The epidemiology of gill-associated virus in *Penaeus monodon* and the development of alternative detection methods

Thesis submitted by James Leslie MUNRO B.App.Sc. (Aquaculture) (School of Aquaculture, University of Tasmania, 1999) B.Sc. (Hons) (School of Veterinary and Biomedical Sciences, James Cook University, 2001)

June 2006

for the degree of Doctor of Philosophy in the School of Veterinary and Biomedical Sciences at James Cook University

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

STATEMENT OF ACCESS

I, the undersigned, the author of this work, understand that James Cook University will make it available for use within the University Library and, via the Australian Digital Thesis network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

James Munro

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

James Munro

DECLARATION ON ETHICS

The research presented and reported in this thesis was conducted within the guidelines for research ethics outlined in the National Statement on Ethics Conduct in Research Involving Humans (1999), the Joint NHMRC/AVCC Statement and Guidelines on Research Practice (1997), the James Cook University Policy on Experimentation Ethics; Standard Practices and Guidelines (2001), and the James Cook University Statement and Guidelines on Research Practice (2001). The proposed research methodology received clearance from the James Cook University Experimentation Ethics Review Committee (approval numbers A746, A832, A947).

James Munro 06/03/2006

.....

ACKNOWLEDGMENTS

Firstly, I would like to thank my supervisor Leigh Owens, not only for his support and enthusiasm for this project but also for giving me a lot of freedom in my PhD to investigate different aspects of the project.

I would like to thank Dick Callinan for helping to direct the project and obtaining funding from ACIAR. Without him, the project would never have been possible. I always enjoyed our meetings and found his overwhelming support for the project, inspiring.

I would like to thank Graham Burgess and Jan Smith for their help with questions I often had about antibodies and proteins.

The graduate students definitely need a big acknowledgement. Especially my fellow suffering room mate Kezza (a.k.a Crofty). Thanks to you, Court and Gin, I am sure my name will always be a legend in the Equatorial Hotel, Penang.

I would also like to give a big thank you to my sidekick and partner in crime, Ginny. Your support throughout my PhD, brainstorming and proof reading was amazing. Outside of uni, your companionship was as equally enjoyed.

I would like to thank my parents for their support, not only through my PhD but throughout my entire university education. Without their support I would never have been able to complete it.

Last but definitely not least, I would like to thank Dominion coffee shop. After a soured friendship with Hungry Jacks (according to the experts it was due to a gluten allergy, however I think we just grew apart), you were always there to fill a void. Without you I would have found it hard to gather the enthusiasm for this PhD.

ABSTRACT

The hypothesis for this project was that gill-associated virus (GAV) affects production of *Penaeus monodon* on Australian farms. The main objectives of the research were, firstly; to determine if there is a relationship between the degree of GAV infection and the production of *P. monodon* from the examined farms. Secondly, to develop low cost detection methods for GAV and by inference, yellow head virus (YHV) which are applicable to the prawn farming industry in both Australia and developing countries.

The first objective was achieved by sampling a total of forty five prawn ponds from three prawn farms at both one month poststocking and at one week preharvest for the prevalence and semi-quantitative load of GAV using reverse transcription nested polymerase chain reaction (RT-nPCR) as the detection method. The three prawn farms were situated at different geographical positions along the east coast of Australia to reduce the possibility of location bias. The three locations were: 1) Palmers Island (northern New South Wales) - 29° 44' South, 153° 26' East; 2) Woongoolba (southern Queensland) - 27° 73' South, 153° 32'East and 3) Cardwell (northern Queensland) - 18° 27' South, 146° 02' East.

Prior to screening the three prawn farms for the affect of GAV, two criteria needed to be met. Firstly, to be able to determine if plasmid contamination had occurred within the PCR procedure, due to the high prevalence of GAV in *P. monodon* within Australia a high number of positives were expected and it would be difficult to detect false positives from plasmid contamination and secondly; to determine if the published RT-nPCR detection method for GAV could be used semi-quantitatively to compare levels of GAV infection between prawns. To fulfil these two criteria, firstly, a synthetic positive control for GAV RT- nPCR was developed. This PCR control produced larger amplified products in the outer and inner nest than the diagnostic test with the same primers. This technique is advantageous over traditional cloning of the diagnostic PCR product itself by making it visually easy to detect plasmid contamination and thus, prevent false positives. To determine if RT-nPCR could be used to determine the semi-quantitative load, GAV from homogenised *P. monodon* gill tissue was purified on a continuous sucrose gradient. The RNA was then isolated from GAV and ten-fold serially diluted into crayfish (*Cherax quadricarinatus*) RNA that was free of GAV. These serial dilutions were then reverse transcribed into cDNA and amplified with PCR. It could be seen that as the original sample of GAV became increasingly diluted, the corresponding amplified product became progressively lighter when visualised on an agarose gel containing 0.5 μ g/ml ethidium bromide under ultraviolet light. It was concluded that the RT-nPCR could be used as a semi-quantitative tool for the subsequent cohort study.

