 .73
L2 .69 .75 .75 o753
M . 57 .62 .62 . 60
N .41 .45 .45 44
TABLE 7-2-4

PIEZOMETRIC HEAD VALUES FOR FLOVW No.l WITH CUT-OFF WALL

A consideration of the results shows that good agrecment
between calculated and observed guantities is obtained
upstream of the cut-eff wall but that the agrecment on the

downstream side is less accurate. A problem.with numerical
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analyses is that it is sometimes difficult to predict the
degree of accuracy of the results. Some indication of the
accuracy may be determined by solving a given pmoblém with
a particular mesh size and solving the same problom with
a finer mesh and comparing the results. 4 solution for
this flow problem was therefore obtained using 100 nodes
and about 160 elements and then another solution using
approximately 300 nodes and 500 elements was carried out.
The results of the finer grid solution showed only slightly
better agreement with the experimental ones. The difference
between the btwo solutions at various points was usually less
than 2 percent., The resulds given in Fig, 7-2-4 and Table

T-2-4 are for vhe fine grid solution,

Some idea of the accuracy of the numerical results
may also be obtained by carrying out a continuity check.
Calculation of discharge from the nonlinear finite element
solution at various vexrtical scctions showed that
continuity is satisfied to within + 8 percent for scctions
~throughout the flow including sections above the cut-off
wall.

The finer grid finite element network used in the
solutions is depicted in Fig. 7-2-5 and the discharge from
the Forchheimer solution at the sections designated in

Fig, 7-2-5 arc given in Table 7-2-5.
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Grid Line as Depicted Total Calculated Discharge
in Fig, 7-2-5 (cusecs/f4)
Forchheimer Solution
A—A .091
B-B 089
C-C 088
D-D .092
BB 093
FOuy 083
G=G 088
TABLE 7-2-5
DISCHARGE AT VERTICAL GRID LINES FOR FLOY WITH CUT-OFF
WALY,

Al though the agreement of values in Table T7-2-5 could
be improved by more iterations and by using a finer grid,
experience has shown that the final average calculated
discharge and the piezometric heads at the nodes would not

be significantly affected.

The experimental discharge was observed to be ,083
cusecs/ft. - The average value calculated from the Forchhcimer
solution was ,091 cusecs/ft. while that from the exponential
relation was .090 cusecs/ft. Although valucs of piczometric
head obtained from the Darey solution agree quite closely
wvith those from the nonlinear solutions, discharge
calculations from these Darcy head values are again
inaccurate. For the second flow investigated, the

upstream water level was 1.18 ft. and the downstream level
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was .12 ft. The frece surface position and equal head‘lines
from the Forchheimer solution are plotted in Fig. 7-2-6
together with the positions of the free surface obtained
experimentally and from the Darcy sclution. The results
show similar trends to those obtained for the first flow
except that the nonlinear Fovchheimer solution gives a
decidedly more accurate prediction of the free surface
line in this case than does the Darcy solution. The
pilezometric head values obdained from the nonlimear flow
solution at points within the flow region also agree more
closely with the experimental measurements than do those
from the Darcy solution. A calculation of discharges
across various vertical grid linces throughout the flow
showed that continuity was satisfied to a similar degree

of accuracy as for flow No,l.

The experimentally measured discharge for this second
flow. was ,058 cuscecs while that obtained from both the

Forchheimer and exponcntial solutions was 065 cusecs.

Although the Forchheimer solution gives more accurate
results than the Darcy solution there is still a discrep-
ancy between calculated and observed piezometric heads
especially on the dovmstream side of the cut—-off wall.,
Some of this di screpancy between the calculated and

cexperimental values may be due to the complexity of the
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lower impervious boundary. Singularities arise at abrupt?
changes in dirccition of the flow boundarics and these
camnot be easily allowed Tor in a numerical solution to
nonlinear partial differential equatioms. The only
allowance for singularitics made in the anelysis was o
use a finer grid size around the corners at the ftop of

the cuft—off wrall.

