# JCU ePrints

This file is part of the following reference:

Corlis, David Brian (2004) Taxonomy of monogenean parasites and their coevolution with Australian atheriniform fishes. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/14914



Taxonomy of monogenean parasites

and their coevolution with

Australian atheriniform fishes

Thesis submitted by David Brian CORLIS BSc (Hons) UNE

in March 2004

for the degree of Doctor of Philosophy
in Zoology and Tropical Ecology
within the School of Tropical Biology
James Cook University, Townsville

# **ELECTRONIC COPY**

| I, the undersigned, the author of this work, declare that the electronic thesis provided to the James Cook University Library, is an accurate thesis submitted, within the limits of the technology available. | 1 4  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                                                                                                                                                                                                                |      |  |
|                                                                                                                                                                                                                |      |  |
|                                                                                                                                                                                                                |      |  |
|                                                                                                                                                                                                                |      |  |
| Signature                                                                                                                                                                                                      | Date |  |

#### STATEMENT OF ACCESS

Nomenclature 4<sup>th</sup> edition, effective 2000. <u>However this thesis is not to be regarded as a publication under the code as the provisions of Article 11 of the *International Code of Zoological Nomenclature* (ICZN 1999) are not met. For this reason an embargo is placed on access to this thesis for a period of one year. This should allow sufficient time to formally publish the descriptions of new taxa (Corlis, 2004).</u>

After the embargo period, I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

"In consulting this thesis I agree to not copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it."

| beyond this I do not wish to place any result | tion on access to this thesis. |
|-----------------------------------------------|--------------------------------|
|                                               |                                |
|                                               |                                |
|                                               |                                |
|                                               |                                |
| D. Corlis                                     | Date                           |

Devend this I do not wish to along one postuiction on access to this thosis

### STATEMENT OF SOURCES

| (Name)                                                      | (Date)                       |
|-------------------------------------------------------------|------------------------------|
|                                                             |                              |
|                                                             |                              |
|                                                             |                              |
|                                                             |                              |
|                                                             |                              |
|                                                             |                              |
| acknowledged in the text and a list of references is given. |                              |
| Information derived from the published or unpublished w     | ork of others has been       |
| another degree or diploma at any university or other instit | ution of tertiary education. |
| I declare that this thesis is my own work and has not been  | submitted in any form for    |

### TABLE OF CONTENTS

| STATE   | MENT OF ACCESS                                                       | i     |
|---------|----------------------------------------------------------------------|-------|
| ABSTR   | ACT                                                                  | xi    |
| ACKNO   | OWLEDGMENTS                                                          | XV    |
| DEFINI  | ITIONS                                                               | . xvi |
| ABREV   | VIATIONS                                                             | xix   |
| LIST O  | F TABLES                                                             | XX    |
| LIST O  | F FIGURES                                                            | xxiii |
| APPEN   | DIX A. LIST OF DESCRIPTIONS FOR GENERA AND SPECIESx                  | xviii |
| APPEN   | DIX B. LIST OF TABLES RELATING TO CHAPTER 4                          | , XXX |
| APPEN   | DIX C. LIST OF TABLES RELATING TO CHAPTER 5                          | αxxii |
| APPEN   | DIX D. LIST OF FIGURES RELATING TO CHAPTER 7x                        | xxiv  |
| APPEN   | DIX E. LIST OF TABLES RELATING TO CHAPTER 7x                         | xxiv  |
| Chapter | r 1 INTRODUCTION                                                     | 1     |
| 1.1     | Introductory Remarks                                                 | 1     |
| 1.2     | Phyletic Associations between Host-Parasite Phylogenies              | 3     |
| 1.2.1   | 1 Host Phylogenies and Parasite Species Distribution on Host Species | 5     |
| 1.2.2   | 2 Host Phylogenies and Host-Associated (induced?) Morphometric Varia | tion  |
| of P    | arasite Haptoral Structure                                           | 6     |
| 1.3     | Cospeciation between Hosts and Parasites                             | 7     |
| 1.4     | Parasite Taxonomy                                                    | 7     |
| 1.4.1   | 1 Taxonomy                                                           | 8     |
| 1.5     | Host-Parasite Specificity                                            | 10    |

| 1.5.1     | Host Sampling Considerations.                            | 11 |
|-----------|----------------------------------------------------------|----|
| 1.6 Pa    | arasite Community Structure                              | 12 |
| 1.6.1     | Distribution Patterns of Parasites and Host              | 13 |
| 1.6.2     | Parasite Associations and Interspecific Competition      | 14 |
| 1.6.3     | Host Body Size and its Effect on Parasite Specificity    | 16 |
| 1.6.4     | Specificity and the Identification of Host Hybridisation | 16 |
| 1.7 T     | he Subject of the Study                                  | 17 |
| 1.7.1     | Host Fauna                                               | 17 |
| 1.7.2     | Australian Monogenean Fauna                              | 22 |
| 1.8 St    | tructure of the Thesis                                   | 23 |
| Chapter 2 | 2 METHODS AND MATERIALS                                  | 27 |
| 2.1 H     | ost Species Collection Sites                             | 27 |
| 2.2 Pa    | arasite Preparation                                      | 31 |
| 2.2.1     | Method 1                                                 | 31 |
| 2.2.2     | Method 2                                                 | 32 |
| 2.2.3     | Other Methods                                            | 33 |
| 2.3 M     | leasurements                                             | 33 |
| Chapter 3 | 3 STATISTICS                                             | 34 |
| 3.1 In    | itroduction                                              | 34 |
| 3.1.1     | Data Considerations                                      | 34 |
| 3.1.      | 1.1 Normalisation                                        | 35 |
| 3.1.      | 1.2 Equal Variance                                       | 36 |
| 3.1.      | 1.3 Equal Sample Size                                    | 37 |