The ponds examined were categorised into four groups; i) GAV related outbreak – low production, ii) GAV related outbreak – emergency harvest, iii) no GAV related outbreak – low production, and iv) no GAV related outbreak – high production.

The study found that GAV had a strong association with reduced production from the farms. Ponds with GAV related outbreaks had a statistically higher initial prevalence (75.5 % – 80.7 %) and a higher increase in prevalence (16.3 % - 20.1 %) over the production period. While the ponds with no GAV outbreak – low production had the lowest initial prevalence (59.4 %) but the largest increase in prevalence (36.2 %) over the production period and the ponds with no GAV outbreak – high production had the lowest increase in prevalence (12.8 %) over the production period.

The association of GAV with reduced production was also seen with respect to the semi-quantitative loading of the infected prawns, as the ponds with GAV related outbreaks had the highest loading (2.6 - 2.9) (maximum being 4) and the highest percentage increase (41.8 % - 42.3 %) at harvest. While the ponds with no GAV outbreak – low production had a moderate increase (39 %) in GAV load and the ponds with no GAV outbreak – high production had the lowest increase (14 %) in load.

It was concluded that the prevalence and loading of GAV are strongly associated with the severity of disease; with a increase in GAV correlating with a decreased production. Ponds with a higher initial prevalence and higher increase in load of GAV suffered GAV-related outbreaks. Ponds with low initial prevalence of GAV but with a high increase in prevalence and viral load over the production period suffered low level mortality resulting in no outbreak being identified, yet low production. The ponds that had moderate to low initial prevalence of GAV with a low increase in prevalence and load of GAV over the production period incurred no GAV related outbreak – high production.

The second objective was achieved through the development of two alternative detection methods for GAV. Firstly, polyclonal antibodies (PAbs) from chickens and monoclonal antibodies (MAbs) derived from mice were produced against GAV and a capture ELISA was developed. Secondly, haemagglutination (HA) using chicken erythrocytes was used to detect GAV. These diagnostic tests for GAV were then tested for sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and overall accuracy when compared to the RT-nPCR as the gold standard for agreement with the ELISA or compared to the ELISA for comparison with HA.

PAbs from chickens were produced against the 116 kDa and 64 kDa protein of GAV seen in Western blots. The development of the PAbs was based on the report that YHV consisted of four structural proteins of approximately 170, 135, 67 and 20 kDa. However it was later reported that the 170 kDa protein may have originated from prawn cells. The PAbs reacted to this 170 kDa. However, due to the specificity of the MAbs, this did not interfere with the developed capture ELISA. Of the 11 MAbs developed against the 20 kDa protein of GAV, all were IgM isotype. Monoclonal antibody 3K5-11 was used in immunohistochemical studies, Western blot analysis and affinity purification to demonstrate specificity to GAV.

Haemagglutination using chicken erythrocytes tested the haemolymph, gill, lymphoid organ, heart, subcutaneous tissue, eye stalk, pleopods, uropods and the central nerve cord for agglutination activity in 100 *P. monodon*, with the haemolymph and gill tissue giving the highest end-point titres of 1:1370 and 1:361, respectively. The sensitivity of HA was demonstrated by testing two different populations of *P. monodon*, which had a highly significant difference (F = 56.4, DF = 4, 88, P<0.001) in HA activity, indicating a difference in viral load. By testing three other penaeid species (*n* = 20 each), *Penaeus esculentus, Penaeus merguiensis* and *Penaeus longistylis*, and the crayfish, *C. quadricarinatus*, it was demonstrated that natural agglutinins were not causing the high agglutination in the population of *P. monodon*. There was no effect of freezing and thawing of samples on HA activity. The speed and low cost of HA makes it a very useful tool, particularly in the developing world, for on-farm testing of penaeid prawns to indicate YHV and GAV loads which can contribute to management practices with respect to the harvesting of ponds.

