# The trophic ecology of the freshwater fishes of an Australian rainforest river

Thesis submitted by

**Thomas S. Rayner** Bachelor of Environmental Science Honours 1 (UNSW)

in November 2006

for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University

## Statement of access

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work.

Signature

Date

### Statement of sources declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Signature

Date

# **Electronic copy**

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to James Cook University, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

#### Statement on the contribution of others

This project was funded by grants from the Cooperative Research Centre for Tropical Rainforest Ecology and Management (Rainforest CRC) and James Cook University (JCU). I was supported by an Australian Postgraduate Award stipend, additional stipend funding from the Rainforest CRC and a completion scholarship from JCU.

Supervision was provided by Professor Richard Pearson and Dr Brad Pusey, Griffith University. Uli Brose and others contributed to publications associated with this thesis. Drs Mike Steele, Lee Belbin and Mark Kennard assisted with statistical analyses. Editorial assistance was provided by Paul Godfrey. Mirjam Maughan helped prepare Figure 2.1.

In-kind support was provided by Queensland Department of Primary Industries – Fisheries and Boating, in the form of gill-nets, and New South Wales Department of Primary Industries – Fisheries, in the form of financial support to attend the 2004 Australian Society for Fish Biology conference in Adelaide, South Australia.

Dr Alan Hooper, Queensland Department of Natural Resources and Mines provided hydrological data for the Mulgrave River. Professor Angela Arthington, Australian Rivers Institute, Griffith University provided in-kind assistance for stable isotope analysis. The Australian Centre for Tropical Freshwater Research supplied gear and processed water samples.

Field assistance was provided by Colton Perna, Zoë Baker, Paul Thuesen, Paul Godfrey, Amanda Soymonoff, Mo Healy, Anne Gulliard, Megan Barnes, Cameron Crothers-Stomp, Andrew Kaus, Andrew Jones, Rusty Ligon and Michael Pusey.

Access to private land and other assistance in the field was provided by the Rossi, Thomasen and Moller families. Additional support was provided by the technical and finance staff in the School of Marine and Tropical Biology, JCU.

#### Acknowledgements

I would like to acknowledge the Yidinydji people, traditional owners of the lower Mulgrave River.

I am deeply indebted to my mentors, Brad Pusey and Richard Pearson, for their enthusiasm, guidance, encyclopaedic knowledge, criticism and patience. Colton Perna conducted a total of seven electrofishing surveys over the course of the project; without his help this thesis would literally have not been possible. Andrew 'Volunteer-for-Life' Jones helped sort a lot of invertebrate samples and went on to document the feeding ecology of the reticulated pipefish *Hippichthys heptagonus* from the Mulgrave River - his dedication and enthusiasm were astounding.

Tony, Chris, Mark and Rick Rossi, along with the other members of the Mulgrave Landcare Catchment Group, should be commended for their selfless nature, their love of the river and their frontline efforts to bring about positive environmental change. To all the staff and students of Marine and Tropical Biology, especially Andi Cairns, Niall Connolly, Paul Godfrey, Steve Williams, Faye Christidis, Jodi Rowley, Lauryne Grant, Roderigo Esparza-Salas, Angela Sheutrim, the Schluns, Ben Moore, Jane Degabriel, Alex Anderson, Samantha Fox and Karin Kassahn, thank you for all your support.

Most importantly, I would like to extend my sincerest thanks to Zoë Baker, for her generosity, love and encouragement, which allowed me to dedicate myself to my research – she mended gill nets, paid bills, tended wounds and supplied ice-creams – you couldn't ask for a better partner. In addition, the support (often financial) of my family, John, Rob and Duncan, has been unwavering. Meanwhile, Clwedd Burns will be dining out on his efforts at Alligator Falls for years to come.

Lastly, I would like to pay homage to the pioneers: to the fisheries biologists waded before me into deepest Africa, into the heart of South America, and up the rivers of the Wet Tropics; and to the team at Google Scholar, for making it that much easier – we truly do stand on the shoulders of giants!

