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1.1. General introduction 

 

 This study is primarily focused on the understanding of geological systems by 

the aid of computers, the “intelligence amplifiers” (see Merriam, 2004). Three 

geological problems are discussed in the forthcoming chapters, focused on economic, 

structural and sedimentary geology related themes: 

 

• Exploration for Pb-Zn mineral deposits of large tonnage (Lawn Hill Region), 

• Understanding the genesis of the Century zinc deposit, 

• Reconstruction of the processes that led to the formation of the Middle 

Cambrian Lawn Hill Megabreccia. 

 

  A primary objective is to obtain temporal and spatial reconstructions of the 

geological evolution of each component, or sub-system of the study area, the Lawn Hill 

Region in northern Queensland, Australia. The project was specifically aimed at using 

advanced computational tools to analyse geological variables, but it also involved the 

development of computer software to solve specific problems.  
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1.2. Application of computer science to geology 

 I have been always fascinated by computers therefore as a geologist I decided 

that I wanted to prove to myself that the computer “is worth a try in geology”. When I 

started this project I had already gained experience with the use of computers in 

geology mainly developing geological models in 3D and producing animations of 

geological terrains, taking the audience across dynamic, virtual scenarios to observe 

structural characters with great detail. Most importantly the virtual experience was a 

way to deliver quickly the information to them at different scales (zooming up and 

down). This first attempt was driven by the understanding that computers extend our 

ability to represent multivariate systems. In the end it revealed also that frequently these 

methodologies are so fascinating that the science behind these models becomes of 

secondary importance for the unaware audience. This should not happen. Science has 

long been fascinating for its simplicity not for its technicality.  

  Stepping from the “glossy animations” I approached the real potential of such 

tools in addressing a classic topic of Economic Geology – ore genesis. Computer 

software such as GoCAD, FLAC, FLAC-3D and some programs I developed were used 

to reconstruct several mineral deposit scenarios. The results were integrated to offer a 

vision of ore genesis obtained from the different modelling perspectives. 

 The interrelationship among humans and machines is now so deep that it is 

becoming difficult to evaluate if the benefit is derived exclusively from the machine 

itself (hardware) (e.g. Merriam, 1999) or from the software developed by hundreds of 

developers. In other words computers are now not only huge databases, they also have 
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the ability to store and retrieve our intellect (correlating data and developing inferences) 

in the form of high level computer software (structured languages). This process is 

iterative, irreversible and gradually sees the transfer and upgrade of knowledge from 

humans to machines (e.g. the OpenSyc, Formalized Common Knowledge project; 

http://www.opencyc.org), until perhaps the computers will start to think autonomously. 

These perspectives were, in part, the reason for a second stage of the project devoted to 

the exploration of mineral deposits in the Lawn Hill Region using empirical modelling 

of probability. In this context the application of computers to geology assumes a role 

that is different from the previous, because computer programs are not exclusively a 

representation of a multivariate system and how its variables are related to one another. 

Boolean logic takes the place of partial differential equations (used in process 

modelling) to empirically explore  interlocked variables in this case, but the main 

difference is that the computer software provides a final output that is derived from an 

automated inference mechanism- the Bayesian reasoning. 

  A geological problem can be addressed quantitatively in different manners; the 

same dataset can be fitted using several mathematical models (Krumbein, 1962). This 

raises the question of what technique is the best and which one should be used. 

However, there is no clear answer to this. More likely it is better to favour the fusion 

(integration involving rejection of poor models) of diverse mathematical models rather 

than limit the analysis (i.e. the search for mineral deposits as function of a single ore 

genetic model). The problem is how to define the goodness of fit of our models (e.g. 
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Fisher, 1925). This leads to a final stage in this thesis - the relationship of qualitative 

versus quantitative geology.  

Computational modelling is certainly an improved methodology, which deals 

more adequately with geological complexity. Therefore it represents a valid alternative 

to more consolidated (conventional) methodologies of analysis, of geological problems. 

For example (see Chapter 3), modern digital mapping tools have effectively been  

valuable alternatives to conventional outcrop mapping, when exploring for mineral 

deposits. Nonetheless, the quality of field based studies retain its importance for 

obvious reasons. Similarly, when treating quantitatively and computationally the 

problem of genesis and timing of a geological event (Chapters 4-6) a multi-dimensional 

(space, time) perspective is available. Multi-dimensionality leads to better 

conceptualisation of a geological system. With computational modelling a more 

comprehensive vision is offered to the geologists, which are then able to test their 

hypothesis more elegantly. Quantitative modelling is therefore a natural step (required) 

to improve the qualitative methodology of the past, but it should never be considered as 

a way to avoid a priori qualitative assessment. 

1.3. Aims and objectives 

 

 In summary this study had the following aims: 

• Compile software that allows constructing predictive exploration GIS models 

that make use of Bayesian probability analysis, (Chapter 3); 



Chapter 1                                                                                Thesis introduction 

 

Leonardo Feltrin  1-6 

• construct and run 3D models and simulations to understand the genesis of the 

Century zinc deposit, (Chapters 4 and 5); 

• combine qualitative and quantitative analysis to understand the timing and 

origin of the Lawn Hill Megabreccia, (Chapter 6); and 

• synthesis and conclusions (Chapter 7).  

 In addition to the application of commercial softwares in all chapters, additional 

computer code was developed in Visual Basic to address both small and large scale 

issues or to extend the functionalities of proprietary software such as GoCAD (see 

Appendix C). 

1.4. Thesis outline 

Chapter 1  Introduction 

 The first chapter is a general introduction to the thesis work, discussing how the 

work explores different types of computer applications to geology.  

Chapter 2 Historic overview and modelling background  

 The second chapter discusses the historical background that has in part guided 

the author toward this study. Firstly the evolution of numerical geological science is 

examined, becoming progressively quantitative although the qualitative, observational 

side remains still rooted and essential. This mathematisation process is complemented 

by the introduction of computers and programs designed to solve geological problems. 
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The chapter then concludes with a general overview and theoretical background of the 

type of applications used in chapters 3-6. 

Chapter 3 An integrated knowledge-based and data-driven 

modelling study of the Lawn Hill Region, Queensland, Australia 

 This chapter compares, at regional scale, a knowledge-driven model based on 

expert driven scores using common knowledge of SEDEX-type deposits and MVT-type 

deposits, and a data-driven model developed using Bayesian analysis with the Weights 

of Evidence method. Considerations are made concerning the validity of the two 

methodologies and of the benefit derived from their integration. 

Chapter 4 Testing the structural and geomechanical processes in 

the formation of the Century Zn-Pb-Ag Deposit 

 The fourth chapter is a camp-scale to deposit-scale study focused on the Century 

deposit aiming at understanding and testing different ore genetic models for the Zn-Pb-

Ag mineralisation. Camp-scale reconstructions focus on the understanding of the 

structural evolution and role of faulting in contributing to the spatial distribution of 

mineral grades. Numerical 2D simulations of deformation and fluid flow are also 

presented to test previously proposed genetic models. 
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Chapter 5 Modelling the giant, Zn-Pb-Ag Century deposit, 

Queensland, Australia 

 The fifth chapter is a deposit scale study. The interrelationship between faulting 

and mineralisation and the role of other controlling variables is evaluated, to understand 

the spatial patterning of mineralisation. Inferences derived from the integration of 3D 

structural and property modelling combined with 3D coupled fluid flow and 

deformation numerical simulations are considered in the context of basin history, 

emphasising the importance of basin compartmentalisation. 

Chapter 6 Catastrophic mass failure of a Middle Cambrian platform 

margin, the Lawn Hill Megabreccia, Queensland, Australia  

 The sixth chapter is a deposit scale study of the Middle Cambrian limestones 

unconformably covering Century. The study represents an example of how quantitative 

geology can be combined with observational qualitative, field based studies to resolve 

complex geological scenarios (i.e. multiple phases of breccia development). 

Chapter 7 Complexity and self-organisation 

 The seventh chapter proposes an alternative non-linear view of geological 

processes suggesting that complex patterning (e.g. mineral deposit formation, breccia 

development etc.) and randomness can be treated with an innovative approach that 

combines deterministic with probabilistic laws. 

 



Chapter 1                                                                                Thesis introduction 

 

Leonardo Feltrin  1-9 

Chapter 8 Conclusions 

This final chapter contains a brief summary of the conclusions, and a general 

conclusive statement. 

 

 

Appendix A-B  

Mathematical models (technical background). 

Appendix C 

Software developed. 

Appendix D 

Table of specimens used in the thesis. 

Appendix E 

  

• Digital copy of the thesis. 

• PowerPoint animation of 3D structural and property model of the Century 

deposit. 

• WofE-2D software. 

• High resolution Figs 3.1 and  5.7 
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2.1 Introduction 

This chapter considers a historic overview that focuses on the gradual shift from 

qualitative to quantitative geology looking also at the advances that the use of computer 

has brought into quantitative geology. Retracing this history underlies important 

connections of present applications with the past. These references clarify the derivation 

of the approaches adopted in the thesis and the theoretical paths used to explore the 

geological problems. The chapter concludes with a section that provides the theoretical 

background relative to the statistical and deterministic models applied later in this thesis.  

 The work treated in the core of the thesis considers “decision functions” in a 

mineral exploration case. 3D models are also constructed using interpolation algorithms 

derived from geostatistical methods (e.g. Mallet, 1989). These quantitative approaches 

are statistical and use software tools derived from advances in mathematical geology 

(Howarth, 2001). In addition to this, deterministic simulations (e.g. fluid flow and 

deformation in sedimentary basins, Bethke et al., 1988) were also generated with the aid 

of fast workstations to study the physical processes that involve migration of fluids in and 

around faults in sedimentary basins.  