Part of the discrepancy may also be explained by the
actual nature of the flow passing over the wall which
probably does not conform well to the continuous saturated
flow condition assumed in the analysis. In the experimental
tests some acerification of the fiow occurred as it passed
over the cut—off wall with a result that only a meaﬂ
position of the frec surface could be plotied. Parkin

(1963a) has called this the free-fall region.

In view of the difficulties in accounting for this
aerified nature of the flow in any analytical solution the
calculated values of piezometric head and aischarge are

acceptable results,



CHAPTER

CONCLUSIONS

8.1 MNonlinear Head Loss Relations in Porous Media Floir

The realisation of the limited validity of the Darcy
linear law of head loss for flow through porous media at
‘high Reynolds numbers has led researchers 4o formulate
nonlinear relations that will accurately prediet the head
loss over an exvended range of Heynolds numbers, The
suggested forms of the appropriate nonlinear relations
have varied considerably. Two of the most common forms
for flow of water through coarse granular materials are
thhe Forchheimer and exponential equations. The Forchheimer
relation is written as:

i = eV + bVe veee 811
while the exponential relation is:

i = c?" core 8412
in whieh i is the hydraulic gradient, V is the average
macroscopic velocity and a, b, ¢ and m are terms which

depend on the preoperties of the fluid and medium.

Deductions from the Navier-Stokes equations (Irmay,
1958; Sunads, 1965) have shown that the Forchheimer equation
can be derived by a dimensional approach, but further
consideration (Stark and Volker, 19687; Stark, 1969) has shown

that the coefficients a and b will only be strictly coustant

283,
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for a constant velocity profile of flow. Numerical
solutions of the Navier-Stokes equations (Stark, 1968),

for flow through idealised media, have shown that the
velocity profile varies with the Reynolds number so that

a and b depend on the Reynolds number, However these
solutions have also shown that the velocity profile and
therefore the values of a and b change slowly with changes
in Reynolds number so that constant values of a and b can
be applied, with small error, over a range of Reynolds
mmbers Experimental measurements of hydraulic gradient and
velocity, for flow through coarse grained materials, hawve
been carried out by numerous authors and have supported
the above conclusions. To ensure best accuracy of results,
the coefficients a and b should be determined by curve
fitting to *the velocity and hydraulic gradient results

over the Reynolds number range under consideration.

The exponential head loss relation has also been
supported by many authors and has been applied in the
analysis of some practical flow situations. This relation
however has been suggested on the basis of experimental
results and theoretical justification for it has not been

reported as for the Forchheimer relation.

ALl though the breakdowm of Darcy's Law at high Reynolds

numbers has been widely recognised, the ‘treatment of
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practical situations involving nonlinear flow has beem
limited. The approach utilised in this thesis has
incorporated experimental work with materials sufficiently
coarse 1o render nonlinear effects appreciable., DBxperi-
ments have been carried out over ranges of Reynolds
numbers for situations similar to those likely to be
encountered in problems of practical importance. Thus

the axisymmetric flow tests were performed to investigate
nonlinear effects in the area adjacent to a well where the
velocities are high, while the gravel bank experiments in
the open flume were designed vo simulate flow through
rockfill, which is of increasing importance in dam and

coffer-dam constructions.

The results of the well flow %ests have shown thet
the position of the top flow line and equal head lines
ebtained from the Darcy and nonlincar solutions differ
appreciably only at large drawdowns., For the confined
flow experiments the results indicate that the Darcy
solution for the piezometric head line agrees more closely
with the experimenital than the nonlinear solutions,
However at least part of this disgrepancy is considered o
be due to experimental error in determining the free
surface, as permeameder results had shown that.Darcy's