#### Abstract

In tropical rivers, seasonal cycles of flooding and drying have a major influence on the dynamics of biotic communities. Several global paradigms have been developed which attempt to account for the relationships between river flow, primary productivity, instream habitats, invertebrate and fish communities, fish feeding and food web structure. However, information from Australia is limited, particularly for rivers in the Wet Tropics region of north Queensland, which feature unique hydrogeomorphological characteristics and diverse freshwater fish assemblages. This thesis tests the applicability of global paradigms of riverine ecology to the Mulgrave River, a typical Wet Tropics system.

Four lowland, main-channel sites were sampled on five occasions under a range of flow conditions, from dry season base flows to a one-in-ten year wet season flood. At each site, water quality and habitat data was collected, invertebrate communities in littoral and benthic habitats were sampled and fish were surveyed using a combination of boat electrofishing, gill netting and bait traps. This data was analysed using both univariate and multivariate statistical methods, before being collated into seasonal food web diagrams of the feeding links between fish and their food sources. Stable isotopes analysis was used to identify the most important pathways of energy transfer through these webs and a conceptual model of the factors affecting fish resource use and community structure was constructed.

A total of 1530 fish were caught, representing 36 species. Longitudinal variation in fish community structure was identified, with species such as *Melanotaenia splendida splendida* and *Tandanus tandanus* abundant in upstream areas and *Ambassis agrammus*, *Redigobius bikolanus* and *Lates calcarifer* more common downstream. Some species, such as *Nematalosa erebi*, preferred open waters, while others were associated with particular microhabitat features (e.g., *Notesthes robusta was generally found near root masses of riparian trees*). During the dry season, the community was dominated by *Gerres filamentosus*, *Neosilurus ater* and the introduced *Tilapia mariae*, while during the wet season the community was dominated by *Glossamia aprion* and *Nematalosa erebi*.

The fish fauna was classified into eight habitat guilds and seven feeding guilds. Most species preferred specific habitat features, such as root masses and instream vegetation, during the dry season, and then shifted to larger, deeper habitats with mud substrates and woody debris during the wet season. At this time, instream vegetation was removed from the main channel by high flow velocities

and the scour of bed sediments, which reduced habitat heterogeneity. A range of foods were consumed by fish species, from detritus, algae and fruit, to aquatic invertebrates, molluscs and fish. While the availability of these foods tracked temporal changes in habitat, seasonal shifts in dietary composition were limited to two species and ontogenetic shifts were observed in just three species. Nonetheless, food consumption by the fish community as a whole reflected seasonal fluctuations in productivity and food supply: during the wet season, aerial and surface invertebrates, algae and some detritus appeared to be consumed more frequently, while macrophytes, microcrustaceans and molluscs appeared more important in the mean diet during the dry season.

I hypothesise that fish were limited in their prey selection by their phylogeny and that they tracked changes in food availability by moving between habitat types, which resulted in the observed changes in fish assemblage structure. However, while the identity of fish species comprising the assemblage present in lowland reaches changed seasonally, food web structure did not change substantially, with many weak links and a few strong links at all times. Stable isotope analysis indicated that energy was transferred through these webs via algal and detrital pathways, with a greater diversity of productivity sources contributing to animal production during the wet season than during the dry season.

In general, the dynamics of fish communities in the Mulgrave River are regulated by the unique hydrogeomorphological features of the catchment, which are typical of the Wet Tropics region. Specifically, upland streams in these systems are steep and main channels in lowland reaches are deeply incised relative to the surrounding floodplain. As a result, floodplain habitats in Wet Tropics catchments are poorly connected to the main channel, limiting their influence on primary productivity and their utility to freshwater fish species. While wet season flows are predictable, they act as disturbances in main-channel habitats, rather than the gentle flood 'pulses' documented in other tropical areas.

The results of this study emphasise the importance of flow seasonality in governing the spatial and temporal dynamics of productivity, instream habitat, invertebrate and fish populations, fish feeding and, therefore, the structure and function of aquatic food webs. Elements of several global models appear to apply under differing flow conditions, but no single model accounts for all of the dynamics observed in the lowland fish communities of the Mulgrave River. Given the inherent similarities of Wet Tropics catchments, the results of this study are widely applicable to other rivers across the region and provide support for the long-standing doctrine of the importance of maintaining natural flow regimes if freshwater fish diversity is to be conserved.