The two developed tests were compared for agreement using 120 *P. monodon* for the presence of GAV. Initially, the ELISA was compared to the RT-nPCR and then the HA was compared to the ELISA. For the ELISA, the sensitivity was 97 %, the specificity was 65 %, the PPV was 93.3 %, the NPV was 81.3 % and the overall accuracy was 91.7% when using an optical density of greater than 0.75 as a positive result. The HA had a sensitivity of 88 %, specificity of 75 %, PPV of 79%, NPV of 61 % and an overall accuracy of 73 % compared to the ELISA or an estimated accuracy of 66.9 % when compared to the RT-nPCR when using an HA titre of greater than 16 as a positive result.

TABLE OF CONTENTS

STATE	MENT OF ACCESS	i		
DECLA	RATION	i		
DECLA	RATION ON ETHICS	ii		
ACKNO	OWLEDGMENTS	iii		
ABSTR	ACT	iv		
LIST O	F TABLES	xiv		
LIST O	F FIGURES	xvi		
LIST O	F ABBREVIATIONS	xxii		
CHAP1 General	CHAPTER 1 1 General Introduction			
СНАРТ	'ER 2	4		
REVIE	W OF LITERATURE	4		
2.1	Properties of the Okavirus	4		
2.2	Viruses of the yellow head complex	5		
2.3	Infection and morphology of yellow head-like viruses	7		
2.4	Disease and distribution of yellow head-like viruses			
2.5	Mode of infection of yellow head-like viruses	14		
2.6	Interactions with other viruses	16		
2.7	Yellow head-like infections in other crustaceans			
2.8	Signs of infection and detection methods of YHLV			
2.9	Conclusion			

CHA	РТЕ	R 3	. 29
DEV	ELO	PMENT OF A SYNTHETIC POSITIVE CONTROL WHICH	
DET	ЕСТ	S PLASMID CONTAMINATION IN DIAGNOSTIC POLYMERAS	SE
СНА	IN F	EACTION FOR GILL-ASSOCIATED VIRUS	. 29
3.1	In	troduction	. 29
3.2	M	aterial and Methods	. 30
3.2	.1	Diagnostic primers	30
3.2	.2	PCR plasmid positive control	30
3.3	Re	sults	.33
3.3	.1	Plasmid positive control	33
3.4	Di	scussion	. 35
СНА	PTE	R 4	. 36
IS GI	ILL-	ASSOCIATED VIRUS RELATED TO DECREASED PRODUCTIO	ON
OF P	enae	us monodon IN AUSTRALIAN PRAWN FARMS	. 36
4.1	In	troduction	. 36
4.2	M	aterials and Methods	38
4.2	.1	Purification of gill-associated virus	38
4.2	.2	RNA isolation	38
4.2	.3	Serial dilution of GAV RNA	38
4.2	.4	Reverse transcription - nested PCR	39
4.2	.5	PCR primers	39
4.2	.6	Prawn samples from this farm study	. 39
4.2	.7	Positive control	. 39
4.2	.8	Negative control	40
4.2	.9	Case definitions of GAV-related outbreak	40
4.2	.10	Grading system	40

4	.2.11	Statistical analysis	. 41
4.3	Re	sults	. 42
4	.3.1	Determining if PCR grading system gives a semi-quantitative result	. 42
4	.3.2	Component two – Determining if GAV has an effect on production	. 43
4.4	Dis	scussion	. 50
СН	APTE	R 5	. 54
PR	ODUC	TION OF POLYCLONAL AND MONOCLONAL ANTIBODIES	
AG	AINS	F GILL-ASSOCIATED VIRUS AND THE DEVELOPMENT OF A	N
EL	ISA		. 54
5.1	Int	roduction	. 54
5.2	Ma	aterials and Methods	. 55
5	.2.1	Purification of gill-associated virus	. 55
5	.2.2	Polyacrylamide gel electrophoresis	. 55
5	.2.3	Production of polyclonal antibodies in chickens	. 56
5	.2.4	Western blots	. 56
5	.2.4.1	Protein transfer	. 56
5	.2.4.2	Immunostaining Western blots	. 57
5	.2.5	Visualisation of affinity purified protein from MAbs	. 57
5	.2.6	Fixation of tissue	. 57
5	.2.7	Preparation of paraffin sections for immunostaining	. 58
5	.2.8	Immunostaining of tissue sections	. 58
5	.2.9	Antigen preparation for development of indirect and capture ELISA	. 59
5	.2.10	Optimisation of indirect ELISA	. 59
5	.2.11	Cell count	. 60
5	.2.12	Production of monoclonal antibodies in Balb/c mice	. 60
5	.2.12.1	Immunisation schedule	. 60