| 3.1.1     | .4 Standardisation                                | 37 |
|-----------|---------------------------------------------------|----|
| 3.1.1     | .5 Outliers                                       | 37 |
| 3.1.1     | .6 Data Averaging                                 | 38 |
| 3.1.2     | Descriptive Statistics.                           | 38 |
| 3.1.3     | Multivariate Analysis                             | 39 |
| 3.1.4     | Measures of Association                           | 40 |
| 3.1.4     | .1 Covariance and Correlation                     | 40 |
| 3.1.4     | .2 Similarity and Distance Measures               | 41 |
| 3.1.5     | Linear Regression Analysis                        | 44 |
| 3.1.6     | Ordination Methods                                | 45 |
| 3.1.6     | .1 Canonical Discriminant Function Analysis (DFA) | 46 |
| 3.1.6     | .2 Principle Component Analysis                   | 47 |
| 3.1.7     | Cluster Analysis                                  | 48 |
| 3.1.7     | .1 Hierarchical Agglomerative Methods             | 48 |
| 3.1.8     | Abundance and Prevalence Data                     | 51 |
| 3.2 Sui   | mmary of How Methods were Used                    | 55 |
|           | Morphometric Data                                 |    |
| 3.2.2     | Meristic Data                                     |    |
| Chapter 4 | TAXONOMY OF MONOGENEAN PARASITES                  |    |
|           |                                                   |    |
| 4.1 Int   | roduction                                         | 59 |
| 4.2 Me    | ethods                                            | 60 |
| 4.2.1     | Statistical Analyses                              | 60 |
| 4.3 Res   | sults                                             | 62 |
| 4.3.1     | Remarks on Morphological Characters               | 62 |

|     | 4.3.1.1  | Copulatory Apparatus Structure                                 | 62  |
|-----|----------|----------------------------------------------------------------|-----|
|     | 4.3.2 R  | emarks on Morphometric Variation                               | 66  |
|     | 4.3.2.1  | Multivariate Analysis                                          | 66  |
|     | 4.3.2.2  | Principal Component Analysis                                   | 69  |
|     | 4.3.2.3  | Discriminant Function Analysis.                                | 75  |
|     | 4.3.2.4  | Cross Validation                                               | 79  |
| 4.4 | 4 Discus | ssion                                                          | 80  |
| 4.5 | 5 KEY    | TO AUSTRALIAN SPECIES OF HELICIRRUS                            | 84  |
| 4.0 | 6 KEY    | TO AUSTRALIAN SPECIES OF RECURVATUS                            | 84  |
| 4.  | 7 KEY    | TO AUSTRALIAN SPECIES OF LONGIDIGITIS                          | 84  |
| 4.8 | 8 KEY    | TO AUSTRALIAN SPECIES OF ILIOCIRRUS                            | 85  |
| Cha | pter 5 M | IORPHOMETRIC VARIATION OF PARASITE SPECIES AM                  | ONG |
| LO  | CALITIE  | S AND HOSTS                                                    | 86  |
| 5.  | 1 Introd | uction                                                         | 86  |
| 5.2 | 2 Metho  | ods                                                            | 87  |
|     | 5.2.1 C  | onfirmation of Genera and Species using Morphometric Variation | 87  |
| 5.3 | 3 Result | ts                                                             | 87  |
|     | 5.3.1 G  | enus and Species Confirmation                                  | 87  |
|     | 5.3.1.1  | Descriptive                                                    | 87  |
|     | 5.3.1.2  | Principal Component Analysis                                   | 88  |
|     | 5.3.1.3  | Discriminant Function Analysis                                 | 93  |
|     | 5.3.1.4  | Cross-Validated Classification                                 | 96  |
|     | 5.3.1.5  | Hierarchical Cluster Analysis                                  | 99  |

| 5.4 Di    | scussion                                                               | 101   |
|-----------|------------------------------------------------------------------------|-------|
| Chapter 6 | INTRASPECIFIC VARIATIONS AND HOST ASSOCIATION                          | 103   |
| 6.1 In    | troduction                                                             | 103   |
| 6.2 M     | ethods                                                                 | . 104 |
| 6.3 Re    | esults                                                                 | 105   |
| 6.3.1     | Association between Intra-Specific Variation and Host Species Infected | 105   |
| 6.3.1     | 1.1 Discriminant Function Analysis and Cross-Validated Classification  | S     |
|           | 105                                                                    |       |
| 6.3.1     | 1.2 Hierarchical Cluster Analysis                                      | 109   |
| 6.3.2     | Correlation between Host Length and Parasite Intra-Specific Sclerite   |       |
| Variat    | ion                                                                    | 109   |
| 6.4 Di    | scussion                                                               | . 114 |
| Chapter 7 | HOST-PARASITE ASSOCIATIONS AND SPECIFICITY                             | .116  |
| 7.1 In    | troduction                                                             | . 116 |
| 7.2 Ge    | eneralist or Specialist                                                | . 117 |
| 7.3 Co    | ore and Satellite Species                                              | . 118 |
| 7.3.1     | Metapopulations                                                        |       |
| 7.4 Pa    | rasite-Host Interactions                                               | . 120 |
| 7.4.1     | Host Habitat Relationships                                             | . 121 |
| 7.5 M     | ethods                                                                 | . 121 |
| 7.6 Re    | esults                                                                 | . 122 |
| 7.6.1     | Prevalence                                                             | . 122 |
| 7.6.2     | Abundance                                                              | . 126 |