## **Table of contents**

| Chapter 1: Freshwater fish communities in tropical rivers       | 1                      |
|-----------------------------------------------------------------|------------------------|
| 1.1 Introduction                                                | 1                      |
| 1.2 Resource use by freshwater fish communities                 | 2                      |
| 1.3 The influence of flow seasonality on fish feeding           | 3                      |
| 1.4 Models of riverine productivity                             | 5                      |
| 1.5 Aquatic food webs in tropical rivers                        | 6                      |
| 1.6 Australia's Wet Tropics rivers                              | 7                      |
| 1.7 Freshwater fish feeding in tropical Australia               | 9                      |
| 1.8 Aims and structure of thesis                                |                        |
| Chapter 2: Study area                                           | 12                     |
| 2.1 Location                                                    | 12                     |
| 2.2 Geology and geomorphology                                   | 12                     |
| 2.3 Climate and hydrology                                       | 15                     |
| 2.4 Land use and vegetation                                     |                        |
| Chapter 3: Spatial and temporal variation in fish habitats      |                        |
| 3.1 Introduction                                                |                        |
| 3.2 Methods                                                     |                        |
| 3.2.1 Study sites                                               |                        |
| 3.2.2 Hydrology                                                 |                        |
| 3.2.3 Habitat sampling                                          |                        |
| 3.2.4 Data analysis                                             |                        |
| 3.3 Results                                                     |                        |
| 3.3.1 Relative importance of habitat axes in determining spatia | l and temporal habitat |
| variability                                                     |                        |
| 3.3.2 Analysis of individual habitat axes                       |                        |
| 3.3.2.1 Hydrogeomorphology                                      |                        |
| 3.3.2.2 Vegetation                                              |                        |
| 3.3.2.3 Water quality                                           |                        |
| 3.4 Discussion                                                  |                        |

| 3.5 Conclusion4                                                                   | 6 |
|-----------------------------------------------------------------------------------|---|
| Chapter 4: Spatial and temporal variability in invertebrate community structure 4 | 7 |
| 4.1 Introduction4                                                                 | 7 |
| 4.2 Methods                                                                       | 0 |
| 4.2.1 Productivity                                                                | 0 |
| 4.2.2 Invertebrate sampling and sorting                                           | 0 |
| 4.2.3 Statistical methods                                                         | 1 |
| 4.3 Results                                                                       | 3 |
| 4.3.1 Productivity                                                                | 3 |
| 4.3.2 Littoral invertebrate communities                                           | 4 |
| 4.3.3 Benthic invertebrate communities5                                           | 7 |
| 4.3.4 Richness and evenness of invertebrate samples                               | 1 |
| 4.4 Discussion                                                                    | 3 |
| 4.5 Conclusion                                                                    | 5 |
| Chapter 5: Spatial and temporal variation in fish community structure             | 6 |
| 5.1 Introduction                                                                  | 6 |
| 5.2 Methods                                                                       | 8 |
| 5.2.1 Fish surveys                                                                | 8 |
| 5.2.2 Statistical methods                                                         | 9 |
| 5.3 Results7                                                                      | 1 |
| 5.3.1 Gear selectivity                                                            | 1 |
| 5.3.2 Analysis of electrofishing catch7                                           | 3 |
| 5.3.3 Analysis of gill net catch                                                  | 4 |
| 5.3.4 Analysis of bait trap catch                                                 | 4 |
| 5.3.5 Classification of habitat use by individual species                         | 4 |
| 5.3.6 Seasonal shifts in habitat use by fish species8                             | 7 |
| 5.4 Discussion8                                                                   | 9 |
| 5.4.1 Spatial variability in fish community structure8                            | 9 |
| 5.4.2 Temporal variation in fish community structure9                             | 0 |
| 5.5 Conclusion9                                                                   | 2 |
| Chapter 6: Spatial and temporal variation in fish feeding9                        | 3 |