	5.2.12.2	Culture of myeloma cells	60
	5.2.12.3	Optimisation of capture ELISA	61
	5.2.12.4	Screening for GAV using capture ELISA	62
	5.2.12.5	Preparation of spleen cells	62
	5.2.12.6	Fusion protocol	63
	5.2.12.7	Screening for antibody production	63
	5.2.12.8	Cloning of monoclones	64
	5.2.13	Cryopreservation of cell lines	64
	5.2.13.1	Freezing cultured cells	64
	5.2.13.2	Thawing cells from liquid nitrogen storage	64
	5.2.14	Antibody isotyping	65
	5.2.15	RNA isolation	65
	5.2.16	Reverse transcription (RT) – PCR	65
	5.2.17	PCR primers	65
	5.2.18	Animal Ethics	65
5.	3 Re	sults	66
	5.3.1	Development of an ELISA for GAV	66
	5.3.2	Confirmation that the developed MAbs and PAbs antibodies are	
		specific for GAV	67
5.	4 Dis	cussion	70
С	HAPTE	R 6	73
H	AEMAG	GLUTINATION AS A LOW COST DETECTION METHOD FOR	2
G	ILL-AS	SOCIATED VIRUS AND BY INFERENCE, YELLOW HEAD	-
V	IRUS IN	Penaeus monodon	73
6.	1 Int	roduction	73
6.	2 Ma	iterials and Methods	75

6.2.1	Viral acquisition	. 75
6.2.2	Determination of optimal tissue/organ to obtain virus	. 75
6.2.3	Obtaining and storing chicken erythrocytes	. 75
6.2.4	Haemagglutination	. 75
6.2.5	Controls	. 76
6.2.6	Determination of the effect of freezing samples	. 76
6.2.7	Determination of natural agglutinins in Penaeus esculentus, Penaeus	
mergu	iensis and Penaeus longistylis	. 76
6.2.8	RNA isolation to determine prevalence of GAV	. 76
6.2.9	Reverse transcription for GAV	. 77
6.2.10	PCR primers towards GAV	. 77
6.2.11	Statistical analysis	. 77
6.2.11	Animal Ethics	. 77
6.3 F	Results	. 78
6.3.1	Prevalence of GAV in studied penaeids	. 78
6.3.2	Determining optimal tissue/organ from haemagglutination	. 78
6.3.3	Determining haemagglutination titre from other penaeid prawns	. 79
6.3.3	Determining the effect of freezing samples on haemagglutination titre.	. 81
6.4 E	Discussion	. 81
	FD 7	05
CHAPI	EK /	. 03
SENSIT	IVITY AND SPECIFICITY OF CURRENT DIAGNOSTIC TESTS	
FOR GI	LL-ASSOCIATED VIRUS	. 85
7.1 I	ntroduction	. 85
7.2 N	Iaterials and Methods	. 86
7.2.1	Sample preparation of gill tissue for comparison between tests	. 86
7.2.2	RNA isolation	. 86

7.2.3	Reverse transcription (RT) – nested PCR	
7.2.4	PCR primers	86
7.2.5	Semi-quantitative grading with RT-nPCR	
7.2.6	Screening for GAV using a capture ELISA	
7.2.7	Haemagglutination	
7.2.8	Obtaining and storing chicken erythrocytes	
7.2.9	Controls	
7.2.10	Comparison clarification	
7.2.11	Optical density cut off	89
7.3 R	esults	
7.3.1	Comparison of the ELISA with RT-nPCR	
7.3.2	Comparison of haemagglutination with RT-nPCR	
7.4 D	iscussion	95
CHAPT	ER 8	
General	Discussion	
LITERA	TURE CITED	104
APPENI	DIX 1 – Papers and Presentations	113