|     | 7.6.3  | Intensity                                                         | 128      |
|-----|--------|-------------------------------------------------------------------|----------|
|     | 7.6.4  | Host Specificity                                                  | 133      |
|     | 7.6.5  | Core-Satellite species                                            | 135      |
|     | 7.6.6  | The Effect of Host Length                                         | 140      |
|     | 7.6.7  | Parasite abundance and Habitat Prevalence                         | 141      |
| 7.′ | 7 Pa   | tterns of Parasite Associations and Host Species Associations     | 143      |
| 7.8 | 8 Di   | scussion                                                          | 146      |
| Cha | pter 8 | Identification of Host Species using Parasite Species as Indicate | tors 152 |
| 8.  | 1 Int  | roduction                                                         | 152      |
| 8.2 | 2 Me   | ethods                                                            | 155      |
| 8   | 3 Re   | sults                                                             | 155      |
| 8.4 | 4 Dia  | scussion                                                          | 160      |
| Cha | pter 9 | DOES MORPHOMETRIC VARIATION REFLECT PARAS                         | ITE      |
| PHY | YLOG   | ENY?                                                              | 161      |
| 9.  | 1 Int  | roduction                                                         | 161      |
| 9.2 | 2 Me   | ethods                                                            | 166      |
|     | 9.2.1  | Exclusion of Parasite or Host Species from Analysis               | 169      |
|     | 9.2.2  | Polarisation of Morphological Changes in Parasite Haptor          | 170      |
|     | 9.2.3  | Host Switching and Addition                                       | 170      |
|     | 9.2.4  | Missing Taxa                                                      | 171      |
| 9   | 3 Re   | sults                                                             | 171      |
|     | 9.3.1  | Association 1: Iliocirrus/Recurvatus Species                      | 172      |
|     | 931    | 1 Validation of <i>a posteriori</i> Assumptions:                  | 174      |

| Appendix B Chapter 4 Tables                                                   | 268   |
|-------------------------------------------------------------------------------|-------|
| Appendix A Parasite Species Descriptions                                      | 237   |
| Bibliography                                                                  | 217   |
| 10.8 Conclusions                                                              | 214   |
| 10.7 Host Phylogenies and Morphometric Variation of Parasite Haptor           | 213   |
| 10.6 Host Phylogenies and Parasite Specificity on Hosts                       | 207   |
| 10.5 Specificity and the Identification of Host Hybridisation                 | 206   |
| 10.4 Inter- and Intra-Specific Associations                                   | 205   |
| 10.3 Host Size and Parasite Associations                                      | 203   |
| 10.2 Host-Parasite Specificity                                                | 200   |
| 10.1 Taxonomy                                                                 | 198   |
| Chapter 10 GENERAL DISCUSSION                                                 | 198   |
| 9.7 Discussion                                                                |       |
| 189                                                                           |       |
| 9.6 Intraspecific variation and the detection of delayed synchronous cospecia | ation |
| 9.5 Ancestral or derived position of <i>H. megaloanchor</i>                   | 188   |
| 9.4 Anomalies of <i>M. maccullochi</i> in the phylogenetic tree               | 185   |
| 9.3.3.2 Combined associations                                                 | 182   |
| 9.3.3.1 Validation of <i>a posteriori</i> assumptions.                        | 180   |
| 9.3.3 Association 3: <i>Helicitrus</i> species                                | 179   |
| 9.3.2.1 Validation of modified assumptions                                    | 178   |
| 9.3.2 Association 2: <i>Longidigitis</i> species                              | 177   |

| Appendix C | Chapter 5 Tables  | . 281 |
|------------|-------------------|-------|
| Appendix D | Chapter 7 figures | .314  |
| Appendix E | Chapter 7 Tables  | . 317 |

# Taxonomy of monogenean parasites and their coevolution with Australian atheriniform fishes

#### **ABSTRACT**

Does a phylogenetic association exist between Australian freshwater fishes and their monogenean parasites and if so what is the nature of the association? Are the associations an example of coevolution, phylogenetic tracking or some other phenomenon? In this thesis I explore these questions.

Knowledge of monogeneans from Australian freshwater fishes is very sparse. To date 26 species of monogenean have been described from 16 species of native freshwater fishes (roughly 5% of the approximately 300 species of freshwater fish known). In the current study I examine a further 19 species of fish from Australian freshwaters.

Studies on phyletic associations can be confounded by taxonomic problems. This is an under-acknowledged problem. Taxonomic understanding of the host group, if vertebrates, is generally better than that of the parasite group. This is certainly true of the atheriniform fish studied here. Here, detailed taxonomic work on previously undescribed parasites is presented. This is based on both morphological and morphometric analysis of dimensions. I erect four new genera of Monogenea in the Dactylogyridae: *Longidigitis* gen. nov., *Recurvatus* gen. nov., *Iliocirrus* gen. nov.and *Helicirrus* gen. nov.and describe 19 new species. The genera are defined by

morphology of the copulatory apparatus while species are defined by haptoral sclerite morphology.

Studies on phyletic associations (coevolution, phylogenetic tracking and cospeciation) typically use comparisons of the phylogeny of the hosts with an independently derived phylogeny of the parasites. Where a single parasite species inhabits a single host species (i.e. is mono-host-specific), comparisons of phylogenies will provide information on the extent of phyletic association, extinction of parasites etc. It is often the case that a single species of parasite inhabits more than one species of host. This can complicate interpretation of the results, but provides an opportunity to discuss phenomena such as host addition, host-switching, rates of cospeciation etc. In the absence of a molecular or morphological-based phylogeny of the parasites, I used data from morphometric analyses to infer a phylogeny.

In this study I recognised that the assumption of mono-host specificity (parasite occurs only on a single host species) is inappropriate as a model for examining coevolution. A much lower level of mono-host-specificity, than previously documented or assumed, was detected which creates many problems for comparing host and parasite phylogenies. Consequently, I developed an approach using the distribution of parasite species among hosts.