The historical perspective draws marked lines between these models. This 

division derives from the philosophical approach adopted to solve scientific problems that 

see two distinct methodologies: the deterministic based on sets of equations that fully 
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describe the system with a finite number of variables, and the statistical approach based 

on stochastic models with equations that fit a real system with infinite variables. In this 

regard Agterberg (1967) discusses some of the methodologies adopted to better 

understand stochastic processes, illustrating the evolution from Surface Trend Analysis to 

other more refined methods of regression including geostatistical approaches (e.g. 

moving average), Poisson distribution, the use of Fourier-transform and Power Spectra 

analysis. The counterpart to such statistical models is matched by the sophistication of 

finite-difference techniques in numerical simulations (e.g. Harbaugh and Bonham-Carter, 

1970).  

2.2 Historic overview 

2.2.1 From qualitative to quantitative geology 

The roots of quantitative geology are very deep (Merriam, 1981; Howarth, 2001; 

Merriam, 2004). For instance, Agricola made use of trigonometry in mining applications 

as he reports on his book the De Re Metallica (Merriam, 2004). However, even earlier is 

the estimation of the earth circumference based on astronomical observations of the sun 

by Eratosthenes (276-194 BC) in ancient Greece (Fig. 2.1).  
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Fig. 2.1 Diagram showing a summary of the personalities that influenced the history of science and as a 

consequence contributed directly and indirectly to the advance in natural sciences including geology. 

 

Unfortunately in the past, practitioners of quantitative methods were few, and the 

application of mathematical and statistical methods to geology required several scientific 

revolutions to gain consideration, including the advent of computers. At the beginning of 

the 17
th

 Century, only after Galileo and Kepler “the experimentalists” (see Einstein, 

1934), a quantitative approach to science became a necessary requirement to improve 

theoretical models. However, a considerable time after this philosophical advance was 

still necessary for a young discipline such as geology to become effectively numerated. 
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Early theories such as plutonism (Hutton, 1726-1797), uniformitarianism (Lyell, 1797-

1875), and plate tectonics (Wegner, 1880-1930) were mostly the success of an 

observational science. Wegner, in fact, proposed his theory initially by noting a similarity 

among the margins of continents. Qualitative reasoning was therefore a primary tool that 

also became more refined later after Chamberlain introduced the method of “multiple 

working hypothesis” in 1897 (Krumbein, 1962). A qualitative approach could certainly 

grasp generalised laws of nature such as natural selection (Darwin 1809-1882). However, 

early scientific investigations have been turned to more rational and careful analysis of 

experience, leading to the present reductionism. Reductionism can be exemplified by 

modern experiments in particle physics. Understanding simple parts of a system at sub-

atomic scale (non-observable) requires inevitably a quantitative approach. Qualitative 

holist science must therefore become reductionist quantitative science, reflecting the need 

of extending our scientific experiences. Reductionism remains also unavoidable as it is 

far easier to describe independently the element of a system rather than look at the whole, 

because this would require a full understanding of variable interactions (the variable 

interlocking of Krumbein) a task that is often impossible to fully achieve, hence the use 

of statistical methods. There seems to be then, a natural tendency towards quantitative 

geology as shown by Merriam (2004) in the exponential trend and relative stages of 

evolution of mathematical sciences (Fig. 2.2). The application of mathematics and 
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computer science to geology can also be understood by looking at the history of the 

scientists that contributed to them (Fig. 2.3). 

 

 

Fig. 2.2 Diagram illustrating the different stages of development of quantitative geology. Modified from 

Merriam (2004). An additional stage is considered that forecasts the advent of intelligent systems. 
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Text Box


  THIS IMAGE HAS BEEN REMOVED DUE TO COPYRIGHT RESTRICTIONS



Chapter 2                                        Historic overview and modelling background  

 

Leonardo Feltrin                                                                                                2-8 

 

Fig.2.3 Tree of quantification portraying some names of eminent researchers involved with the 

interrelationships of physical and natural sciences. Some of these figures contributed to the 

mathematisation of the geological science. Adapted from Merriam (2004). 
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2.2.2 Regression 

Howarth (2001) provides an excellent description of how regression and model-

fitting methods have evolved in earth sciences. This section adapts then the historic 

reconstruction of Howarth showing the derivation of statistical and deterministic 

methods.  

Howarth (2001) reports a historical study of magnetic declination, which probably 

was the first example of application of quadratic functions to predict the variation of the 

earth’s magnetic field. This work was developed by a mathematical practitioner, Henry 

Bond (1600-1678), who predicted correctly the magnetic declination in London for the 

year 1657 and subsequently published a series of manuscripts with 30 years forecasts of 

magnetic declination. Other historical studies  were more focused on astronomical 

observations and the measuring of the Earth’s shape, which led to the development of 

new mathematical formulations, respectively developed by Mayer (1723-1762) and 

Boskovic (1711-1787), but also others (Howarth, 2001). However, only at the end of the 

18
th

 Century did the German mathematician Gauss (1777-1855) develop a new method to 

fit a generic mathematical equation to a finite number of data points. This was the famous 

least square method that he firstly applied to interpolate the elliptical orbit of an inferred 

planet (the planetoid Ceres). The least-squares method is mathematically expressed as the 

minimization of the sum of the squared residuals ( e
i
) that is the difference between 
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measured ( y
i
) and computed ( y

i
^ ) values derived from the mathematical model fitted to 

the data, where n refers to the number of measured values: 

 

 X
i = n

ei
2
=X

i = n

y
i
@ y

i
^

b c2

u 0        (2.1). 

 

The first publication of the method is attributed to Legendre (1752-1833) in 1805 

who published the method as a way to determine cometary orbits. From this stage, the 

least-squares method was progressively divulged by Gauss (e.g. models of the global 

magnetic field, see Fig. 2.4) and others (e.g. Airy, 1801-1892). 

 However, significant progress in regression analysis as it is known to modern 

scientists (e.g. Sahoo and Pandalai, 1999), had to wait until the beginning of the 20
th 

 

century when the work of Pearson (1857-1936) and his collaborator Yule (1871-1951) 

elucidated the connection existing between least-squares and the regression line 

coefficients (β
0

,β
1
), which could be represented as the intersection of a line with the 

ordinate axis and angular coefficient of a linear function in y (x) of type: 

 

y
i
=β

o
+ β

1
x

i
           (2.2). 
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 Equations (1) and (2) can be combined to derive the best coefficients for y(x) that 

fit randomly collected data of a population: 

 

  X
i = n

ei
2
=X

i = n

y
i
@ β

o
+ β

1
x

i

b cd e2

u 0       (2.3). 

 

 The least-squares method being coupled with the regression line became 

effectively a statistical tool for bi- and multivariate analysis. However, it was only after 

Fisher (1890-1962) that a firm theoretical basis was set in a definitive manner. Fisher 

(1925) introduced concepts such as the variance of a population (the residuals gained 

importance rather than being neglected) and formal tests for statistical significance of 

coefficients (β
0

,β
1
) in the regression equation (Howarth, 2001).  In the second quarter of 

the 20
th

 Century the efforts of Krumbein (1902-1979) (one of the fathers of mathematical 

geology) led to widespread application of mathematics and statistics to sedimentary 

geology problems, e.g. Manual of Sedimentary Petrography (Krumbein and Pettijohn, 

1938). Krumbein was interested in discriminating between large trends in sedimentary 

facies distributions and local anomalies. His contribution led to the extension of the least-

squares fitting method to the approximation of polynomial functions representing 

regional datasets that were approximated either by linear or non-linear surfaces. This 
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method was named Trend-Surface Analysis (Krumbein, 1959). The model consisted in 

combining the least-squares Gauss equation with a generic polynomial of type: 

 

 t = A
00

+ A
10

U + A
01

V + A
20

U
2
+ A

11
UV + …+ ApqU

p
V

q
       (2.4) 

 

where t  represents the trend component (e.g. a larger wavelength geophysical anomaly) 

of a variate  X  in  (U ,  V ) space.  A general relationship considers ε  as an additional 

component of X : 

 

X = t + ε           (2.5) 

 

suggesting that the roughness of the real dataset is also controlled by an additional 

component of random error and smaller scale oscillations (ε ). The polynomial (t) is then 

a smoothing function that is used to generalise the real distribution of data.  

Among the applications of Surface Trend Analysis it is worth noting the 

compilation of tables to perform calculations of linear coefficients in (2.4) using 

orthogonal polynomials (e.g. Oldham and Sutherland, 1955; Grant, 1957). These were 

used to remove the regional anomalies from gravitational field data. Miller (1956) used 

also least-squares to fit linear surfaces, and the method of averages to fit piecewise 

quadratic surfaces. His work pointed out that methodologies attempting to fit internal 
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points of regular grids (not at vertices)  were better for geological applications, a case 

also illustrated below in the discussion of the Discrete Smooth Interpolation (DSI) 

method.  

The progress of these methodologies was relatively slow because of the tedious 

calculations. Howarth (2001) gives a curious comparison reporting that in the 19
th

 

Century scientists such as Sabine had the advantage of human ‘computers’-  a group of 

trained soldiers was used to perform the calculations required. But to gain similar and 

even more ‘extraordinary’ computational power the advent of computers had to wait until 

the 1950s. After World War II, a period that stimulated the diffusion of statistics and 

promoted the development of computers for military applications, computers represented 

the solution to such tedious calculations, leading geologists to also start looking into 

automatic data processes (Krumbein, 1962). After computers entered the scene, the 

inversion of a  10B10 U, V
B C

 matrix  (Krumbein, 1959; Howarth, 2001) became an easy 

task therefore accelerating interpolation methods and favouring their diversification, that 

finally led to modern geostatistics (Krige and Ueckermann, 1963; Matheron, 1970). 
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Fig. 2.4 Example of application of polynomial fitting to geophysical data. Isolines of magnetic declination 

of the Northern Hemisphere. Reproduced from Gauss and Weber (1839). 
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2.2.3 Geostatistics 

The introduction of new methodologies was also due to the limitation encountered 

with polynomials, requiring more refined algorithms to resolve the excessive smoothness 

of this type of approximation. This led Griffin (1949), for example, to apply the method 

of moving averages to geophysical gravimetric data. The difference between this method 

and the use of polynomials lies in a generalisation based on averages of predefined 

neighbourhoods rather than a polynomial function that describes the whole spatial 

pattern. Howarth (2001) reports also an interesting application of these methodologies to 