| 6.1 Introduction                                                               |              |
|--------------------------------------------------------------------------------|--------------|
| 6.2 Methods                                                                    | 96           |
| 6.2.1 Specimen collection, morphological measurements and gut contents a       | nalysis . 96 |
| 6.2.2 Data analysis                                                            | 97           |
| 6.3 Results                                                                    |              |
| 6.3.1 Gut fullness                                                             |              |
| 6.3.2 Temporal variation in species composition of feeding guilds              | 100          |
| 6.3.3 Diet composition of species with low catch rates                         | 103          |
| 6.3.4 Ontogenetic diet shits                                                   | 103          |
| 6.3.5 Spatial and temporal variability in mean diet composition                | 105          |
| 6.4 Discussion                                                                 |              |
| 6.4.1 Trophic guild structure                                                  | 108          |
| 6.4.2 Temporal variation in trophic guild structure                            | 109          |
| 6.4.3 Body size, predator-prey interactions and ontogenetic diet shifts        | 109          |
| 6.4.4 The influence of taxonomic resolution of fish diets on guild classificat | ion 110      |
| 6.4.5 Community level changes in food consumption                              | 111          |
| 6.5 Conclusion                                                                 |              |
| Chapter 7: Food web structure                                                  |              |
| 7.1 Introduction                                                               |              |
| 7.2 Methods                                                                    |              |
| 7.3 Results                                                                    |              |
| 7.3.1 Seasonal food webs based on field survey and gut contents data           | 117          |
| 7.3.2 Stable isotope analysis                                                  | 121          |
| 7.3.2.1 Basal sources                                                          |              |
| 7.3.2.2 Primary consumers                                                      | 121          |
| 7.3.2.3 Higher-order consumers                                                 |              |
| 7.4 Discussion                                                                 |              |
| 7.4.1 Food web structure                                                       | 124          |
| 7.4.2 Temporal change in food web structure                                    | 125          |
| 7.4.3 Sources of production driving the food web                               | 126          |
| 7.4.4 Applicability of food web principles derived by Douglas et al. (2005)    | 127          |

| 7.4.4.1 Seasonal hydrology is a strong driver of ecosystem processes an  | ed food web |
|--------------------------------------------------------------------------|-------------|
| structure                                                                | 127         |
| 7.4.4.2 Hydrological connectivity underpins important terrestrial-aquati | ic food web |
| subsidies                                                                | 127         |
| 7.4.4.3 River food webs are strongly dependent on algal production       | 128         |
| 7.4.4.4 A few common macroconsumer species have a strong influence       | on benthic  |
| food webs                                                                | 128         |
| 7.4.4.5 Omnivory is widespread and food chains are short                 | 129         |
| 7.5 Conclusion                                                           | 129         |
| Chapter 8: General discussion                                            |             |
| 8.1 Summary of major findings                                            |             |
| 8.2 Conceptual model of findings                                         |             |
| 8.3 Resilience of the Mulgrave River to future change                    |             |
| 8.4 Conclusion                                                           |             |
| References                                                               |             |
| Appendix 1: Pilot study                                                  | 153         |
| Appendix 2: Length-weight relationships                                  | 155         |
| Appendix 3: Diet composition data                                        | 156         |
| Appendix 4: Trophic guilds based on fine dietary categories              |             |
| Appendix 5: Stable isotope signature data                                |             |