Law is deecidedly inaccurate, over the Reynolds number
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range which occurs in the well tests for any particular
flow. The unconfined axisymmetric flow analyses showed
that both the Forchheimer and exponential relations gave
better agreement with the experimentally determined flow
nets then the Darecy solution. IBspecially at the highest
flows in the range investigated, the nonmlinear solutions
give appreciably more accurate results. The two-dimensional
flowv experiments in the open flume showed that the difference
in flow nets obtained from the linear and nonlinear
solutions is gquite small for small drawdowns. In flow
through banks of £ in. nominal size aggregabte the
difference in the phreatic surfaces is small for all three
head loss relations and it appears thab, in this case,

the flow net could usually be obtained to sufficient
accuracy from a Darcy solution. The reason for this is
that, although Darcy's Law does not anply over a wide
range of Reynolds numbers for such a coarse grained
material, the variation in average velocity from the
upstream Tace to the downstream face of the bank is not
great and a Darcy solution will therefore be reasonably
accurate, MNevertheless, the material which occurs in
actual applications may have a nominal particle size of
the order of 2 f4. or greater and for this material the

nonlinear effects will be inecreased so that the error of
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the Darcy solution for the free surface may then be more

significant +than in the experiments reported herein.

It is however, in determinations of discharge that
the solutions for nonlinear porousg media £low are
parbicularly significant. For the 3/16 in. nominal size
gravel ecmployed in the well flow experiments it has been
shown that estimations of discharge from Darcy's Law,
based on a permeability cocfficient determined for any
particular flow, will be in error for any other flow.

For well tests under field conditions the discharge from
the pump used in the test is measured. The drawdown
between the pumped well and an observation well located
at a knowm distance away is determined. The Dupuit-
Forchheimer expression is then employed o calcuiate the
average permeability coefficient., If the permeability is
determined from a flow with a gsmall drawdown, then for
" the range of flows and the material used in the experiments,
this will result in an underestimation of discharge for
still smaller drawdowns and an overestimation by as much
as 50 percent for highest drawdowns. The nonlinear
relations however can accurately predict the discharge
to within a few percent over the whole range of drawdowns.
It is s%ill necessary to determine the appropriate values

of the coefficients in the head loss relations for the
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prototype material and for the Reynolds number range
encountered in the prototype flows. 4 satisfactory
method of achieving this has been formulated, based on
permeameter results at different porosities, and using an
approximate solution for horizontal flow to interpolate

between the sets of coefficients.

In flow through rockfill dams and banks in actual
practice, discharge calculations will usually need to be
carried out in the design stage, before construction
commences. For this reason it would not be possible %o
determine the permeability or the nonlinear head loss
coefficients from actual flow results. In the gravel
bank experiments therefore, coefficients in the nonlinear
head loss equations were obtained by fitting curves to
permeameter test results for a sample packed similarly
to the protoitype material, Under these conditions, any
determination of discharge from Dercy's Law would be
difficult because the permcability varies continuously
over all velocity values used in the permeameter. The
availability of a nonlinear solution therefore assumes
greater importance for such situations and this ig likely
to be even more important with the coarser materials which

ocecur in practice.

A comparison of the results from the two nomnlinear
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relations (the Forchheimer and exponential) shows that
both give accurate predictions of discharge and of
piezometric head values, It was noted in Chapter 2 that
the Forchheimer equation was theoretically more sound than
the exponential one. The curve fitting results reinforced
this conclusion, as a calculation of the standard error of
esvimate for the fitbted curves showed that in every. case
the IForchheimer equation fitted all permeameter results
with greater accuracy than did the exponential equation.
However the resultls obtained from application of the two
equations to practical flow situations showed that, while
the Forchheimer equation in general gave more accurate
results, this increased accuracy was only significant in

a limited numbér-of cases, These included axisymmetric
flow to a well at large drawdowns and flow- through coarse

gravel banks.

Again it is possible that the increase in accuracy of
the Forchheimer equation may become more apnreciable in
flow through rockfill with the larger particle size likely

" to ‘be med in practice.

Thus, although both relations give reasonably accurabe
results, it is considered that analyses should be based on
the Forchheimer relation because it does give some

improvemenv in certain cases and it involves no more
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difficulty in the analysis than the exponential relation.