Economic Geology problems such as gold estimation by a South African mining 

geologist (Krige, 1960). The most important discovery that this author reports is the 

autocorrelation function of gold assays - a spatial correlation among samples as a direct 

function of their distance from one another. This realisation led Krige to develop 

methodologies to correct grade estimations with the aid of regression analysis (Krige, 

1951), also performing spatially weighted averages of ore blocks (Krige, 1966). Beside 

these early attempts to extend regression analysis at relatively small scales (e.g. mines, oil 

fields etc.), it was only after the substantial contribution of Matheron (e.g. Matheron, 

1965) that the field of geostatistics found its independence as a modern, individual 

discipline in earth sciences. The work of Matheron was particularly important in mining 

applications although his contributions to geostatistics are largely accepted also outside 
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the geoscience world (Agterberg, 2001), reflecting the importance of his mathematical 

models. Matheron (1965) provides a theoretical framework for the early empirical models 

that accounted for both the interpolation of data, and more importantly for the uncertainty 

estimates associated with predictive models. Matheron was the first to use the term 

Kriging (in honour of Krige). Kriging is a type of interpolation based on two core 

algorithms. Firstly, a weighting algorithm aims to guess the value of a spatial point (Z
^

0) 

on the basis of certain sphere of influence, similar to IDW (Inverse Distance Weighting) 

methods (see Bonham-Carter, 1994). Kriging equations contain a sample of the 

population of data with known variables ( Z
i
). Usually the sample can be represented as a 

cluster of points in space, occurring at variable distance. These need to be weighted 

accordingly. The relationship is then of the type: 

 

 Z
^

0 =X
i = 1

n

w
i
Z

i
         (2.6) 

 

where w
i
 is a weighting coefficient that ranges from 0 to 1 (to avoid normalisation 

otherwise adopted in IDW methods);  

Secondly an algorithm is needed to determine the level of uncertainty in the estimation of 

the w
i
coefficients. This is because the calculation of these coefficients is function of the 

spatial variability of the dataset, relying on two types of covariance: 
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w
i
=

d

C

fffff
          (2.7). 

 

Within this equation (d) is a linear vector that represents spatial ‘covariances’ between 

each Z
i
 and Z

^
0  whereas (C) is a vector expressing the covariance among all the 

couples Z
i
. These relationships can be expressed in compact form using the matrix 

notation as follows: 

 

 

w
1

A
A

wn

µ

H

L
L
L
L
L
L
J

I

M
M
M
M
M
M
K

=

C
10

A
A

C
n0

1

H

L
L
L
L
L
L
L
J

I

M
M
M
M
M
M
M
K

C
11

C
12
A C

1n
1

A A A A A
A A A A A

C
n1 C

n2 A A 1

1 1 A 1 0

H

L
L
L
L
L
L
L
J

I

M
M
M
M
M
M
M
K

@ 1

       (2.8). 

 

The term µ  is a dummy number (Lagrange multiplier) used to rescale the weights in the 

range (0,1). (d) and (C) represent a measure of the dispersion, distance and spatial 

autocorrelation of a selected variable. Note that kriging uses multiple parameters to 

compute the weights, but these are measured on ‘internal properties’ of the same dataset 

and do not rely on other ‘external’ parameters (e.g. the relationship to other variables). In 

general terms the covariance C is expressed as a measure of spatial association between 

two variables for a sample (n): 
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 C =
1

n

ffffX
i = 1

n

X
i
@ X
ffffffb c

Y
i
@Y
ffffb c

       (2.9) 

 

with X, Y as spatial coordinates. An analogous relationship is more commonly adopted to 

construct semi-variograms that are the most widespread tool in mining applications (e.g. 

Houlding, 1994). Usually such plots consider the moment of inertia versus the distance 

between couples of points (lag). The moment of inertia ( γ ) is defined as: 

 

 γ h
` a

=
1

2 n

fffffffffX
t = 1

n

Z t@Z
t + h

b c2

        (2.10). 

 

The mathematical relationship is similar to equation (2.9) except that in this case the lag 

(h) is externally chosen and is regularly spaced to obtain the variogram. This 

autocorrelation function is based on a single variable and provides the degree of 

correlation between a central point Z t  positioned in t and any other point in the chosen 

neighbourhood (t + h). Both C(h) and γ (h) can be used to construct an experimental 

variogram that can be fitted with a mathematical model. Commonly, spherical  or 

exponential  curves are used to characterise the signal (Isaaks and Srivastava, 1989; 

Houlding, 1994). These equations are represented by a linear system of equations as 
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shown for different mathematical fitting models in Figs. 2.5a, b, c. The equations contain 

a series of coefficients that are used to fit the shape of the variogram and are also 

meaningful to their interpretation. For instance, in Fig. 2.5a the spherical model 

(Matheron, 1965) is represented by four coefficients: (s) is the lag or sample distance; (a) 

represents a limit after which the correlation starts vanishing; (C) is the variogram sill, a 

range of spatial association γ s
` a

; (C0) is the nugget effect, the noise or background 

signal. Once the model is representative of the region of interest it can be applied to 

neighbour domains where the experimental autocorrelation is unknown. The three 

coefficients (a, C, C0) are used then to obtain the covariance for each point within the 

chosen region allowing the definition of the wi and therefore leading to the solution of 

equation (2.6). The interpretation of the variogram is however complex because of its 

variability as a function of the orientation of the region of interest and also as a direct 

function of the overall trend of the dataset. Bonham-Carter (1994) remarks that the 

fluctuation in the data can be of different scales and it is convenient to distinguish the 

trend (regional fluctuations) from the signal (the parameter of interest) and the noise. This 

can be done using methods such as Trend-Surface analysis. Kriging works in agreement 

with Agterberg (2001) only for stationary conditions and also for normal distributions 

(Houlding, 1994). The data are commonly pre-processed to respect these statistical 

constraints. A recent development is Universal Kriging that is essentially a combination 

of the above mentioned methodologies. Other types of kriging are also used for particular 
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purposes. For instance Indicator Kriging shares analogies with Bayesian modelling 

(Chapter 3), because it is used to evaluate the probability of meeting a certain threshold 

parameter chosen a priori, and also has similar data processing (reduction to Boolean 

data format).  

 

 

Fig. 2.5 Example of variogram plots showing respectively: (a) Spherical; (b) Linear; and (c) exponential 

model. Linear systems of equations of fitting curves are also included (see text for coefficients definitions), 

adapted from Houlding (1994). 
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Beside the diversification of kriging techniques, progress in geostatistics has also 

favoured the application of regression methods in alternative directions. One of the fields 

that gained progressive importance is the three-dimensional modelling used to simulate 

geological and biological objects. The need for a 3D representation of geologic themes 

has stimulated the development of specialised algorithms. For example Mallet (1989) 

proposed a discrete smoothing approach (DSI) to interpolate triangulated surfaces, which 

are often complex to handle with common tools such as spline based algorithms if 

datasets are geological. In a general sense the method provides a similar result to kriging 

interpolation (Mallet, 1989) although it is used to fit geometries rather than to predict ore 

grades. DSI and other algorithms were implemented in GoCAD, a software compiled in 

originally in C, but subsequently further developed in C++ language, at the University of 

Nancy (France).  

Probabilistic regression models (Agterberg and Robinson, 1972; Tukey, 1972) 

were derived from mining and oil search applications. These more risk averse regression 

tools had the objective of answering the needs of exploration geologists when dealing 

with multivariate systems. The method consisted in rationalising the information in 

Boolean logic [0, 1] format that was particularly suited for digital computers, and allowed 

the combination of evidence. Data were organised in bi-dimensional format such as raster 

tables or grids representing the spatial distribution of a certain geological indicator (e.g. 

the geochemical distribution of an element). Regression curves were then fitted to each 
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variable and combined with a linear regression model.  In an alternative to these early 

models Tukey (1972) suggested the use of logistic functions to ensure a range of 

probability ( π ) constrained in the [0, 1] interval (a definition of probability is given in the 

forthcoming section). The logistic function can be expressed in a general form as follows 

(Sahoo and Pandalai, 1999): 

 

 logit π

` a
=β

0
+ β

1
x1 + β

2
x2 + …+ β

p
x p        (2.11) 

 

π  is expressed as the sum of contributions of different linear coefficients that can be 

represented by a linear vector X i = [x1, x2 ... xp]. The coefficients β
p
reflect the slopes of 

each variate except for β
0
which represents the intercept of the regression line. The 

equation can be arranged in exponential fashion as follows to obtain the cell probability: 

 

π
i
=

e X i
.

β

1@ e X i
.

β

fffffffffffffffffffffffff
          (2.12) 

 

Logistic regression, in contrast to kriging, makes use of multiple ‘independent’ 

variables rather than relying on different properties of the same variable (covariances) to 

provide estimates in the unknown region. Logistic equations of probability are also used 

in Weights of Evidence modelling. Favourability mapping methods (including Predictive 
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Neural Networks) are tools that find their root in Bayesian reasoning (e.g. Harris and Pan, 

1999). They work as “trained networks” in which pairwise correlation (mineral deposits 

against other evidential themes) is used to adjust the weights (like the neural 

reinforcement of synapses), performing predictions where the correlations are verified. 

As seen the progress brought firstly by analogue and then digital computers has 

contributed to a wide diversification of regression techniques. In part this has contributed 

to the development of relatively new ways to deal with geological problems. Computer 

simulation is certainly one of them. Among the diversification of mathematical models 

discussed so far computer simulation is one of the most actual, and represents in a certain 

way also a philosophical advance in the scientific approach.  