A strict one-host one-parasite cospeciation scenario is clearly not apparent for all host species; however a high congruence with host clades is seen in inter and intra specific morphometric variation of parasite and for their associated distribution patterns among hosts. This congruence may be explained by delayed speciation of parasites, since the

alternative, extensive host addition, should produce a high level of incongruence with the host phylogeny especially for morphometric variation-derived phylogenies. Whether the patterns of congruence shown represent coevolution or phylogenetic tracking is uncertain. There is clearly a response induced by the host on the parasite in the form of morphometric variation of sclerite variables. Coevolution may be occurring but the high prevalence of parasite infection appears to reject the idea of a parasite-induced host immune response. Thus phylogenetic tracking seems to be the process controlling parasite speciation.

Clustering patterns produced by both methods mentioned above imply a rather high level of congruence with the host clades. These two methods, however, require a well-planned sampling regimen to enable collection of sufficient parasites from sufficient host species and sample sites for pattens to become apparent. It was noted that small sample sets from multiple sites would indicate levels of host specificity better than a large sample set from a single site since, in this study, parasite community structures within sample sites show a high level of prevalence.

Apparent cospeciation between Australian atheriniform fishes and their monogenean parasites is more common in older lineages than in more recently evolved lineages. Two major parasite speciation events were identified, one co-occurred with the speciation event that produced *Melanotaenia trifasciata* and the second with the speciation event that produced the "*nigrans*" clade. Delayed cospeciation is also evident and is reflected in the distributions of parasite species and the inferred parasite phylogenies that used intraspecific variation. If the parasites have not evolved at the same rate, but appear to be one taxonomic level behind the host, then host clades can be identified by the

presence of a particular parasite species. Host addition or switching does not appear to be significant in the monogeneans studied here although possible examples are discussed. Morphometric variation of parasite haptor can be used in phylogenetic studies. Parasite distributions among host species can reflect host phylogeny. Parasite inter-specific associations are strong especially among low host-specific species. Host body length does not appear to affect these interactions. It is clear that when examining phyletic associations of Australian teleosts and their parasites, the host family should be studied as a basic unit.

A phyletic association is present between hosts and parasites and evidence suggests phylogenetic tracking is the process. Cospeciation is common in older host lineages while delayed cospeciation is common in more recently derived lineages.

#### **ACKNOWLEDGMENTS**

I would like to thank Rob Mazlin, Adam Fletcher, Dave Gillshennan, Ernie Frei for all their help in sample collections. I would also like to thank Dr. David Blair for his patience and critical discussion of this thesis. This research was partly supported by a JCU Merit Research Grant.

#### **DEFINITIONS**

**Coevolution** is the evolutionary association between a host and a parasite, where the population genetic interactions are such that a genetic change in one is followed by a reciprocal change in the other for survival. Coevolution should strictly be used to describe the evolutionary arms race scenario (Blair *et al.*, 2001).

**Component Community** refers to all infrapopulations of parasites associated with some subset of a host species (Bush *et al.*, 1997).

**Component population** A parasite component population refers to all the individuals of a specified life history phase at a particular place and time (Bush *et al.*, 1997).

**Cospeciation** may or may not have a host/parasite interaction causal mechanism. This term has usually been used as a synonym for coevolution and often incorrectly.

Coevolution and phylogenetic tracking require cospeciation while cospeciation does not require coevolution.

**Delayed cospeciation** requires that parasite speciation events occur sometime after relevent host speciation events or visa versa.

**Host addition** is the establishment of a parasite lineage in a previously unexploited host lineage while still maintaining an association with its previous host lineage (Blair *et al.*, 2001). It may induce parasite speciation through geographical isolation.

Host specificity is defined as the number of known host species on or in which a parasite species may occur (Poulin, 1998). Most studies use data based on the number of host species from which the parasite has been recorded. A more adequate measure of host specificity should take into account the frequency of infection in different species of host and the number of parasites found in each (Rohde, 1993).

**Host-switching** is the establishment of a parasite lineage in a previously unexploited host lineage, which then evolves with it, abandoning the original host lineage completely or leaving a sister parasite lineage within it (Blair *et al.*, 2001).

**Infrapopulation** A parasite infrapopulation includes all individuals of a single parasite species in an individual host at a particular time (Bush *et al.*, 1997).

**Infracommunity** is the assemblage of all individuals of all parasite species within a single host (Bush *et al.*, 1997).

**Maximum intensity** is the maximum number of individuals of a particular parasite species on a single infected host specimen (Bush *et al.*, 1997).

**Mean intensity** is the total number of individuals of a particular parasite species in a sample of a particular host species divided by the total number of host individuals of that species infected with the particular parasite species. (i.e. includes only infected hosts) (Bush *et al.*, 1997). **Note:** intensity has often been confused with abundance. **Mean abundance** is the total number of individuals of a particular parasite species in a sample of a particular host species divided by the total number of host individuals of that species examined. This includes both infected and uninfected hosts (Bush *et al.*, 1997). **Note:** intensity has often been confused with abundance.

**Metapopulation** is defined as all individuals of one parasite species in one population of one host species (Simberloff & Moore, 1997). This definition is applicable to monogeneans since it may be appropriate for monospecific parasites with a direct life cycle (Kennedy, 2001).

**Overall prevalence** is the number of hosts infected with one or more individuals of a monogenean parasite divided by the number of hosts examined.

**Overall mean abundance** is the total number of monogenean parasites divided by the total number of hosts examined. This includes both infected and uninfected hosts.

**Prevalence** is the number of hosts infected with one or more individuals of a particular parasite species divided by the number of hosts examined (Bush *et al.*, 1997). This is expressed as a percentage.

**Phyletic association** is where a degree of congruence is observed between the phylogenies of hosts and parasites without an identified or implied host/parasite associated interaction being present.