8,2 Tinite Difference and Finite Zlement Splutions

The field differential equations resulting from all
three head loss relations considered, are partial
differeniial equations and for unconfined flow situations,
the solution of these equations involves a numerical field
approach. The two approaches used in this thesis have
been the finite difference and finite element methods and
each differential equation has been shown to be amenazble
to solution by both methods. A brief consideration. c¢f the
relative merits of the finite difference and finite element

techniques is therefore periinent.

The finite element method has advantages over-a finite
difference approach when the boundaries of the flow area
are irregularly shaped, The elements can be varied in
size to conform %to the boundaries without difficulity and
no cnange in the basic program is necessary for any shape.
The variation in element orientation and size is caterecd
for in the input data. The finite difference method, on
the other hand, is much less readily adaptable to irregular
boundaries, especially when a fixed mesh length is assumed
at interior points in the field. Thus the finite element
method is better suited to the analysis of flow through

dams and banks of placed rockfill where the slopes of the
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faces vary and where the lower boundary may not be

uniform or horizontal. The finite element method is also
ecasily adapted to flow situations involving a nonhomogeneous
flow field because, provided the boundaries separating
different materials are known, the elements can be made to
conform to these boundaries. The appropriate values of the
coefficients for each element can be specified and read in

as data for the computer program.

Vhen compared with the finite difference technique,
the method of finite elements has some disedvantages in
that, for a given number of grid points, it requires more
computer storage and may require more computer time to
achieve a given accuracy of solution. Thus for a given
amount of computer storage and time, a finer grid size
will usually be possible with the finite difference
method, although it is usually casier, with the finite
element method, to incorporate a finer megh in particular

locations vhere increased accuracy is desired.

With the finite element approach, the preparation of
data for large element numbers becomes tedious when this is
done manually, whereas the finite difference grid network
is often set up in the program itself and no such tedium
is encountered. However, programs are being developed

(Zienkiewicz, 1967) to produce a finite element network for
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general field shapes so that this difficulty will eventually

be eliminated for the finite clement method.

The problem of unconfined flow to a well results in a
flow field in which the egual head lines at the upstream
and downstream boundaries can be assumed vertical; and if
the medium is homogeneous and is uanderlain by a horigzontal
impervious stratum then a finite difference analysis is
readily adaptable., The finite element methed can, of
course, be applied to the analysis of the unconfined
axisymmetric £low situation (Taylor and Browvm, 1967}, if
it is advantageous because of nonhomogeneity of the

medium or irregularity of the flow boundaries.

The two approaches differ in the treatmcent of the
Neumann boundary conditions. The finite element method
automatically allows for no flow across the impervious
base and across the free surface, as a "natural® boundary
condition, while this condition has to be incorporated in
finite difference form in the alternative method. This
difference becomes significant in the adjustment of the
free surface where the finite difference method is
restricted because of the regular nature of the grid lines.
Nevertheless, auvomatic adjustment of the free surface

with the finite element method also introduces complexity
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in programming because of the need to allow for changes in

the element network in the viecinity of the free suriace.

¥ith the continued improvement in capabilities of each
new generavion of computers and with the need to handle
more complex flow situations, it is likely that the finite
element method will be inereasingly employed in solutions

of porous medis flow provlems,

8.3 Applications 1o Practical Flow Situations

8.83.,1 Determination of cocefficients for actual media

Problems still arise in applying the nonlinear relations
to practical flow situations because of the difficulty in
determining values of the coefficients in the equations for
naturally occurring materials. Some cempirical methods‘have
been formulated for determining the coefficients in terms
of particle size, porosity ete. BEngelund (1958) proposed
equations for the coefficients a and b of the Forchheimer-
relotion while Parkin, Trollope and Lawson (1968) gave a
nomogram for obtaining the head loss thrdugh marbles and
rock at a range of void ratios, from an exponential head
loss relation. At their present stage of development such
empirical methods ecannot account for the wide variations
in properties which occur with porous media in practice,
as they have been tested for only a very limited range of

materials. But it is possible that with continued
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determinations of coefficients, information may be
accumulated for a more comprehensive range of media so
that coefficients will eventually be determined from
formulae or charts as functions of material gradings,

porosities, mean particle diameter etc.