2.2.4 Computer simulations 

The use of simulation in the scientific sense has a fairly recent origin. It was firstly 

implemented in the 1940’s by John von Neumann, who applied Monte Carlo Analysis in 

dealing with problems related to the shielding of nuclear reactors (Harbaugh and 

Bonham-Carter, 1970). The experimental approach in this case was rejected in favour of 

simulation because of the expenses and hazard involved.  However, it is after the advent 

of digital computers in the 1950s that simulation, as it is conceived in modern 

applications, became relative common practise among economists, mathematicians and 
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later also among geologists. Perhaps one of the first geological applications is the work of 

Briggs and Pollack (1967), a digital simulation of evaporite sedimentation that solved 

partial differential equations by the Gauss-Seidel point iterative method on a high speed 

digital computer. The mathematical model allowed plotting of fluid flow vectors and also 

definition and graphic visualisation of spatial variability of salt concentrations across a 

bi-dimensional reconstruction of an epeiric basin in Michigan. The example is also part 

of an instructive chapter of ‘Computer Simulation in Geology’ (Harbaugh and Bonham-

Carter, 1970), a book considered at least a decade ahead of its time (Merriam, 2004). The 

work of Brigs and Pollack (1967) concludes  that statistical approaches are useless when 

dealing with a well known system modelled efficiently by deterministic methods (in this 

case dynamic simulation based on partial differential equations). However, laws of 

generalisation such as the Laplace equation (see below) have limited applicability- they 

work diligently only if the model is simplistic and integrable. In this context Nicolis 

(1995) reports that since the 1950s, physicists begun to realise (at least from a 

mathematical perspective) that most natural systems are non integrable, leading to 

Hamiltonian chaos. The evidence of a limit in the deterministic approach is also 

remarked in the problem of the particle/wave dualism of Heisenberg. Only adopting the 

concept of statistical distributions of Schrödinger was it then possible to define in a 

probabilistic manner the position and energy of an electron revolving around the nucleus 

of an atom. Physical experiences suggest therefore that deterministic models are 
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somehow confined to a partial solution. Probably a hybrid methodology may be more 

appropriate (i.e. chaos theory). 

To summarise, the reviewed history of least-squares methods and the diversification 

of mathematical approaches (Fig. 2.6a, b, c) to model natural systems illustrates that 

scientific methodology had few major revolutions. Among them of notable importance 

are the establishment of experimental science and the advent of computers. The 

mathematical models adopted in this thesis offer some practical perspectives of the 

advantages that such revolution has brought to the geological world. Both statistical and 

deterministic applications are presented, and also they explore how the computer can be 

of use to the geologist at present. The meaning of usability can be evinced from 

Krumbein (1962) who foresaw computers as machines that store data, integrate data but 

also think as geologists do.  

In this thesis then axiomatic logic and computer applications are implemented at 

different spatiotemporal scales, to solve geological problems in a similar manner to our 

scientific ancestors although in a more privileged technological age. 
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Fig. 2.6 Diversification of quantitative applications to geology in the 60s. (a) applications to the various 

geological sub disciplines; (b) time of entry of computer application in stratigraphy; (c) application of 

Markov models. Adapted from Krumbein (1969).  

2.3 Mathematical models and computer software used in the 

Lawn Hill Region 

 The work presented here focuses on three major types of mathematical models: 

(1) Bayesian modelling adapted to a mineral exploration case; (2) Discrete Smooth 
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Interpolation approach used to model geological objects; (3) Fast Lagrangian Analysis of 

Continua used to model the coupling of fluid flow and deformation in 2D and 3D space. 

The first two models represent a derivation of regression analysis, whereas the third 

involves computer simulation. Even though the core chapters will address more specific 

aspects of the background of computational applications, here some general theory is 

considered. 

2.3.1 Elements of probability 

As seen computers not only can store and process a large amount of information 

(e.g. Hayes, 2002), they can also make inferences and provide predictive outputs. 

Statistical theories simulating human intellect are also used to make estimates of the 

uncertainty in risk analysis. Therefore AI (Artificial Intelligence) applications can be 

used more confidently in the making-decision process. This type of software is usually 

based on probabilistic laws composed of logical axioms (Agterberg, 1974; Haken, 2004). 

Elements of probability introduced here serves as basic theory for the more advanced 

treatment of Weights of Evidence modelling theory (Chapter 3). 
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2.3.1.1 Definition of probability 

One way of looking at the meaning of probability is to consider the simple 

example of coin tossing, the simplest example of a chance mechanism corresponding to a 

binomial distribution [1, 0] (e.g. Bernoulli, 1954). The experiment involves tossing of a 

coin for a certain number of times representing the sampling of a population (a certain 

number of heads or tails is counted). When sufficient knowledge is available it can be 

concluded that there is a 50% probability to obtain one of the two states considered, 

P =
1

2
fff
. If multiple averaging during coin tossing is performed (considering head as one 

and tails as zero) it is realised that the mathematical average progressively moves towards 

P =
1

2
fff
, reflecting the likelihood ratio of the two possible states of equilibrium (A, B). A 

similar experiment can be undertaken using a dice, but in this case the number of possible 

states is 6, hence P =
1

6
fff
.   

A formal definition of probability is given: The probability of an event is an 

abstraction of the idea of the relative frequency by which this event occurs in a sequence 

of trial measurements during a given experiment (Agterberg, 1974).  

Comparing the two examples some additional considerations can be drawn: the 

frequency of distribution is inversely proportional to the number of states of equilibrium 

(equal likelihood) allowed by the system (Haken, 2004). The two experiments show that 
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the probability function has a random, oscillatory behaviour although the fluctuation is 

always positive ( P ≥ 0) for each defined set A of the sample population of countable 

values, defined as ω .  

2.3.1.2 Addition and multiplication of probability 

The experiments and considerations made suggest that the sum of the probabilities 

is always equal to one, P ω

` a
= 1, provided that each set is independent from one another, 

ATB = 0. The generalisation of these axioms suggests that the probability of a certain 

number of states is equal to the sum of the probabilities of each independent state. To 

verify this rule, the dice example can be used to calculate the probability of obtaining an 

odd number, which is P =
1

2
fff
. As seen each state (A, B …) has a probabilityP =

1

6
fff
. 

Knowing that, it can be easily verified that the probability is function of the number of 

degrees of freedom (Haken, 2004, see also example presented in Fig. 2.7a). 

 

P AS B
b c

= P A
` a

+ P B
` a

.        (2.13) 

 

Another fundamental operation (especially in Bayesian modelling) is the 

multiplication of probabilities defined also as joint probability, a concept useful to 
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describe the interrelationship among the probability functions of multiple variables. The 

simplest case is a bi-variate situation with P X
` a

 and P Y
` a

, with X and Y considered as 

random stets of variables (xi, yj). To verify that   

 

P X = x
i
, Y = y

j

b c

= P X = x
i

b c

P Y = y
j

b c

      (2.14) 

 

an example of two layers of data in binary format is considered (Fig. 2.7b). Each layer is 

subdivided in a series of parallel rows and columns holding a random distribution of 

binary pixels. Each pixel can be white or black [0, 1]. The layers have equal size and also 

same number of rows and columns therefore they perfectly overlap. A finite number 

(k+1) of possible combinations (xi, yj) can be defined as a function of the k-layers.  Using 

a Boolean operator “AND” each overlapping couple of pixels is multiplied to obtain a 

new layer. To assess the probability of finding a black pixel for each layer it can be 

demonstrated that for instance P X = x
b

b c

=

x
b

x tot

ffffffffff
; this is true also for all the other layers. It 

can be therefore proved that the probability of a black pixel in the third layer  

P Z = z
b

b c

=

z
b

ztot

ffffffffff
 is equal to the multiplication operation P X = x

b

b c

P Y = y
b

b cD E

. In other 

words calculating the P(Z) by counting the black pixels on the Z layer or multiplying the 

probabilities of the two layers (X,Y) gives the same result. 
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Fig. 2.7 Diagram presenting the concepts of addition and multiplication of probability (joint probability). 

(a) Nine cells model with black and white cells. Knowing that probability of each state is (1/9) it can be 

demonstrated that the sum of the probabilities for each individual state gives one. (b) Joint probability of 

multi-layer model considering the multiplication of two layers (n1, n2) giving n3 (see text for discussion). 

2.3.1.3 Distribution, normal distribution and confidence interval 

The probability distribution of a sample is a partial figure of the probability 

distribution of the population. To examine how the density of distribution varies it is 

convenient to explore a sampled population (ω) considering a number of well defined 
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subsets represented by equivalent intervals hn of the random variable (X) as shown in the 

histogram of Fig. 2.8a. These subdivisions can also be considered as a series of 

probability intervals P h
k

≤ X ≤ h
k + 1

b c

 because of the initial consideration. This axiom 

can be generalised for a subset A in the form:  

 

P X2A
` a

=Pvn 2A
Pn            (2.15) 

 

where vn  are distinct values of the subset A belonging to X(ω) and Pn are their elementary 

probabilities P X = vn

b c

 (Fig. 2.8b). An alternative approach to explore the density  P X
` a

 

variation for a discrete countable (ω) is also the definition of a cumulative probability 

function FX( X ) (Fig. 2.8c) where the subset A simply represents and interval between  

@1 and  x  hence: 

 

  F X x
` a

= P X ≤ x
` a

=Pvn ≤ x
Pn          (2.16) 

 

The elementary probability ( Pn ) is clearly a discrete parameter in the histogram of Fig. 

2.8a. However, it can be generalised to a piecewise continuous function  F
X

x
` a

 that is 

integrable in its interval of definition: 
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F
X

x
` a

=R
@1

x
f x
` a

dx          (2.17) 

 

The generalisation holds for a subset A leading to: 

 

 P X 2A
` a

=R
A

f x
` a

dx           (2.18). 

 

 

Fig. 2.8  Probability (P) of finding a set between hj and hj+1. (a) Histogram representing the distribution of 

samples. (b) Probability measure, the number of individuals vi per each set A. (c) Distribution function 

FX(x) representing the cumulative proportions depending upon the number of sets considered (adapted from 

Haken, 2004). 

 

The last two definitions (2.17, 2.18) suggest that a sampled population (ω) can be 

approximated by a mathematical function f(x). One example that is the most common 

distribution type is the Gaussian normal distribution. Following Agterberg (1974) the 

probability distribution f(x) and its cumulative function F(x) can be defined as follows: 

 

 f x
` a

=
1

σ 2π
pwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
fffffffffffffffffffffff

exp @
1

2
fffx @µ

σ

ffffffffffffffffffd e2
X
\

Z

Y
]

[
        (2.19) 
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and 

 

 F x
` a

=
1

σ 2π
pwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
ffffffffffffffffffffffff g

Z
@1

x

exp @
1

2
fffx @µ

σ

ffffffffffffffffffd e2
X
\

Z

Y
]

[
dx       (2.20) 

 

where σ  is the standard deviation from the mean (µ ) and x is an ordinary variable of f(x). 