Phylogenetic association is where a degree of congruence is observed between the phylogenies of hosts and parasites and a host/parasite interaction mechanism is identified or inferred. This mechanism can be coevolution or phylogenetic tracking.

Phylogenetic tracking is the association between a parasite and a host, where the host elicits a genetic change in the parasite but the reciprocal is not present. Phylogenetic tracking can still produce congruence between host and parasite phylogenies (Blair *et al.*, 2001).

**Synchronous cospeciation** requires only that parasite speciation events occur sometime between consecutive host speciation events or visa versa.

#### **ABREVIATIONS**

- DA1-6. Dorsal anchor measurements.
- VA1-6. Ventral anchor measurements.
- H1-7. Hook measurements.
- VB1-2. Ventral bar measurements.
- DB1-3. Dorsal bar measurements.
- DFA. Discriminant Function Analysis
- PCA. Principle Component Analysis
- HCA. Hierarchical Cluster Analysis
- LRA. Linear Regression Analysis

# LIST OF TABLES

| Table 2.1. Sample locations, identity and date collected                                                    | 28 |
|-------------------------------------------------------------------------------------------------------------|----|
| Table 2.2. Host species, sample location and sample size.                                                   | 30 |
| Table 4.1. Number of statistically significant morphometric character differences                           |    |
| between species of Longidigitis.                                                                            | 68 |
| Table 4.2. Number of statistically significant morphometric character differences                           |    |
| between species of Helicitrus.                                                                              | 68 |
| Table 4.3. Number of statistically significant morphometric character differences                           |    |
| between species of Iliocirrus.                                                                              | 69 |
| Table 4.4. Summary table of explained variance and morphological characters                                 |    |
| associated with principle components.                                                                       | 70 |
| Table 4.5. Summary table of explained variance and morphometric characters                                  |    |
| associated with discriminant functions.                                                                     | 74 |
| Table 4.6. Cross-validation of genus level grouping.                                                        | 79 |
| Table 5.1. Summary table of explained variance and morphological characters                                 |    |
| associated with principle components and discriminant functions                                             | 89 |
| Table 5.2. Cross-validation of specimens of <i>Recurvatus</i> , <i>Longidigitis</i> , <i>Iliocirrus</i> and |    |
| Helicirrus with elongated and reduced hooks.                                                                | 97 |
| Table 5.3. Cross-validation of specimens of Recurvatus, Longidigitis and Iliocirrus and                     | ıd |
| Helicirrus with elongated hooks only                                                                        | 97 |
| Table 5.4. Cross-validation of species of Longidigitis, Iliocirrus, Recurvatus and                          |    |
| Helicirrus with elongated hook form using all specimens.                                                    | 98 |
| Table 5.5. Cross-validation of specimens into species of <i>Iliocitrus</i>                                  | 99 |

| Table 6.1. Cross-validation of specimens of <i>I. iliocitrus</i> according to host infected,       |            |
|----------------------------------------------------------------------------------------------------|------------|
| using the within-group covariance matrix                                                           | .106       |
| Table 6.2. Classification of specimens of <i>I. iliocirrus</i> according to host infected, using   | 5          |
| between-group covariance matrix.                                                                   | .106       |
| Table 6.3. Classification using cross-validation of specimens of <i>L. auripontiformis</i>         |            |
| according to infected host, using the within-group covariance matrix                               | .107       |
| Table 6.4. Classification of specimens of <i>L. auripontiformis</i> according to host infected     | <b>1</b> , |
| using the between-group covariance matrix.                                                         | .107       |
| Table 6.5. Spearman correlations for sclerite variables of each parasite species and ho            | st         |
| length.                                                                                            | .110       |
| Table 6.6. Correlations between haptoral variables of <i>I. iliocirrus</i> and length of           |            |
| individual host species.                                                                           | .111       |
| Table 6.7. Correlations between haptoral variables of <i>L. auripontiformis</i> and length of      | f          |
| individual host species.                                                                           | .112       |
| Table 6.8. Spearman correlations between sclerite variables of <i>I. iliocirrus</i> and <i>L</i> . |            |
| auripontiformis and host length of "M. eachutchee" and M. s. inornata at                           |            |
| different sample locations.                                                                        | .113       |
| Table 7.1. Host species, sample location, State, number of fish sampled, host length,              |            |
| range, mean parasite abundance, maximum intensity, prevalence.                                     | .123       |
| Table 7.2. Host species and % prevalence of each parasite species                                  | .124       |
| Table 7.3. Mean abundance of parasite species on host species examined                             | .127       |
| Table 7.4. Maximum and mean parasite species intensity on host specimens                           | .129       |
| Table 7.5. Number of host species infected by each parasite species.                               | .132       |
| Table 7.6. Designation of core, secondary and satellite parasite species when all host             |            |
| specimens are included                                                                             | .137       |

| Table 7.7. Parasite species and the observed percentage of host sample sites collected | ed. 140 |
|----------------------------------------------------------------------------------------|---------|
| Table 8.1. Parasite species abundance on species of the <i>Melanotaenia</i>            | 156     |
| Table 9.1. A posteriori ad hoc assumptions applied to analyses                         | 172     |
| Table 9.2. Costs associated with reconciled trees for each parasite genus and host     |         |
| phylogeny                                                                              | 173     |
| Table 10.1. Morphological and mtDNA clades recognised for species of                   |         |
| Melanotaeniidae                                                                        | 208     |