## List of tables

| <b>Table 2.1</b> Return periods for floods on the Mulgrave River near Gordonvale, based on a Log Pearson       III distribution (source: Cameron McNamara, 1985)                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 3.1 The number of hydrogeomorphology and vegetation replicates collected at each site during each sampling date                                                                                                                                                                                                           |
| Table 3.2 Geomorphology and vegetation variables recorded, with abbreviation codes used in figures                                                                                                                                                                                                                              |
| <b>Table 3.3</b> Within-treatment multivariate test results (MANOVA, Pillai's Trace) forhydrogeomorphology variables (width, depth and velocity). * $p < 0.05$ , ** $p < 0.01$ , *** $p < 0.001$ 35                                                                                                                             |
| <b>Table 3.4</b> Results of between-subjects ANOVA testing on individual hydrogeomorphology variables.* $p < 0.05$ , ** $p < 0.01$ , *** $p < 0.001$                                                                                                                                                                            |
| <b>Table 3.5</b> Within-treatment multivariate test results (MANOVA, Pillai's Trace) for water quality<br>variables (conductivity, dissolved oxygen concentration, temperatures and pH). * $p<0.05$ , ** $p<0.01$ ,<br>*** $p<0.001$                                                                                            |
| <b>Table 3.6</b> Results of between-subjects ANOVA testing on individual water quality variables. * $p<0.05$ , ** $p<0.01$ , *** $p<0.001$                                                                                                                                                                                      |
| <b>Table 4.1</b> The number of littoral dip-net (D) and benthic grab (G) replicates collected at each site during each sampling date                                                                                                                                                                                            |
| Table 4.2 Composition of broad invertebrate categories (after Pusey et al., 1995b; 2004)                                                                                                                                                                                                                                        |
| <b>Table 4.3</b> Results of one-way ANOVA tests performed on log-transformed mean chlorophyll $a$ andphaeophytin concentrations between sites and sampling dates. Significant differences ( $p < 0.05$ ) arehighlighted in bold                                                                                                 |
| <b>Table 4.4</b> Descriptive statistics for broad invertebrate categories in littoral dip-net samples, across all sites and sampling dates, along with Kruskal-Wallis test results between sites (pooled across sampling dates) and sampling dates (pooled across sites). Significant differences are highlighted in boldface54 |
| Table 4.5 Descriptive statistics for broad invertebrate categories in benthic grab samples, across all sites and sampling dates, along with Kruskal-Wallis test results between sites and sampling dates.         Significant differences are highlighted in boldface                                                           |
| <b>Table 4.6</b> Within-treatment test results (MANOVA, Pillai's Trace) for richness and evenness of<br>broad invertebrate categories in littoral dip-net and benthic grab samples. * $p<0.05$ , ** $p<0.01$ , ***<br>$p<0.001$                                                                                                 |
| <b>Table 4.7</b> Results of individual between-subjects ANOVA testing for mean richness and evenness of<br>broad invertebrate categories in littoral dip-net and benthic grab samples. * $p<0.05$ , ** $p<0.01$ , ***<br>$p<0.001$                                                                                              |
|                                                                                                                                                                                                                                                                                                                                 |

 Table 6.4 Kruskal-Wallis test results for diet indices between sites (pooled across sampling dates)

 and sampling dates (pooled across sites)

 106

#### List of figures

**Figure 3.7** Schematic diagram of a river channel showing the total area sampled during a typical shot of fish sampling effort (e.g. a single electrofishing shot; **C**). Two different measures were used. 'Percent bank length' refers to the percentage of the total bank length sampled, which is

**Figure 3.10** Mean depth (±SE) of sites 1 to 4 (pooled across sampling dates) and sampling dates (pooled across sites), with homogeneous subsets determined by Tukey's HSD *post hoc* testing......36

**Figure 4.1** Mean concentration ( $\mu$ g/L  $\pm$  SE) of (a) chlorophyll *a* and (b) phaeophytin, pooled across sites for each sampling date, with homogenous subsets determined by Tukey's HSD *post hoc* test...53

**Figure 4.2** Mean catch per unit effort ( $\pm$  SE) of the nine invertebrate categories in littoral dip-net samples for sites, pooled across sampling dates (a), and sampling dates, pooled across sites (b).......55

**Figure 5.1** Mean catch per unit effort (number of individuals per second  $\pm$ SE) of all species caught using electrofishing, averaged across sites and sampling dates, in order of descending abundance...75

**Figure 5.5** The distribution of study sites in three-dimensional ordination space (a, b), as defined by SSH MDS of electrofishing CPUE ( $\log_{10}(x+1)$  transformed, Bray-Curtis metric, stress = 0.1882) during wet (open) and dry (shaded) season sampling dates (Site 1 = 0, Site  $2 = \Delta \nabla$ , Site  $3 = \Box \blacksquare$ , Site  $4 = \Diamond \blacklozenge$ ). PCC vector lines are shown with MCAO r-squared values (c, d): \*\*\* = 0%, \*\* = 1%, \* = 2-5%. See Table 5.1 for species vector codes. Note: vector length is indicative of the orientation

**Figure 5.13** Mean catch per unit effort (number of individuals per bait trap hour  $\pm$ SE) of all species caught bait trapping, averaged across sites and sampling dates, in order of descending abundance...86

 Figure 6.1 Mean gut fullness (±SE) at each site across all species during each sampling date......100

**Figure 7.2** Seasonal trophic links between fish feeding guilds, invertebrate prey categories and basal trophic levels in the main-channel food web of the Mulgrave River. The size of circles is indicative of relative biomass within each trophic level, while grey circles are estimates from habitat sampling and field observations. Very weak links (<0.0005% of strongest link) are shown as dashed lines..........119