Commonly these equations can be simplified by defining a normal random variable z 

equal to  
X@µ

σ

ffffffffffffffffffff g

 with mean equal to zero and standard deviation of one. Then f z
` a

 and  

F z
` a

 can be written as: 

 

   φ z
` a

=
1

2π
pwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
ffffffffffffffff

e
@

1

2

fffff
z 2

         (2.21) 

 

and 

 

 Φ z
` a

=
1

2π
pwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
ffffffffffffffffZ

@1

z

e
@

1

2

fffff
z2

dz          (2.22) 
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This rescaling (2.21, 2.22) translates the population mean (µ ) at zero and sets the 

inflection points of the Gaussian at σ  (for a normal population). Combining equation 

(2.17) and (2.18), P X ≤ z
` a

= Φ z
` a

. 

  Choosing Z [-1, 1] an interval is defined in which a random sample X has 

P @ 1< Z<1
` a

= Φ 1
` a
@Φ @1

` a
= 0.841@ 0.159 = 0.682, considering also that  

z =
X@µ

σ

ffffffffffffffffffff g

 and rearranging P @σ + µ<X<σ + µ

b c

= 0.682. The solution suggests that 

there is a chance of 68% to sample within σ . The same formula can be extended to 

determine the probability to sample between 2σ  or 3σ , respectively with a probability 

0.954 and 0.997. Otherwise the use of a z value of 1.64 or 1.96 is widespread. Agterberg 

(1974) extends this approach suggesting that it is possible to use the concept of 

confidence interval to obtain a standard test (z-test of significance) for the measure of the 

normality of a population. To formulate the test it is necessary to follow three steps: (1) 

establish a null-hypothesis H
0; (2) define a significance limit and (3) compute the average 

x
ffff
 and compare it with the region of acceptance. The main distinction with the previous 

case is that a real population is sampled with mean (µ
0
) that could be different or equal to 

the Gaussian mean (µ ). The H
0  test proposes then to verify if µ

0
= µ , however 

commonly this condition is too restrictive. A range of acceptance firstly redefines the z 

value as: 
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 z =
x
ffff
@µ

σ npwwwwwwwwwwwwwwwwwww
fffffffffffffffffff

           (2.23). 

 

In this case the average  x
ffff
 is used  because it is representative of the sampled real 

population. The relationship can be also expressed as modulus and a significance limit of 

1.96, as follows: 

 

 z
L
L
M
M=

x
ffff
@µ

σ npwwwwwwwwwwwwwwwwwww
fffffffffffffffffff
L
L
L
L
L
L

M
M
M
M
M
M

< 1.96          (2.24). 

 

The condition (2.24) suggests that for large z, H
0  is rejected. Rearranging and 

considering that µ
0
 may not be defined depending upon available sampling it is however 

possible to define a confidence interval for the average x
ffff
 with probability: 

 

 P x
ffff
@ 1.96

σ

npwwwwwwwwwwwwwwwwwww
ffffffffffff

<µ< x
ffff

+ 1.96
σ

npwwwwwwwwwwwwwwwwwww
fffffffffffff g

= 0.95      (2.25). 

 

If the (2.25) is valid then the test is passed because the population has a mean value    

µ
0
t  µ  and therefore approximates a normal distribution. However, with a level of 

significanceα = 0.05 there is still a 5% chance that the sample average will be rejected 
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because of the error limit considered. In other words firstly it is ensured that the sample 

resembles a normal distribution, but if the sample has several xi  that fall outside the error 

limit the hypothesis would be rejected even if the sample effectively relates to a normal 

population represented by a random variable X. 

2.3.1.4 Mathematical expectation and variance 

The two model parameters most commonly used in probabilistic approaches to 

estimation are the mean or “expected value” of the random variable and its variance 

(Isaaks and Srivastava, 1989). These are also defined as Moments, an integral form to 

express the mean and standard deviation of a piecewise continuous function. It is 

therefore convenient to start analysing the concept of expectation (mean) from a discrete 

perspective to then define it in integral form. It will be shown then how the standard 

deviation can be calculated, for similar reasons, from the mean.  

Returning to the example of the dice, six states with equal probability of 

occurrence were observed. Performing the simple mathematical average x
ffff
 of a sample of 

several throws (n) of value vi, this is given by: 

 

 x
ffff

=
1

n

ffffX
i = 1

n

v
i

f g

          (2.26) 
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The probability of occurrence based on the total number of throws can be expressed as  

pn =

v
i n

n

fffffffff
 where vin is the number of outcomes for a certain state. Therefore, the mean can 

also be expressed as the weighted average of the outcomes for each possible class 

multiplied by the relative probability: 

 

 E X
` a

=X
n

vn pn          (2.27) 

 

 where E(X) is the expectation and vn represents each possible class of outcomes (six for 

the dice). The expectation can be evaluated also for continuous functions f (x) of random 

variables generalising as follows: 

 

 µ
1
= EX =Z v f v

` a
dv           (2.28) 

 

also defined as the first moment.  

The second moment in contrast is used to define the variance (σ
2) of the mean of 

a continuous function.  The variance of a discrete random variable is expressed as: 
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 σ2
=

1

n

ffffX
i = n

v i@ v
ffffb c2

         (2.29) 

 

 For similar reasons leading to (2.27) equation (2.29) can incorporate the elementary 

probabilities pn as follows, however in this case it is convenient to refer to the definition 

of the moment  about the mean (see Agterberg, 1974). The discrete equation follows: 

 

 σ 2
=X

n
vn@µ

` a2
B pn          (2.30) 

 

In integral form for continuous functions the same considerations are valid and lead to: 

 

σ
2

=Z v @µ

` a2
f v
` a

dv          (2.31) 

 

Equation (2.30) can be imagined as a histogram with bins oscillating around a mean value 

weighted using the elementary probabilities.  
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2.3.2 GoCAD and the DSI algorithm 

The mathematical models examined in this section are mostly used in geometrical 

modelling and were implemented to reconstruct regional and deposit scale 3D models of 

the Century deposit. To construct a 3D structural model of this mineralised body, the 

software package GoCAD was used. GoCAD is suited to model natural objects, whereas 

traditional CAD platforms are based on software engines that use polynomial algorithms 

(e.g. Bézier, 1974; Barnhill, 1985; Farin, 1988) created to answer the exigencies of 

industries that make manufactured objects. These two approaches are different in the 

sense that modelling geological objects has to respect the data imported during the 

preliminary phase of model construction. CAD applications have as a primary aim the 

creation of models with smooth and nice curves, surfaces, and volumes. As a 

consequence it is not easy to integrate geological datasets in common CAD software and 

the use of GoCAD becomes obvious. The software has been developed within a 

consortium which is widely open both to the industry and universities around the world. 

Several collaborative organisations (e.g. pmd*CRC - Predictive Mineral Discovery 

Cooperative Research Centre) are interested in the type of geomodelling proposed by 

GoCAD and want to use and/or contribute to the development of this new technology.  

Mallet (2002) presents a comprehensive description of the mathematical 

algorithms behind GoCAD, in particular discussing the DSI (discrete smooth 
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interpolation algorithm) that represents the core of this application. Recently the software 

has become more a collection of several modules that allows import/export of a number 

of formats and also different types of interpolation functionalities. The GoCAD 

technology prefers to adopt a discrete method that is close to a “finite elements” 

approach, rather then use a parametric approach based on continuous polynomial 

functions.  Discrete modelling methods are well known and represent an easier way to 

mathematically treat geological problems (Mallet, 2002).  

2.3.2.1 Topology of an object 

The topology represents the arrangement in which the nodes of a curve, surface or 

solid are connected to each other. Thus object topology can be described using a 

mathematical function of two variables ξ(Ω, N) where Ω is a set of nodes used to describe 

the object. Each node is identified by its rank order:  Ω = {1,2,…., α,….,M}. N is defined 

as an application from Ω into a subset of Ω such that  

 

{β ∈  N (α)}  ⇔  {β can be reached in at most s(α) steps from α}. 
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This means that a generic node α is part of Ω and is surrounded by neighbours (βn nodes), 

and that the topological relationship existing between α and its neighbourhood can be 

expressed as a function N(α), which is called neighbourhood operator (Fig. 2.9).  

 

Fig. 2.9 Neighbourhood diagram N(α) from Mallet (2002), representing a discrete domain of a point in 

space with a central point (α) surrounded by a series of points (β) representing a local subset interconnected 

by a polygonal mesh. This set represents the minimum scale at which the DSI interpolation operates s(α) = 

1. 

 

The notion of a discrete topological model can be used to approximate the topology of 

any geological object. Some examples are: (1) geological horizon or fault (surface) as a 

set of adjacent triangles;  (2) geological body (solid) as a set of adjacent tetrahedrons;  (3) 

geological cross-section (curve) as a set of adjacent segments;  (4) geological layer 

(solid) as a regular curvilinear or rectilinear grid. The vertices of the triangles are equal to 
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the nodes of ξ(Ω, N), while the edges partly define the topology of these objects (Fig. 

2.10). 

 

Fig. 2.10 Examples of objects approximated by a discrete model. (a) Triangulated surface; (b) Tetrahedral 

solid filling a geological horizon; (c) Polygonal curves; (d) Faulted curvilinear grid (adapted from Mallet, 

2002). 

2.3.2.2 Concept of discrete model 

The notion of a topological discrete model has to be further extended, because a 

discrete topological model does not take into account the properties of the represented 

geological objects and the possible constraints that might be applied to them. Hence, the 
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function ξ(Ω, N) has to be included in a generic function M
n
(Ω, N, φ, C) where φ is a set 

of functions φ(α): 

 

φ(α) = {φ
1
(α) ,…, φ

v
(α) ,…, φ

n
(α)}    ∀  α ∈ Ω    (2.32) 

 

φ(α) represents a series of properties of an object node α. For example, the spatial 

location of a node is defined from the following components of φ(α):  

 

{ φ
x
(α), φ

y
(α), φ

z
(α) }        (2.33). 

