JCU ePrints

This file is part of the following reference:

Downes, Michael Frank (1985) Inviable egg production in Theridion rufipes (Araneae, Theridiidae): a harvest for first instar spiderlings. Masters (Research) thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/15508

Inviable egg production in <u>Theridion rufipes</u> (Araneae, Theridiidae): a harvest for first instar spiderlings

Thesis submitted by Michael Frank DOWNES, BSc (James Cook) in November 1985

For the research degree of Master of Science in the Faculty of Science of the James Cook University of North Queensland

i

STATEMENT OF ACCESS

I, the undersigned author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work

Or

I wish this work to be embargoed until

Or

I wish the following restrictions to be placed on this work:

Signature

<u>18/12/09</u> Date

MICHAEL DOWNER

I, the undersigned, the author of this thesis, understand that the James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

"In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it."

Beyond this, I do not wish to place any restriction on access to this thesis.

Signature.

i i

"Some of the spiderlings appeared to feed on the infertile eggs in their egg mass...Further study might show that...this early nutrient (is) of value in survival patterns of a population."

Peck and Whitcomb 1970

"It would be interesting to investigate the hypothesis that sterile eggs in fertile egg sacs have been selected for as 'trophic eggs'."

Jackson 1978

Frontispiece: Prefed and prefasted first instar

 Theridion rufipes
 spiderlings. There

 are two such contrasted pairs in this
 photograph.
 x 20

CONTENTS

	<u>Page</u>
List of Tables	viii
List of Figures	ix
List of Plates	xii
Source Statement	xv
Acknowledgements	xvi
Abstract	1
Chapter 1. General introduction	3
Chapter 2. General materials and methods	9
Chapter 3. General results and discussion	
(Analysis of variance)	18
Chapter 4. Postembryonic Development	
4.1. Introduction	23
4.2. Materials and methods	25
4.3. Results	
4.3.1. An account of	
development to	
first instar	26
4.3.2. Developmental	
rates	37

v

4.4. Discussion 4.4.1. A review of early postembryonic development in spiders 41 4.4.2. Developmental rate 51 Chapter 5. Oophagy - the investment 5.1. Introduction 56 5.2. Materials and methods 59 5.3. Results 62 5.4. Discussion 64 Chapter 6. Fecundity and the egg sac sequence 6.1. Introduction 69 6.2. Materials and methods 70 6.3. Results 71 6.4. Discussion 74 Chapter 7. Temperature effects 7.1. Introduction 79 7.2. Materials and methods 80 7.3. Results 82 7.4. Discussion 87 Chapter 8. Feeding effects 8.1. Introduction 89 8.2. Materials and methods 90 8.3. Results 92

8.4. Discussion

97

vi

Chapter 9. Locality and population structure	
9.1. Introduction	100
9.2. Materials and methods	100
9.3. Results	101
9.4. Discussion	102
Chapter 10. Disturbance and confinement	
10.1. Introduction	105
10.2. Materials and methods	105
10.3. Results	106
10.4. Discussion	107
Chapter 11. Survival - the dividend	
11.1. Introduction	110
11.2. Materials and methods	112
11.3. Results	113
11.4. Discussion	116
Concluding remarks	129
References	135
Appendices	
Appendix 1a. Sac data record	
sheets	144
Appendix 1b. Sac data summary	
sheet	1 45
Appendix 2. Some comparable	
data for three other	
theridiid spiders	146

TABLES

1. Fecundity and fertility variation between individual females, with and without respect to feeding rate. 19 2. The effects of FEEDST, FOODTYPE, SACNO and ORIGIN on fecundity and fertility. 213. Death likelihood and development failure prior to emergence. 28 4. Effect of temperature on mean time from mating to first oviposition and between subsequent ovipositions. 40 5. Correlation coefficients for singlesac fecundity vs. egg sac production rate 73 6. Mean fecundity expressed as egg productivity per unit time, for three feed rates. 96

- 7. Overall mean fecundity and mean
 proportional inviability of
 laboratory and field egg sacs.
 107
- 8. Survival times and prefed molting
 in starved spiderlings. 121
- 9. Frequency distributions of INVIABILITY 1 and INFERTILITY 133

FIGURES

1a.	Mean development times from	
1 a	oviposition to hatching (H),	
	molting (M) and emergence (E).	38
1b.	Embryonic and postembryonic	
	development rates.	39
2.	The hatching process in spiders:	
	a schematic presentation of	
	the results of fourteen authors.	44
з.	Egg size, proportional fertility and	
	probability of failure to develop.	61

ix

4a. Fecundity over the egg sac sequence. 77 4b. Proportional inviability and infertility over the egg sac sequence. 77 5. Cul-de-sac (A) and conduit (B) reproductive anatomy in spiders. 78 6. Mean fecundity and mean proportional inviability and infertility in relation to temperature. 84 7a. Mean monthly fecundity and mean proportional inviability and infertility, field-free specimens. 85 7b. Mean monthly fecundity and mean proportional inviability and infertility, field-captive specimens. 86 8. Mean fecundity and mean proportional inviability and infertility