LIST OF TABLES

Table 2.1	Natural and experimental host range for YHLV	22
Table 4.1	The effect of husbandry factors on the prevalence and	
	intensity of GAV over the entire production period.	
	Note: Crop status = GAV-related outbreak-low	
	production, GAV-related outbreak-emergency harvest,	
	No GAV-related outbreak- low production,	
	No GAV-related outbreak-high production,	
	Sample time = poststocking and preharvest	44
Table 4.2	Average prevalence and intensity of GAV in the three	
	farms at one month poststocking, one week preharvest	
	and the percentage increase between the sampling	
	periods and percentage of daily increase ($n = 1800$)	45
Table 4.3	Significant differences in prevalence (lower triangle)	
	and intensity (upper triangle) of GAV between	
	ponds poststocking. Note: Crop status = GAV-related	
	outbreak-low production, GAV-related outbreak-	
	emergency harvest, No GAV-related outbreak-	
	low production, No GAV-related outbreak-high	
	production, Sample time = poststocking and preharvest	48
Table 4.4	Significant differences in prevalence (lower triangle)	
	and intensity (upper triangle) of GAV between	
	ponds preharvest. Note: Crop status = GAV-related	
	outbreak-low production, GAV-related outbreak-	
	emergency harvest, No GAV-related outbreak- low	
	production, No GAV-related outbreak-high production,	
	Sample time = poststocking and preharvest	49

Page

Table 4.5	Significant differences in survival in ponds that	
	had GAV-related outbreaks-low production,	
	GAV-related outbreaks-emergency harvest, no	
	GAV-related outbreaks-low production and no	
	GAV-related outbreaks-high production.	
	Note: Crop status = GAV-related outbreak-low	
	production, GAV-related outbreak-emergency harvest,	
	No GAV-related outbreak- low production,	
	No GAV-related outbreak-high production,	
	Sample time = poststocking and preharvest	50
Table 6.1	Significant differences (P value) of haemagglutination	
	titre from individual organs/tissue compared to other	
	individual organs/tissue from Penaeus monodon.	
	Note: (L.O.) lymphoid organ, (Subcut) subcutaneous	
	tissue, (CNC) central nerve cord	79
Table 6.2	Significant differences (P value) of haemagglutination	
	titre using gill tissue between different species of	
	penaeid prawns. Note: (*) frozen for unknown period	80
Table 8.1	Cost analysis of reverse transcription nested polymerase	
	chain reaction, enzyme linked immunosorbent assay and	
	haemagglutination when used as detection tests for GAV	
	based on 40 ponds, with 20 sample prawns/pond and two	
	sample periods. Note *- Technician cost can dramatically	
	vary depending on the labour costs of individual countries	102

LIST OF FIGURES

		Page
Figure 2.1	Family tree of the genera and families within the order <i>Nidovirales</i>	5
Figure 2.2	A YHLV-infected Penaeus monodon lymphoid	
	organ cell showing paracrystalline arrays of	_
	enveloped virions (A)	8
Figure 2.3	Organisation of the 26235 nt (+) ssRNA YHLV	
	genome indicating translation features and deduced	
	open reading frame (ORF) functions	9
Figure 2.4	Diagrammatic representation of the structural	
C	components and schematic morphology of coronavirus	
	virions. Note: N, nucleocapsid protein; sM,	
	small-membrane protein; HE, haemagglutinin-esterase	
	protein	10
Figure 2.5	Model for the infection and disease cycle of yellow	
C	head complex viruses	14
Figure 2.6	TEM of vesicle showing particles (PAR) of 50 - 96 nm	
1.8010 210	in diameter and rod-shaped structures (ROD) 155 – 207 nm	
	long	19
Figure 2.7	TEM of vesicles within nerve cells of the fasciculated zone	
	of the eye of moribund Penaeus monodon. The vesicles are	
	3 μ m in diameter and contain unidentified particles (PAR) of	
	20 nm in diameter. Some particles also appear to be free	
	in the cytoplasm	20
Figure 2.8	The world prawn aquaculture production and value up to	
	2004 (FAO).	26