 

C is a set of constraints that can be split into three subsets:  

 

C = C
≈SC

=SC
>
;         (2.34), 

  

where C
≅

is the set of “soft” equality constraints that have to be honoured in a least 

square sense, C
=

is the set of “hard” equality constraints that have to be strictly honoured, 

and C
>

is the set of “hard” inequality constraints that have to be strictly honoured.  
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These subset functions represent three ways to impose a property φ
v
(α) on an object and 

as a consequence these subsets have different control (e.g. on its topology). Constraints 

and properties, as seen below, are expressed by similar mathematical expressions. 

Applying a constraint to a generic model and subsequent interpolation usually forces the 

properties to adapt to the constraint. A simple example of constraint can be envisaged as a 

set of control points that are used to define the topology of a surface. Using the GoCAD 

GUI (Graphic User Interface) functionalities it is possible to fit a surface to the selected 

control points using them as a control point constraint. 

2.3.2.3 Discrete Smooth Interpolation approach 

The Discrete Smooth Interpolation method (DSI) has been designed specifically for 

interpolating the function φ of a discrete model M
n
(Ω, N, φ, C), while respecting all the 

constraints c∈C. Here, only soft constraints c∈C
≅

and a subset C
L
 of C

= 
are implemented 

to give an easier introduction to this mathematical formulation. A scalar continuous 

function φ defined within the segment Ω  = [1, M] and letting Ω be the set of nodes 

corresponding to the regular sampling of Ω  with a step equal to 1: Ω = {1, 2,…., α,…., 

M}. In Fig. 2.11 the nodes α ∈ Ω correspond to the white points, while the black points 

correspond to some given data points {l, φ(l) : l ∈ L} to be interpolated and associated 



Chapter 2                                        Historic overview and modelling background  

 

Leonardo Feltrin                                                                                                2-46 

with a given subset L of Ω. For this purpose, a classic method (Farin, 1988) consists in 

looking for a spline function φ, minimising the “global roughness” Ř(φ) such that: 

 

R
%

ϕ

` a
= Z

Ω

µ x
` a
AR
%

ϕ|x
b c

dx         (2.36), 

  

with: R
%

ϕ| x
b c

=
d

2
ϕ

dx
2

ffffffffffffff
L
L
L
L
L
L

M
M
M
M
M
M

2

        (2.37). 

  

In this expression, µ(x) > 0 is a given “stiffness” function (that can be taken constant and 

equal to 1), while  R
%

ϕ|x
b c

  can be considered a measure of the “local roughness” of φ at 

each point x ∈ Ω considering that: 

 

ϕ

ffff
x
` a

=

ϕ x @ 1
` a

+ ϕ x + 1
` a

2
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

        (2.38). 
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Then, as suggested in Fig. 2.11, it can be verified that a finite-difference approximation 

of   
d

2
ϕ

dx
2

ffffffffffffff
L
L
L
L
L
L

M
M
M
M
M
M

  is such that: 

 

d
2
ϕ

dx
2

ffffffffffffff
L
L
L
L
L
L

M
M
M
M
M
M

≈ 2 A ϕ

ffff
x
` a
@ϕ x

` aR S

= 1 Aϕ x @ 1
` a

+ 1 Aϕ x + 1
` aR S

@ 2ϕ x
` a

   (2.39). 

 

The next section on numerical simulation gives an explanation of how finite-difference 

approximation works.  

 

 

Fig. 2.11 Finite difference approximation using a spline function ϕ(x) and relative local 

roughness/function R
~

(ϕ|x) representing the residual of ϕ (x) defined in a finite interval Ω[1, M]. 

The objective of using a local roughness criterion is to minimise its value therefore reducing the 

residuals, similarly to the least square method, to obtain a better fit (adapted from Mallet, 2002). 
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If φ is a continuous periodic function with period equal to Ω the above approximation can 

be considered valid. Hence it follows that 

 

R
%

ϕ|x
b c

≈ X
β 2N α

` a

v α,β
b c

Aϕ β

b c
L
L
L
L
L
L

M
M
M
M
M
M

2

       (2.40), 

 

where v(α, β) represents an arbitrary coefficient used to weight the magnitude of the 

variation of each component φ
v
(α) of φ(α). For a detailed description on how to set the 

weighting coefficients refer to Mallet (2002) - here there is more concern with the result 

of this approximation. Thus defining R(φ) as an approximation of R
%

ϕ

` a
 (global 

roughness), and  

   

R ϕ

` a
=X

α 2Ω

µ α

` a
AR ϕ|α
b c

        (2.41) 

  

with:  

 

R ϕ|α
b c

= X
β 2N α

` a

v α,β
b c

Aϕ β

b c
L
L
L
L
L
L

M
M
M
M
M
M

2

       (2.42), 
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it can be concluded that  R
%

ϕ

` a
≈ R ϕ

` a
. Minimising R

%

ϕ

` a
 or R(φ) therefore holds 

approximately equivalent results (Mallet, 1989; Mallet, 2000; Mallet, 2002). 

2.3.2.4 Discrete Smooth Interpolation algorithm 

A discrete model M
1
(Ω, N, φ, C) is considered here. In this case, φ has only one 

component, thus no distinction will be made between φ and φ
1
. L and H are also 

considered as two complementary subsets of Ω such that (1) L = set of nodes l ∈Ω where 

φ(l) is known and represents a constraint; (2) H = set of nodes h ∈ Ω where φ(h) is 

unknown. The set L is called the set of “Control-Nodes” and is associated with a 

particular subset C 
L
 of the set of hard constraints C 

=
. The aim is to compute the values 

{φ (h): h ∈H} in such a way that the resulting function φ is “as smooth as possible” on 

ξ(Ω, N). The “control values” {φ (l): l∈L} should be strictly honoured, and each of the 

constraints c ∈ C 
≅≅≅≅ should be respected as much as possible. For this purpose, it is 

necessary to quantify the local roughness R ϕ|α
b c

 of φ in the neighbourhood of each 

node α ∈ Ω and evaluate the degree of violation ρ ϕ|c
b c

 of each constraint c ∈ C 
≅≅≅≅ by φ 

as follows: 
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R ϕ(α

` a
= X

β 2N α

` a

v α,β
b c

Aϕ β

b c
L
L
L
L
L
L

M
M
M
M
M
M

2

       (2.43), 

  

R ϕ(c
` a

= X
α 2Ω

Ac α

` a
Aϕ α

` a
@ bc

L
L
L
L
L

M
M
M
M
M

2

       (2.44), 

 

where Ac and bc are coefficients that define the type of constraint depending on their value 

(soft, hard). 

The function φ must be chosen to minimise R
*
(φ), the “general roughness” criterion: 

 

R
C

ϕ

` a
=X

α 2Ω

µ α

` a
AR ϕ|α
b c

+ φ Aω
fffffb cX

c 2C
≈

ω

fffff
c Aρ ϕ| c
b c

    (2.45). 

 

Equation (2.45) combines on its right side the local roughness and violation functions, but 

also considers the stiffness function µ(α) > 0 which modulates the importance of the local 

roughness R ϕ|α
b c

 at node α

` a
.  ω

fffff
c  is a term that controls the relative weights of 

different constraints whereas φ Aω
fffffb c

 is used to define a balance between the two sets of 

functions: 
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X
α 2Ω

µ α

` a
AR ϕ|α
b c

  and   X
c 2C

≈

ω

fffff
c Aρ ϕ| c
b c

      (2.46). 

 

From the mathematical formulation of Mallet (2002) we can conclude that the  

DSI approach treats complex problems as a discrete subset of simpler linear problems. 

Thus a degree of simplification is induced in the first part of this method (discretization), 

whereas in a secondary step a “minimum energy” principle is applied, aiming to reduce 

the “global roughness”, which can be seen as the difference between the applied 

constraints and the unconstrained functions that represent the properties of an object. The 

use of constraints during the modelling phases of the Century deposit represented an 

excellent tool to define an accurate shape for horizons and faults and interpolate the 

grades on both two-dimensional and three-dimensional grid based models. 

2.3.3 FLAC (Fast Lagrangian Analysis of Continua) 

This section briefly introduces the core algorithms behind the explicit Lagrangian 

formulation adopted in FLAC, a program designed to run geomechanical simulations that 

was firstly developed by Peter Cundall in 1986 (Itasca, 2003, and further enhanced by 

CSIRO Exploration and Mining) to handle a wider range of geological problems 

including application to mineral deposit exploration. The software was used in this thesis 
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to model coupled deformation and fluid flow within 2D-3D geological scenarios that 

resemble the Century mineral system. 

2.3.3.1 General description of FLAC 

FLAC simulates behaviours of geological materials that undergo plastic flow 

during yield and it has been applied in many geological situations (Ord, 1991b, a; Ord 

and Oliver, 1997; Oliver et al., 1999; 2001; Ord et al., 2002; McLellan et al., 2004; Miller 

and Wilson, 2004; Oliver et al., 2006). Materials are represented by polyhedral elements 

within a two- or three-dimensional grid that can be adjusted by the user to fit the shape of 

the geological bodies to be modelled. Two versions of the software were utilised to 

perform numerical simulations both in 2D and 3D. The simulated materials can yield and 

flow leading to permanent deformation of the grid. Two numerical approaches represent 

the basis of the FLAC environment: (1) the explicit, Lagrangian calculation scheme and 

(2) the mixed-discretization zoning technique (Itasca, 2003). These mathematical models 

are used to ensure that plastic collapse and flow are modelled accurately. They also 

require less computational effort compared to FEM (Finite Element Models) because they 

avoid utilization of a large stiffness matrix to reach a final stable solution (Itasca, 2003). 