Another possible avenue for obtaining required
cocfficients is from solutions to the fundamental Wavier-
Stokes equations., At present solutions are only available
for £$£§$; flow and idealised particle shapes, but with the
improvement of numerical methods and computer systems,
coefficients may eventually be obtained from numerical

solutions for 3-dimensional flow through channels which are

representative of actual porous media.

For sufficiently fine grained materials and where the
results for at least one prototype flow are available, the
coefficients may be obtained from permeamecter test results
in conjunction with an approximate analysis of the flow, as
described in Chapter 6. For some rockfill materials the
particle size may be too large to allow accurate permeameter
tests and in this case it may be possible to obtain
coefficients from semi-field type measurements for flow
through material in specially constructed flumes, with
discharges measured by weirs or flow meters. Although such

tests may involve substantial costs, they would provide
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the appropriate coefficients for the nonlinear head loss
relation and a complete analysis of flow through the
rockfill could then be achieved by solutions based oun this

relation,

8.3.2 Future applications and investigations

In gtability enalyses of slopes subjected fo water
flow, the position of the phreatic surface and the
distribution of piezometric hecads within the slope are
rogquired, Although no consideration of the stability of
the gravel banks hes been undertaken in this thesis, the
solutions for piezometric head within the banks would be
directly applicable in such considerations. Solutions for
the phreatic surface and piezometric heads, from the
nonlinear equations, could therefore be used in the design
stage for analysing the stability of proposed rock{fill

. structures.

The practice of allowing rockfill coffer dams +to be
overtopped at peak floods is being utilised to an
inc¢reasing exvent in modern -dam constructions, as mentioned
in Chapier 2. Under these conditions the analysis of the
Trow is quite complex because of the different factors
governing the flow through, and over, the rockfill. If a
finite element approach werce devised for analysing the

part of the flow over the rockfill, then by combining this
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with the finite element solution for nonlinear Iflow
within the rockfill, an overall solution for the problem
would be possible as mentioned by Fenton (1968). This
would represent & significant improvement in the analysis

of the overtopping flow situation.

The existence of nonlinear flow in the area adjacent
to a pumping well can be adequately accounted for, by
involking a nonlincar Forchheimexr head loss relation with
appropriate coefficients, in the solution. Fermeameter
tests on a sample of sand talken from the Burdekin River
area (North Queconsland) have shown that nonlincar effects
can be expected at high pumping rates in actual aquifer
materials but the significance of these effects depends
on the type of materizl, its mean particle diameter,
grading, ctc, and will decrease with decreasing mean
particle diameter. However, even in fine grained aguifers,
the incorporation of a gravel bed in the arca adjacent to
a rgcharge or discharge well, may be nceessary bo ensure
maximum efficiency. The flow through the gravel bed will
follow a nonlinear head loss relation so that an appraisal
of the development of the aguifer system will necessitate
allowance for tho monlincar cffects and this can be

achieved in a manner similar to that presented in Chapter 6,
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Both the finite element and finite difference methods
can be oxitended to acecount for nonhomogenecus media
provided all the relevant coefficients in the head loss
equations -are knewvm, However, unless thce boundarices
separating the strata are parallel to the grid lines of
the finite difference network, the finite eclement method
will be better suited to thesc conditions as discussed in

section 8.2.

The availability of numerical methods of solution
for nonlinear flow through porous materials enables a
thorough investigation of flow conditions to be made in
the preliminary or design stage of a project. There is
the advantage that the consequences of changes in variables
can often be more casily studied than 'in model tests and,
provided the coefficients in the head loss relations can
be obtained for the protlotype material, the necd for
scaling of rvesults is eliminated., Flow patterns can be
-aseerdained from the calculated values of piezometric head
within the flow and discharges can be cestimated -for

varying boundary conditions of the flow.,
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APPENDIX 1

Results for Confined Flow Experiments.

Flow Nos. 1, 2 and 4.
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APPENDIX II

Flow Net Results for Unconfined

Axisymmetric Experiments with Complete Circle.
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