xvi

Figure 3.1	A diagrammatic representation of the oligonucleotide	
	developed for the PCR positive control using primers	
	developed for the detection of gill-associated virus	31
Figure 3.2	RT-PCR (A) and RT-nPCR (B) of clinical samples of	
	Penaeus monodon.	
	A: RT – PCR products (618 bp), using primers GAV5	
	and GAV6 (lanes $1 - 20$)	
	B: $RT - nPCR$ products (317 bp) (lanes 1 – 13), using	
	primers GAV1 and GAV2. (M) molecular weight marker,	
	(-C) negative control, (+C) plasmid positive control	34
Figure 4.1	RT-PCR (A) and RT-nPCR (B) of RNA of GAV from	
	gills of Penaeus monodon 10-fold serially diluted in	
	RNA of Cherax quadricarinatus	
	A: RT – PCR products (618 bp), using primers GAV5	
	and GAV6 (lanes A - E)	
	B: RT – nPCR products (317 bp) (lanes D - J), using	
	primers GAV1 and GAV2. Note: (M) molecular weight	
	marker, (-) negative control, (+) plasmid positive	
	control	43
Figure 4.2	Daily percentage increase in prevalence and intensity	
	of the farms over the production period.	
	Note: Outbreak $-$ low $=$ GAV related outbreak $-$	
	low production, Outbreak – emergency harvest =	
	GAV related outbreak – emergency harvest,	
	No outbreak – low = no GAV related outbreak –	
	low production, No outbreak – high = no GAV	
	related outbreak – high production	46

xvii

Figure 4.3 Percentage increase of GAV intensity over the production period.
Note: Outbreak – low = GAV related outbreak – low production,
Outbreak – emergency harvest = GAV related outbreak –
emergency harvest, No outbreak – low = no GAV related
outbreak – low production, No outbreak – high = no GAV
related outbreak – high production

Figure 4.4	Prevalence of GAV from the ponds at poststocking,	
	preharvest and the percentage increase over the	
	production period. Note: Outbreak – low = GAV related	
	outbreak – low production, Outbreak – emergency	
	harvest = GAV related outbreak – emergency harvest,	
	No outbreak – low = no GAV related outbreak –	
	low production, No outbreak – high = no GAV related	
	outbreak – high production	47

Figure 4.5	GAV intensity in ponds at poststocking and at preharvest.	
	Note: Outbreak – low = GAV related outbreak – low production,	
	Outbreak – emergency harvest = GAV related outbreak –	
	emergency harvest, No outbreak $- low = no GAV$ related	
	outbreak – low production, No outbreak – high = no GAV	
	related outbreak – high production	49
F: 61		
Figure 5.1	A diagrammatic representation of the capture ELISA	
	used in this study to detect GAV	61
Figure 5.2	Titration of antigen for the optimisation of a	
	capture ELISA	66
Figure 5.3	Titration of polyclonal antibodies for the optimisation	
	of the capture ELISA	66
Figure 5.4	Managered antical density readings of the developed managlanel	
rigule 5.4	Weasured optical density readings of the developed monocional	
	antibodies to GAV in a capture ELISA	6/

47

Figure 5.5	Western blot using 3K5-11 MAb against purified GAV	
	detecting a single protein band of 20 kDa	67
Figure 5.6	Western blot of PAbs against purified GAV showing	
	three protein bands of 170, 110 and 63 kDa respectively	68
Figure 5.7	Affinity purified GAV protein eluted from the capture	
	3K5-11 MAb, visualised by PAGE and stained	
	with silver stain	68
Figure 5.8	Immunostaining gills of <i>P. monodon</i> using 3K5-11	
	MAb raised against GAV to demonstrate potential	
	specificity towards GAV	69
Figure 5.9	A lack of immunostaining with gills of <i>P. merguiensis</i>	
	using 3K5-11 MAb raised against GAV demonstrating	
	the antibodies are not binding to prawn gills	69
Figure 5.10	Capture ELISA using a single prawn gill filament	
	to obtain the antigen. The filament was homogenised	
	and diluted to 1:128. Note: prawns $1 - 20$ are	
	<i>Penaeus monodon.</i> (C) $-$ Control $=$ <i>P. merguiensis</i>	70
Figure 6.1	A reaction between the agglutinating virus	
	and a receptor of the erythrocyte. Note: The virus can	
	attach to more than one erythrocyte causing viral	
	bridging indicating a positive result when testing for	
	haemagglutination. RBC = red blood cell	74
Figure 6.2	Haemagglutination titre of various organs/tissue	
	from Penaeus monodon. Note: (CNC) central	
	nerve cord, (L.O) lymphoid organ	78