# LIST OF FIGURES

| Figure 1.1. Models of cospeciation.                                                                   | 8       |
|-------------------------------------------------------------------------------------------------------|---------|
| Figure 1.2. Distribution of melanotaeniids and sample sites in this study                             | 18      |
| Figure 1.3. Major drainage regions identified in Australia                                            | 21      |
| Figure 2.1. Collection sites for species examined.                                                    | 29      |
| Figure 2.2. Collection sites within North Queensland for species of Melanotaeniid                     | lae,    |
| Pseudomugilidae and Atherinidae.                                                                      | 29      |
| Figure 4.1. Parasite measurements.                                                                    | 61      |
| Figure 4.2. A. Haptoral sclerite relationships and orientation for <i>Longidigitis</i> , <i>Ilioo</i> | cirrus, |
| Recurvatus, and Helicirrus species H. marjoriaea, H. mcivori and H.                                   |         |
| gertrudaea                                                                                            | 61      |
| Figure 4.3. Copulatory apparatus types.                                                               | 63      |
| Figure 4.4. Genus-level scatter plot of first three axes of principal component anal                  | lysis70 |
| Figure 4.5. Scatter plot of first two axes of principal component analysis for speci                  | es of   |
| Recurvatus                                                                                            | 71      |
| Figure 4.6. Scatter plot of first three axes of principal component analysis for spe                  | cies of |
| Helicirrus                                                                                            | 72      |
| Figure 4.7. Scatterplots of first three axes of principal component analysis for spec                 | cies of |
| Longidigitis                                                                                          | 73      |
| Figure 4.8. Scatterplots of first three axes of principal component analysis for spec                 | cies of |
| Iliocirrus.                                                                                           | 74      |
| Figure 4.9. Scatterplot genus-level grouping using first three axes of discriminant                   |         |
| analysis                                                                                              | 76      |

| Figure | 4.10. Scatterplots of first three axes of discriminant functions for species of                 |   |
|--------|-------------------------------------------------------------------------------------------------|---|
|        | Helicitrus77                                                                                    | , |
| Figure | 4.11. Scatter plots of first three axes of discriminant functions for species of                |   |
|        | Longidigitis78                                                                                  | , |
| Figure | 4.12. Scatter plot of first four axes of discriminant functions for species of                  |   |
|        | Iliocirrus                                                                                      | ) |
| Figure | 5.1. Scatterplot for species of <i>Longidigitis</i> and <i>Iliocirrus</i> using principal       |   |
|        | component analysis90                                                                            | ) |
| Figure | 5.2. Separation of species of <i>Longidigitis</i> using PCA with varimax rotation               |   |
|        | applied90                                                                                       | ) |
| Figure | 5.3. Separation of species of <i>Iliocirrus</i> using PCA with varimax rotation applied.9       | 1 |
| Figure | 5.4. Separation of species of <i>Helicitrus</i> and <i>Recurvatus</i> using PCA. All species    |   |
|        | included                                                                                        | ) |
| Figure | 5.5. Separation of species of <i>Helicitrus</i> and <i>Recurvatus</i> using PCA. Species with   |   |
|        | elongated hook form only.                                                                       | ) |
| Figure | 5.6. Separation of monogenean genera using DFA                                                  | , |
| Figure | 5.7. Scatterplot for parasite species of <i>Longidigitis</i> and <i>Iliocirrus</i> . A. PCA. B. |   |
|        | DFA                                                                                             | , |
| Figure | 5.8. Separation of species of <i>Iliocirrus</i> using DFA                                       | ; |
| Figure | 5.9. Separation of species of <i>Longidigitis</i> using DFA                                     | ; |
| Figure | 5.10. Hierarchical cluster analysis of monogenean species and association with                  |   |
|        | host genera (Squared Euclidean distances used)                                                  | ) |
| Figure | 6.1. Cluster analysis (using Manhattan distances) of intraspecific variation for <i>I</i> .     |   |
|        | iliocirrus and L. auripontiformis                                                               | , |

| Figure | 7.1. Number of parasite species present and percentage of host specimens                      |            |
|--------|-----------------------------------------------------------------------------------------------|------------|
|        | infected for each host species. All locations included.                                       | 126        |
| Figure | 7.2. In mean abundance of the five most common parasite species on host                       |            |
|        | species                                                                                       | 128        |
| Figure | 7.3. Parasite intensity of infection and number of species occurring on host                  |            |
|        | specimens                                                                                     | 131        |
| Figure | 7.4. Association of mean intensity/sample host-site between parasite species                  |            |
|        | infections. Data was ln transformed.                                                          | 131        |
| Figure | 7.5. Host species and the number of known parasite species infecting them                     | 132        |
| Figure | 7.6. Parasite species and number of host species they infected.                               | 133        |
| Figure | 7.7. Parasite species infecting Melanotaeniidae host species and their host                   |            |
|        | specificity classification.                                                                   | 133        |
| Figure | 7.8. Frequency distribution of infections on specimens of <i>M. s. splendida</i> and <i>M</i> | <b>1</b> . |
|        | australis showing core, secondary and satellite parasite species                              | 139        |
| Figure | 7.9. Frequency distribution of infection for sample sites of M. s. splendida and              |            |
|        | M. australis showing core, secondary and satellite parasite species.                          | 139        |
| Figure | 7.10. Frequency distribution of parasite species infection on <i>M. s. inornata</i>           |            |
|        | showing core, secondary and satellite parasite species                                        | 140        |
| Figure | 7.11. Parasite abundance and habitat type for species of <i>Melanotaenia</i>                  | 143        |
| Figure | 7.12. A. Associations between host species using parasite species                             |            |
|        | presence/absence. B. Host mtDNA phylogeny                                                     | 144        |
| Figure | 7.13. Host species distributions showing their disjunctions                                   | 145        |
| Figure | 8.1. Sample sites and presumed identities of hosts at each.                                   | 154        |
| Figure | 8.2. Principal component analysis separation of host species using parasite                   |            |
|        | species abundance on host specimens.                                                          | 157        |