in relation to rate of feeding. 93

х

- 9. Mean fecundity and mean proportional inviability and infertility in relation to last prey type consumed before oviposition. 94
- 10. Mean fecundity and mean proportional inviability and infertility in relation to the time elapsed between feeding and ovipositing.
- 11. Mean fecundity and mean proportional inviability and infertility of subpopulations (demes), (a) between 1980-85 and (b) in 1985 104
- 12. Mean fecundity and mean proportional inviability and infertility in relation to the time elapsed since a vial change.
- 13. Mean fecundity and mean proportional inviability and infertility in relation to location of mating. 109

хi

14. Post-emergence starvation resistance and molting probability, in relation to amount of egg material consumed prior to emergence

xii

(a) Mean resistance time, first	
instar spiderlings	123
(b) Maximum resistance time,	
first instar spiderlings	124
(c) Probability of molting to	
second instar	125
(d) Minimum resistance time,	
second instar spiderlings	126
(e) Mean resistance time,	
second instar spiderlings	127
(f) Maximum resistance time,	
second instar spiderlings	128

<u>PLATES</u>

Frontispiece	-	Prefed	and	l prefast	ed	first	
		instar	<u>T</u> .	<u>rufipes</u>	spi	derlings	iv

<u>Theridion rufipes</u> adults.
 Male (a) and Female (b)
 7

xiii	i	
2a -	Containers and slides used in the study	12
2b.	The egg sac of <u>T</u> . <u>rufipes</u>	12
За.	General appearance of the contents	
	of a full-term <u>T</u> . <u>rufipes</u> egg sac	13
3b.	Empty eggshells	13
4a.	The eggs of <u>T</u> . <u>rufipes</u>	29
4b.	Post-reversion stage	29
5a.	Hatching – chorionic stress	30
5b.	Hatching - rupture of the chorion	30
6a.	Hatching - disposition of the appendages	31
6b.	Postembryos - general appearance	31
7a.	Postembryos – eyes and pedipalp	
	segmentation	32
7b.	The first molt - flexure	32

xiv	
8a. The first molt - extension	33
8b. Exuvium of the first molt	33
9. First instar spiderlings	34
10a.An undeveloped egg among postembryos	55
10b.First instar spiderlings feeding	
on an egg and on a sibling	55

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

M F Downes September 1985

ACKNOWLEDGEMENTS

I acknowledge the financial support of James Cook University Research Grant number 727 and have pleasure in recording my gratitude to the following people:

Valerie Davies, Curator of Arachnids at the Queensland Museum, for identification of spider specimens

Zoltan Florian of James Cook University's Optical Microscopes Unit, and the staff of the University's Photography Section, for assistance in the preparation of the plates

Phil Osmond, for making his computer available for the preparation of the text

Helene Marsh, for suffering me gladly

Rhondda Jones, my Supervisor, for making the impossible seem perfectly straightforward, and for making me believe that miracles will simply take a little longer

My family, for putting up with it

xvi

ABSTRACT

Most of the variability in fecundity and fertility in <u>Theridion rufipes</u> is due to differences between individual females. Food availability is the most influential extrinsic factor controlling fecundity and fertility, and the type of food consumed may also have an effect. Fecundity increases in the later egg sacs of the egg sac sequence.

Neither variations in fixed laboratory temperatures nor variations in prevailing field temperatures affect fecundity or fertility, but both development rate and oviposition intervals are markedly influenced by temperature. At a constant temperature of 20° C, development is halted and oviposition interval is greatly extended. At 25° C and 30° C, development proceeds normally and there is no significant difference in mean oviposition interval.

Some differences exist between the two relatively isolated subpopulations of \underline{T} <u>rufipes</u> from which experimental specimens were obtained.

The eggs vary in diameter from 0.55 mm to 0.80 mm, the smaller eggs being less likely to develop. The undeveloped eggs are used as a food resource by the first instar spiderlings before they leave the egg sac and disperse. This extra nourishment enables spiderlings to survive without feeding again for up to four times as long as they can without such benefit, enhancing their survival

- 1 -

prospects during the dispersal and habitat-selection phase. Many spiderlings that feed on eggs prior to emergence are able to molt to second instar without further nourishment; the size increase resulting from the molt may widen the available prey spectrum.

The mean proportion of inviable eggs in an egg sac is 0.21 (s.e. = 0.01). These values indicate a marked tendency to provide an amount of extra food-egg yolk material that would approximately double the starvation resistance time during the dispersal and settlement phase. It may be impossible or less efficient to provide an appropriate equivalent amount of extra yolk in each egg at oviposition.

Egg-feeding does not occur in the postembryo stage. An account is given of postembryonic development and a proposal is made for standardization of the terms describing araneid early development stages.

- 2 -