Figure 6.3	Haemagglutination titre of gill tissue from penaeid	
	prawns. Note: (*) frozen Penaeus monodon	80
Figure 6.4	The effects of serial freezing of <i>P. monodon</i> gill tissue	
	(n=20) on haemagglutination titre	81
Figure 7.1	Reverse transcription nested polymerase chain reaction	
	(gold standard) results from 120 P. monodon	
	showing the prevalence and semi-quantitative viral	
	load of GAV for comparison with the ELISA	
	results (Figure 7.3)	90
Figure 7.2	ELISA readings from 120 P. monodon showing the	
	percentage of prawns recorded as positive at different	
	optical density readings	91
Figure 7.3	Prevalence and comparative level of infection of GAV	
<i>8</i>	when using the ELISA for GAV $(n = 120)$ for	
	comparison with the reverse transcription nested	
	polymerase chain reaction results (Figure 7.1)	91
Figure 7.4	The sensitivity, specificity, positive predictive value,	
	negative predictive value and the accuracy of the	
	ELISA for GAV using different cut-off values as a negative	
	result when compared to the reverse transcription nested	
	polymerase chain reaction	92
Figure 7.5	Prevalence and comparative level of infection of GAV	
e	when using the ELISA for GAV ($n = 120$) for	
	comparison with the haemagglutination results (Figure 7.7)	93
Figure 7.6	Showing the affect of increasing the haemagglutination	
	titre cut off on the percentage of prawns that were	
	recorded positive for gill-associated virus	93

Figure 7.7	Prevalence and recorded level of infection of gill associated		
	virus when using the haemagglutination for the detection		
	of GAV ($n = 120$) in comparison to the ELISA (Figure 7.5)	94	
Figure 7.8	The sensitivity, specificity, positive predictive value,		
	negative predictive value and the accuracy of		
	haemagglutination for gill-associated virus using		
	different cut off titres compared to the ELISA.		
	Note: Optical density used for ELISA was $<0.4 =$ negative	94	

LIST OF ABBREVIATIONS

A ₂₆₀	absorbance at 260 nm
A ₂₈₀	absorbance at 280 nm
ABTS	2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid)
APS	ammonium persulphate
AU	Australian
BDS	bovine donor serum
bp	base pairs
BSA	bovine serum albumin
cDNA	complimentary deoxyribonucleic acid
CO ₂	Carbon dioxide
d	days
DAB	3, 3'-diaminobenzidine tetrahydrochloride
D.P.X	di-n-butylphethalate polysyrene xylene
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
EDTA	ethylenediamine tetraacetic acid
ELISA	enzyme linked immunosorbent assay
FAO	food and agriculture organisation of the United Nations
FBS	foetal bovine serum
g	gram
8	gravity
GAV	gill-associated virus
h	hours
НА	haemagglutination
HAT	hypoxanthine-aminopterin-thymidine
H&E	haematoxylin and eosin
HRP	horseradish peroxidase
HT	hypoxanthine-thymidine
ICTV	International Committee on Taxonomy of Viruses
IHHNV	infectious hypodermal and haematopoietic necrosis virus
kb	kilobase

kDa	kiloDalton
LOV	lymphoid organ virus
LO	lymphoid organ
LPV	lymphoid parvo-like virus
LSD	least significant difference
MAbs	monoclonal antibodies
MAb	monoclonal antibody
MBV	monodon baculovirus
MCMS	mid-crop mortality syndrome
MoV	Mourilyan virus
MW	molecular weight
NDV	newcastle disease virus
NPV	negative predictive value
O.D	optical density
OPI	oxaloacetate-pyruvate-insulin media supplement
ORF	open reading frame
PAbs	polyclonal antbodies
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PEG	polyethylene glycol
PL	postlarvae
PPV	positive predictive value
PVDF	polyvinylidene fluoride
RBC	red blood cell
RNA	ribonucleic acid
RT-nPCR	reverse transcription nested polymerase chain reaction
RT-PCR	reverse transcription polymerase chain reaction
SDS	sodium-dodecyl-sulphate
SDS-PAGE	sodium-dodecyl-sulphate poly-acrylamide gel electrophoresis
SEM	scanning electron microscopy
SEMBV	systemic ectodermal and mesodermal baculovirus
SMV	spawner-isolated mortality virus
SPSS	statistical package of social sciences
TAE	tris/acetate/EDTA

TCID ₅₀	50% tissue culture infectious dose assay
TE	tetracycline
TEM	transmission electron microscope
TEMED	tetramethylethylenediamine
TNE	tris/NaCl/EDTA
U	units
US	United States
WSSV	white spot syndrome virus
YHLV	yellow head-like virus
YHV	yellow head virus
V	volts