| Figure 8.3. Principal component analysis separation of host species using average            |        |
|----------------------------------------------------------------------------------------------|--------|
| parasite species abundance for each sample site.                                             | 157    |
| Figure 8.4. Hierarchical cluster analysis (single linkage) of host species using parasi      | ite    |
| species mean abundance/sample site.                                                          | 158    |
| Figure 8.5. Parasite species mean % of specimens infected for each host species              | 159    |
| Figure 9.1. Models of cospeciation.                                                          | 162    |
| Figure 9.2. Inferred host and parasite phylogeny.                                            | 169    |
| Figure 9.3. Tanglegram of associations between parasite species of <i>Iliocirrus</i> and     |        |
| Recurvatus and their hosts as initially produced by TREEMAP 1                                | 175    |
| Figure 9.4. Reconciled trees of associations between <i>Iliocirrus</i> species and their hos | ts.176 |
| Figure 9.5. Tanglegram of host-parasite associations between <i>Longidigitis</i> species a   | nd     |
| their hosts.                                                                                 | 177    |
| Figure 9.6. Reconciled trees of associations between <i>Longidigitis</i> species and their   |        |
| hosts.                                                                                       | 178    |
| Figure 9.7. Tanglegram of unmodified associations between <i>Helicitrus</i> species and      | their  |
| associated hosts                                                                             | 179    |
| Figure 9.8. Unmodified reconciled tree of associations between <i>Helicitrus</i> species a   | nd     |
| their associated hosts.                                                                      | 180    |
| Figure 9.9. Modified reconciled tree of associations between <i>Helicitrus</i> species and   |        |
| their associated hosts.                                                                      | 181    |
| Figure 9.10. Combined reconstruction of host and parasite phylogenies and their              |        |
| associations after applying a posteriori assumptions.                                        | 184    |
| Figure 9.11. Reconciled tree of associations between <i>Longidigitis</i> species and their l | nosts  |
| with <i>M. maccullochi</i> lineage (I) placed basal to " <i>nigrans</i> " clade (F)          | 186    |

| Figure 9.12. Reconciled tree of <i>Helicitrus</i> species and their associated hosts with <i>M</i> . |
|------------------------------------------------------------------------------------------------------|
| maccullochi lineage treated as ancestral to "nigrans" (F) clade                                      |
| Figure 9.13. Reconstruction of host and parasite phylogenies and their associations188               |
| Figure 9.14. Tanglegrams of intraspecific parasite variation (haptoral sclerite) and                 |
| inferred associations through cospeciation with host phylogeny of I. iliocirrus                      |
| and L. auripontiformis and the comparison with the host phylogeny190                                 |
| Figure 9.15. Most parsimonious reconciled trees of cospeciation events inferred from                 |
| parasite intraspecific variation of I. iliocirrus (top) and L. auripontiformis                       |
| (bottom) associated with host species infected. 191                                                  |
| Figure 9.16. Host species distributions showing their disjunctions                                   |
| Figure 10.1. Associations between host species using parasite species                                |
| presence/absence? 209                                                                                |
| Figure 10.2. Invasion of Australia by <i>Melanotaenia</i> progenitors and subsequent                 |
| speciation211                                                                                        |

# APPENDIX A. LIST OF DESCRIPTIONS FOR GENERA AND SPECIES

| A 1. <b>RECURVATUS</b> gen. nov.               | 237 |
|------------------------------------------------|-----|
| A 2. <b>RECURVATUS CHELATUS</b> sp. nov.       | 238 |
| A 3. <b>RECURVATUS SIGNIFERI</b> sp. nov.      | 240 |
| A 4. <b>HELICIRRUS</b> gen. nov.               | 241 |
| A 5. HELICIRRUS SPLENDIDAE sp. nov.            | 243 |
| A 6. HELICIRRUS MEGALOANCHOR sp. nov           | 244 |
| A 7. HELICIRRUS MACCULLOCHII sp. nov           | 246 |
| A 8. HELICIRRUS MCIVORI sp. nov.               | 247 |
| A 9. HELICIRRUS GERTRUDAEA sp. nov.            | 248 |
| A 10. <b>HELICIRRUS MARJORIAEA</b> sp. nov.    | 249 |
| A 11. <b>LONGIDIGITIS</b> gen. nov.            | 250 |
| A 12. LONGIDIGITIS AURIPONTIFORMIS sp. nov.    | 253 |
| A 13. LONGIDIGITIS HOPEVALENSIS sp. nov        | 254 |
| A 14. <b>LONGIDIGITIS ROBUSTUS</b> sp. nov     | 255 |
| A 15. <b>LONGIDIGITIS MACCULLOCHII</b> sp. nov | 256 |
| A 16. <b>LONGIDIGITIS UTCHEEI</b> sp. nov      | 257 |
| A 17. <b>LONGIDIGITIS GRACILIS</b> sp. nov.    | 258 |
| A 18. ILIOCIRRUS gen. nov                      | 259 |
| A 19. ILIOCIRRUS ILIOCIRRUS sp. nov            | 261 |
| A 20. ILIOCIRRUS ROSSI sp. nov.                | 263 |
| A 21. ILIOCIRRUS TRIFASCIATAE sp. nov          | 264 |
| A 22. ILIOCIRRUS ORNATUSI sp. nov              | 264 |

| ۸ 23       | ILIOCIRRUS MAZLINI sp. nov | 266 |   |
|------------|----------------------------|-----|---|
| $A \geq 1$ | ILIUCIRKUS WAZILINI SD NOV | ∠00 | 1 |