Additionally problems such as small time-step limitation and dumping (e.g. dissipation of 

kinetic oscillatory energy) are handled respectively by inertia scaling and automatic 
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damping functions (Itasca, 2003). In addition to the core algorithms based on the use of 

finite-difference approximation, which is perhaps one of the oldest numerical techniques 

used for the solution of sets of differential equations (given initial values and/or boundary 

values; Desai and Christian 1977), the software offers ten different constitutive models to 

simulate mechanical deformation of various materials: 

 

(a) the “null” model;  

(b) three elasticity models (isotropic, transversely isotropic and orthotropic 

elasticity);  and 

(c) six plasticity models (Drucker-Prager, Mohr-Coulomb, strain 

hardening/softening, ubiquitous-joint, bilinear strain hardening/softening 

ubiquitous-joint, and modified Cam-clay).  

 

Each zone in a FLAC grid may have a different material model or property and 

also gradients or statistical distributions can be specified as well. Additional anisotropies 

can be introduced such as interfaces or slip-planes between two ore more portions of the 

grid to simulate for example a fault/fracture or other parallel bedding anisotropies. FLAC 

also incorporates the facility to model confined fluid flow and pore-pressure dissipation, 

and the full coupling between deformable porous solid and a viscous fluid flowing within 

the pore space. The fluid is assumed to obey the isotropic form of the Darcy’s law. Both 
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fluids and grains in the porous solid are deformable. All zones in a model are assumed to 

be fully saturated; therefore it is not possible to simulate phreatic surfaces in FLAC. 

2.3.3.2 Basics of the finite-difference method to solve differential equations 

To briefly illustrate the fundaments of finite-difference approximation methods, 

reference is made to the book of Harbaugh and Bonham-Carter (1970). The book was 

written from a geologist’s perspective therefore its simple and applied approach to basic 

mathematical concepts such as differential computation, represents an attractive way to 

understand the finite difference method in a general manner. Finite difference is used, for 

instance in FLAC, to obtain solutions of partial differential equations relative to motion 

and also to solve the constitutive laws (discussed in more detail below) both in a spatial 

and temporal scenario. The approach is also appealing for computer based 

implementation, because although the finite-difference approximation is a relatively 

simple method, it requires an elevated number of calculations (on the order of thousands 

if not millions).  

Considering a simple example of an algebraic equation such as: 

 

 3x + 4 = 0          (2.47) 
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The equation can be solved by manipulation obtaining x =@
4

3
ffff
. This example 

shows then that some equations can be easily solved without the need of any particular 

method, but this approach fails in other cases. Harbaugh and Bonham-Carter (1970) 

suggest for example that the only way to solve the equation that describes the wave 

motion from deep to shallow water settings in a sedimentary basin, is to use an iterative 

approach. The equation is the following: 

 

 l = L tanh
2πh

l

fffffffffffff g

         (2.48), 

 

where l and L are the wavelengths respectively at shallow and deeper depths and h 

is the water depth. Equation (2.48) cannot be solved with algebraic manipulation because 

of the occurrence of the term (l) on both sides. However, rewriting the equation in this 

form, introducing a new l0 term: 

 

 l = L tanh
2πh

l0

fffffffffffff g

        (2.49) 

 

allows exploration in an experimental way of the field of solutions for l considering an 

array of l0 values that are selected trying to reach the condition l = l0. Unfortunately this 
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approach is cumbersome when the field of solutions is characterised by multiple 

maximum values where  l=l0, because the equation may be satisfied by more than a 

single combination of independent variables. In this regard a number of mathematical 

approaches can be adopted to solve the problem, e.g. integration where possible or the 

finite-difference approximation examined here, or even more advanced tools such as 

genetic search based algorithms that look for the “fittest solution” in a search space (see 

Coley, 1999).  

A differential equation can be ordinary or partial, depending on the number of 

variables and their relative derivatives. The order of a differential equation is defined by 

highest exponential derivation; here first and second order linear ordinary and partial 

differential equations are considered, as they are sufficient to introduce how the FLAC 

finite-difference approximation works.  

Considering a simple example of ordinary differential equation of the first order: 

 

 
dN

dT

fffffffffff
= rN            (2.50) 

 

it is instructive to note that the relationship considers a first order derivative in time (T) of 

N individuals in a generic population, which is equal to N individuals multiplied by a 
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constant of proportionality (r). The relationship can be easily solved with integration as 

follows: 

 

 Z 1

N

fffffff
dN = rZ dT           (2.51). 

 

Then solving algebraically the integration it is obtained: ln N
` a

= rT . This equation can 

be also written for an interval of time [0, T] as follows: 

 

 N t = N o erT            (2.52), 

 

where N0 is an initial value for the population and Nt represents its growth at time (t). 

Graphically this relationship is represented by an exponential curve as illustrated in Fig. 

2.12. As already mentioned it is not always possible to solve an equation using algebraic 

approaches therefore here the same example can be alternatively solved using the finite-

different quotient approximation (Nystrom’s method).  
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Fig. 2.12 Example of an exponential curve and relative intervals of discretization ∆t  illustrating the growth 

of a generic population (N). The growth value for an instantaneous time (t) can be estimated using the 

finite-difference quotient approximation (Nt+1-Nt-1)/2∆t. Adapted from Harbaugh and Bonham-Carter 

(1970).  

 

 

The numerical solution of a differential equation can be obtained then transforming 

continuous derivatives into finite-difference quotients, hence: 

 

 
dN

dT

ffffffffffft ∆N

∆T

ffffffffffff
           (2.53). 
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This approximation improves for smaller finite-difference intervals of approximation 

( ∆TQ 0). In this regard this concept can be clarified selecting a mid point (t) (see Fig. 

2.12) which seats at t+1 and t-1 from two extremes at ∆T  giving: 

 

 
dN

dT

fffffffffff
=

N
t + 1@N

t@ 1

2∆T

fffffffffffffffffffffffffffffffffffffffff
          (2.54). 

 

Combining with (2.50) removes the differential term to provide an analytical solution to 

the differential equation of this type: 

 

  
N

t + 1@N
t@ 1

2∆T

fffffffffffffffffffffffffffffffffffffffff
= rN t         (2.55). 

 

This can be also rearranged as follows: 

 

 N
t + 1

= 2∆TrN t + N
t@ 1          (2.56). 

 

Provided that an r = 0.5 is selected and also that ∆T  = 1, this relationship can be further 

reduced to: 

 

 N
t + 1

= N t + N
t@ 1           (2.57). 
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It is then possible to compute a point of intersection of the function knowing two points 

at ∆T  allowing then the construction of an approximate curve. If ∆Tu0 the 

approximation will be more accurate, because the guessed extreme, using (2.57), will be 

closer to the known intersecting points. By analogy the same approximation holds if the 

derivation describes the rapidity of variation of a space variable. Therefore for first- and 

second-order derivations in bi-dimensional space (x, y) it is possible to write the 

following formulas of approximation: 

 

 
dy

dx

fffffffff g

j

t 1

2∆x

ffffffffffff
y

j + 1
@ y

j@ 1

b c

;        (2.58), 

 

 
d

2
y

dx
2

ffffffffffff
h

j

i

k

j

t 1

2∆x

ffffffffffff
y

j + 1
@ 2y

j
+ y

j@ 1

b c

;       (2.59), 

 

where j represents a generic point on the curve. Once the finite-difference quotients have 

been calculated, as seen, a number of linear equations can be compiled to represent the 

field of solutions needed to describe the spatial variation  of x and  y. The coefficients 

y(x) will be obtained throughout an iterative process (e.g. Gauss-Seidel). However, the 

field of solutions depends also on the boundary values assigned, guessed before starting 
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the iteration. These values remain constant and are not updated during the progressive 

steps of iteration. 

 The finite-difference approach can be extended to more than a single variable 

introducing multiple derivations (partial derivatives) of a variable in respect of others, 

generalising then to a surface-based or volume-based space. Two examples of partial 

differential equations are given:  

 

 
∂

2
z

∂x 2

ffffffffffff
+

∂
2
z

dy
2

ffffffffffff
= 0;          (2.60), 

 

∂
2
Φ

∂x 2

fffffffffffffff
+

∂
2
Φ

dy
2

fffffffffffffff
+

∂
2
Φ

dz
2

fffffffffffffff
= 0;        (2.61). 

 

Equation (2.60) describes the spatial variation of a surface z = f(x,y) in three-

dimensional space, whereas (2.61) represents the Laplace equation that define the spatial 

variation of a generic function Φ  in three-dimensional space Φ  = f(x, y, z). The two 

examples are illustrated in Fig. 2.13a, b, c and d. To represent this type of function in a 

discrete manner, it is usually convenient to construct squared meshes projected in three-

dimensional space or cubic voxels in the case of (2.61). The solution of the differential 
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equations can be obtained in a similar manner replacing the partial differential terms with 

relative finite-difference approximation terms as follows: 

 

 
1

∆x 2

ffffffffffff
z

i, j + 1
@ 2z

i,j
+ z

i,j@ 1

b c

+
1

∆ y2

ffffffffffff
z

i + 1,j
@ 2z

i,j
+ z

i@ 1,j

b c

= 0     (2.62), 

 

and for the Laplace equation considering ∆x = ∆y = ∆z  leads to the following: 

 

1

∆x 2

ffffffffffff
Φ

i, j@ 1, k
+ Φ

i, j + 1, k
+ Φ

i@ 1, j, k
+ Φ

i + 1, j, k
+ Φ

i, j, k@ 1 + Φ
i, j, k + 1@ 6Φ

i, j, k

b c

= 0  (2.63), 

 

the indexes [i, j, k] represent the direction in which the function Φ  is approximated (see 

Fig. 2.13b, d). The (2.62, 2.63) can be used to derive a value of the functions z or Φ  on a 

surface or in a volume represented by a finite number of cells identified by [i, j, k]. 

 Similarly to the example of ordinary differential equations the search of the 

solution space is performed with an iterative approach. But this time the number of 

boundary values is represented by a neighbourhood of cells surrounding the space in 

which the search for a solution is required. Several solutions are possible suggesting that 

the constraint applied to the system of linear equations causes an internal adjustment of 

the solutions that depends not exclusively from the equations themselves (e.g. boundary 

values dependency). Beside these conditions that are functions of scale and location, the 
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computer based method works for all the classes of differential equations considered. 

Most of the differential equation can be therefore discretised using a finite-difference 

approach.  

 

Fig. 2.13 Summary of two- and three-dimensional grids used to discretise the geological continuum. (a) 

Representation of a continuous function f(x, y) in z with relative indexing used to refer to individual cells 

defined by intervals ∆x,∆y  (b) Four point star method of indexing points implemented for the solution of 
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partial differential equations  of type z = f(x, y). The star is moved iteratively to adjust the solution from 

node to node. Usually the partial differential equation is solved alternatively for the variables (x, y). (c) 

Three-dimensional meshwork and relative indexing [i, j, k]. (d) Six point star model adopted to solve partial 

differential equations representing the spatial variation of a generic property Φ   as function of (x, y, z) 

coordinates. The finite-difference approximation method is equivalent to the four star model although the 

star is moved in 3D space. Adapted from Harbaugh and Bonham-Carter (1970). 

 

2.3.3.3 The Lagrangian description 

 Finite-difference approximations simulating plastic deformation and fluid flow 

with the aid of a computer represent a reasonable way to handle continuum problems 

(e.g. using FLAC). This numerical simulation software is composed of different classes 

of differential equations that deal with specific tasks. For example, FLAC handles the 

spatial and temporal arrangement of tetrahedrons composing the chosen FLAC-grid 

during deformation, but also it computes the variation of their spatial organisation as a 

function of the constitutive relationships and assigned boundary conditions, commonly 

specified in the numerical model before attempting any kind of simulation. Finite-

difference approximation is then used several times to discretise the continuum, both in 

space and time.  

 A description of the various classes of equations and their meaning thus follows. 

In Appendix A the “nodal formulation” is also reviewed for the Newtonian stress/strain 

relationships considered during deformation of a tetrahedral grid in FLAC (nodal means 

to reduce the equations to the individual nodes of each tetrahedron composing the FLAC 
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grid). The equations relative to the Mohr-Coulomb constitutive model and the fluid flow 

module are also discussed in the end.  

2.3.3.3.1 FLAC configuration (explicit finite difference model) 

The mathematical background required to understand the following discussion 

concerns elements of continuum mechanics. For a deeper understanding of some of the 

concepts presented the reader is referred to Coman (2004). This section outlines how the 

partial differential equations and mechanical models are organised in the FLAC 

environment. The structure of the FLAC program is explored looking at the different 

algorithms.  

The Lagrangian dynamic picture of a continuum is the general model adopted in 

FLAC to describe a body of rock or other materials. The Lagrangian vision is more 

advanced than classical Newtonian mechanics although preserving the conservation of 

energy principles. In contrast to Newtonian laws the Lagrangian formulation describes 

the movement (deformation, fluid flow etc.) of a global system (e.g. a body of fluid or 

rock) aiming therefore at a generalisation of Newtonian laws to systems composed of 

multiple particles. (or grid nodes). 
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2.3.3.3.2 Lagrangian and Eulerian representations (inertial systems) 

The Lagrangian description is however not the only formulation available to 

describe the body motion. The Eulerian description can be also used to account for the 

spatio/temporal variability of a scalar, vectorial or tensorial field in an even more global 

manner. This mathematical model differs from the Lagrangian because the same physical 

laws are constructed upon a different reference system that considers the position of the 

infinitesimal elements of volume in space. For example, the Lagrangian material 

description of the body motion (e.g. movement of a rock in space, or a time-dependent 

flow) is represented at a given position by a particle moving in space and time with 

velocity v
jjjjjjjjk

p t
` a

 although no information is given of its position (see Stuart and Tabor, 

1990), whereas in the Eulerian space a full description of all the positions of the particles 

is described v
jjjjjjjjk

p x
jjjjjjjjk

, t
b c

. In other words if a Lagrangian particle moving in space has no 

certain information of the sort of velocity it will be assuming at a later position (local 

information only), when computing a partial derivation in time it is also necessary to 

know its spatial gradient v p ,p . Eulerian particles will assume an expected value 

represented by the measure of the spatial field, therefore the velocity is already known in 

space requiring only an ordinary derivation in time 
dv

dt

fffffffff g

 (see Barr, 2001). Note that the 

Einstein summation of indexes is used.This is a simple omission of the symbol X  when 
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dealing with indexes that sum over one another. For example a vector can be described 

with three components  u1e
jjjjjjk

1 , u2e
jjjjjjk

2 , u3e
jjjjjjk

3

R S

 such as  u
jjjjjjjjk

=X
i = 1

3

ui ei
 that becomes elegantly 

simplified as u
jjjjjjjjk

= u
i
e

i

jjjjjjjjjjjjjjk
. Note also that in continuum mechanics an index preceded by a 

comma  σ i j , j

b c

  indicates a partial derivation in space of the variable, giving then in 

more extended form:  

 

σ i j , j =

∂σ
i, j

∂x j

ffffffffffffff
          (2.64). 

2.3.3.3.3 Cauchy traction tensor and constitutive equations 

Equation 2.64 represents the spatial variation of a tensorial field. Here, vectors are 

distinguished from tensors because a vector is sufficiently represented by three 

components, whereas six components are necessary to define a tensor. Both objects share 

an important property which is defined as the invariance. An invariant is independent of 

its reference system. This is a really important point in relativistic theory because the 

Newtonian Laws are essentially dependent on the considered inertial systems. Relativistic 

adopting such invariant systems had a more generalized applicability (e.g. Einstein, 

1934). Beside the importance in physics the Cauchy’s formulae are implemented in 
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FLAC to define the state of stress and strain of a body. FLAC uses a finite element grid 

that is composed of tetrahedrons and it will be often necessary to refer to them. Moreover 

the material points representing the Lagrangian description correspond to the nodes of the 

tetrahedron subjected to deformation. When a stress is applied to tetrahedrons, these react 

accumulating stress and rearranging dynamically their shape, thus simulating a state of 

strain. To characterize this system it is useful then to define a traction vector t
jjjjjjjjjjjjk

 as 

follows: 

 

 ti = σ i j n j            (2.65). 

 

In equation 2.65 the traction is equal to the stress tensor component (σ i j ) parallel to the 

normal ( n j ) to each face of the tetrahedron. The distribution of tensions will then control 

the distribution of stresses in the elements of a whole body.  Adding the time dimension 

leads to deformation as a function of stress- and relative strain-rate. These are quantities 

representing the ratio between the deformations within a finite interval of time.  In 

particular, the strain-rate in a nodal formulation (Appendix A) can be described by the 

relative velocities of movement of the nodes of a tetrahedron in FLAC. Two components 

can be defined for the strain-rate, translational (ξ
i j

) and rotational (ωi j ): 
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 ξ
i j

=
1

2
fff

v
i , j

+ v
j , i

b c

           (2.66), 

 

ω
i j

=
1

2
fff

v
i , j
@ v

j , i

b c

          (2.67), 

 

with vectorial components of velocity ( v i ,v j ) derived respectively in x j and x
i .  

In addition to the basic concepts of stress and strain FLAC also considers two sets 

of equations in its representation of the plastic deformation: (1) the equations of motion 

and equilibrium; and (2) the constitutive relationships. The motion of a body is fully 

described in continuum mechanics with the conservation of momentum relationships 

(linear, angular and inertial terms of momentum are combined in the Cauchy ‘s equations 

of motion). In this regard the formulation in FLAC could be expressed as follows: 

 

 σ i j , j + ρbi = ρ

dv i

dt

ffffffffff
          (2.68). 

 

Equation 2.68 relates the partial differentiation of the stress tensor (σ i j ) to the body force 

( b
i ), which is essentially a field force (e.g. the magnetic and gravitational fields that act 

indirectly on a body). In contrast, the stress tensor can be considered a contact force. For 

a unitary mass the action of body and contact forces result in a material derivation in time 
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of the velocity (an acceleration term). This multiplied by the density (ρ) becomes 

equivalent to a force. When forces equilibrate the material acceleration is zero.  

The equations of motion and the rate of rotational and translational stress and 

strain can be reduced to a system of 9 linear equations in 15 unknowns therefore 

requiring the use of six additional equations to solve the deformation of a body. These are 

the constitutive relationships that are experimental laws for the materials considered in 

the numerical model (see Appendix A where the Mohr-Coulomb constitutive model is 

reviewed). The constitutive formulation aims at guessing the state of stress of a certain 

material in an interval of time in which the material velocities are considered constant 

inside a tetrahedron. This allows using the rate of strain as a measure of the co-rotational 

stress-rate tensor  σ
%
B C

i j

. The constitutive equations can be expressed then in a general 

form as functions (H) of the stress and strain tensors (σi j ,ξi j
) and also of the loading 

history considered (k): 

 

 σ
%
B C

i j

= H
i j

σ
i j

,ξ
i, j

, k
b c

            (2.69). 

 

Such functional relationship represents a constraint for the co-rotational stress-rate tensor 

that controls the nodal velocities within the model. For a more detailed discussion of the 

mathematical background behind FLAC refer to Appendix A. 
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What follows after this introductive section is a series of self-contained chapters 

intended for individual publications. They are ordered according to the scale of the data 

sets utilized, from regional scale targeting of mineral deposits through to deposit scale 

models used to address ore genesis, to even more complex scenarios involving the 

development of the Lawn Hill Megabreccia.  

The flow of the thesis as introduced in Chapter 1 will provide the reader with 

tangible examples of the different quantitative models discussed. In the end (Chapter 6) 

this leads to an example of integration of qualitative and quantitative modelling showing 

that observational science is still important in complex geological problems, in order to 

obtain an appropriate conceptual model. It is also essential to validate the quantitative 

analysis. 

Most of the thesis focuses on linear techniques to address the geological issues 

concerning the various studies. A non-linear alternative is also proposed to suggest that 

more refined mathematical approaches may better describe the deterministic and random 

components of a system. Chapter 7 proposes an application of these concepts to Pb-Zn 

mineral systems. 
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