# APPENDIX B. LIST OF TABLES RELATING TO CHAPTER 4

| TABLE B1. Morphometric measurements (µm) for species of <i>Recurvatus</i>           |
|-------------------------------------------------------------------------------------|
| TABLE B2. Morphometric measurements (µm) for species of <i>Helicitrus</i> 269       |
| TABLE B3. Morphometric measurements (µm) for species of Longidigitis270             |
| TABLE B4. Morphometric measurements (µm) for species of <i>Iliocirrus</i> 271       |
| TABLE B5. Principal component correlation between natural log/z-score transformed   |
| variables and principal component functions for all species                         |
| TABLE B6. Principal component correlation between natural log/z-score transformed   |
| variables and principal component functions for species of <i>Recurvatus</i> 273    |
| TABLE B7. Principal component correlation between natural variables and principal   |
| component functions for species of <i>Helicitrus</i>                                |
| TABLE B8. Principal component correlation between log/z-score transformed variables |
| and principal component functions for species of <i>Longidigitis</i> 274            |
| TABLE B9. Principal component correlation between natural log/z-score transformed   |
| variables and principal component functions for species of <i>Iliocirrus</i> 274    |
| TABLE B10. Pooled within-groups correlations between natural log/z-score            |
| transformed variables and standardized canonical discriminant functions for         |
| generic level grouping. 275                                                         |
| TABLE B11. Pooled within-group correlations between natural log/z-score transformed |
| variables and standardized canonical discriminant functions at species level        |
| grouping                                                                            |
| TABLE B12. Pooled within-group correlations between natural log/z-score transformed |
| variables and standardized canonical discriminant functions for species of          |
| Recurvatus 277                                                                      |

| TABLE B13. Pooled within-groups correlations between natural log/z-score            |
|-------------------------------------------------------------------------------------|
| transformed variables and standardized canonical discriminant functions for         |
| species of <i>Helicitrus</i> . 278                                                  |
| TABLE B14. Pooled within-groups correlations between natural log/z-score            |
| transformed variables and standardized canonical discriminant functions for         |
| species of Longidigitis. 279                                                        |
| TABLE B15. Pooled within-group correlations between natural log/z-score transformed |
| discriminating variables and standardized canonical discriminant functions for      |
| species of <i>Iliocitrus</i> . 280                                                  |

| APPENDIX C. LIST OF TABLES RELATING TO CHAPTER 5                                                  |        |
|---------------------------------------------------------------------------------------------------|--------|
| TABLE C1. Means of morphometric measurements for species of <i>Recurvatus</i>                     | 281    |
| TABLE C2. Morphometric measurements for species of <i>Helicitrus</i> ; mean                       | 282    |
| TABLE C3. Morphometric measurements for species of <i>Longidigitis</i> ; mean                     | 283    |
| TABLE C4. Morphometric measurements for <i>H. gertrudaea</i> , <i>H. maccullochii</i> , <i>H.</i> |        |
| marjoriaea and H. mcivori from each sample location.                                              | 284    |
| TABLE C5. Morphometric measurements for <i>H. megaloanchor</i> from each sample                   |        |
| location                                                                                          | 285    |
| TABLE C6. Morphometric measurements for <i>H. megaloanchor</i> from each sample                   |        |
| location                                                                                          | 286    |
| TABLE C7. Morphometric measurements for <i>H. splendidae</i> from each sample location            | on.287 |
| TABLE C8. Morphometric measurements for <i>H. splendidae</i> from each sample location            | on.288 |
| TABLE C9. Morphometric measurements for <i>H. splendidae</i> from each sample location            | on.289 |
| TABLE C10. Morphometric measurements for <i>H. splendidae</i> from each sample                    |        |
| location                                                                                          | 290    |
| TABLE C11. Morphometric measurements for <i>R. signiferi</i> from each sample location            | n 291  |
| TABLE C12. Morphometric measurements for <i>R. chelatus</i> from each sample location             | n 292  |
| TABLE C14. Morphometric measurements for <i>I. ornatusi</i> from each sample location             | .294   |
| TABLE C15. Morphometric measurements for <i>I. rossi</i> from each sample location                | 295    |
| TABLE C16. Morphometric measurements for <i>I. trifasciatae</i> from each sample locat            | ion296 |
| TABLE C17. Morphometric measurements for <i>L. gracilis</i> from each sample location             | .297   |
| TABLE C18. Morphometric measurements for <i>L. gracilis</i> from each sample location             | .298   |
| TABLE C19. Morphometric measurements for <i>L. gracilis</i> from each sample location             | 299    |

| TABLE C20. Morphometric measurements for <i>L. maccullochii</i> , <i>L. utcheei</i> and <i>L</i> . |
|----------------------------------------------------------------------------------------------------|
| hopevalensis from each sample location                                                             |
| TABLE C21. Morphometric measurements for <i>L. robustus</i> of each sample location301             |
| TABLE C22. Morphometric measurements for <i>I. iliocirrus</i> of each sample location302           |
| TABLE C23. Morphometric measurements for <i>I. iliocirrus</i> of each sample location303           |
| TABLE C24. Morphometric measurements for <i>I. iliocirrus</i> of each sample location304           |
| TABLE C25. Morphometric measurements for <i>I. iliocitrus</i> of each sample location305           |
| TABLE C26. Morphometric measurements for <i>I. iliocirrus</i> of each sample location306           |
| TABLE C27. Morphometric measurements for <i>I. iliocirrus</i> of each sample location307           |
| TABLE C28. Morphometric measurements for <i>I. iliocirrus</i> of each sample location308           |
| TABLE C29. Morphometric measurements for <i>L. auripontiformis</i> of each sample                  |
| location                                                                                           |
| TABLE C30. Morphometric measurements for <i>L. auripontiformis</i> of each sample                  |
| location                                                                                           |
| TABLE C31. Morphometric measurements for <i>L.</i> auripontiformis of each sample                  |
| location                                                                                           |
| TABLE C32. Morphometric measurements for <i>L. auripontiformis</i> of each sample                  |
| location                                                                                           |
| TABLE C33. Morphometric measurements for <i>L. auripontiformis</i> of each sample                  |
| location 313                                                                                       |

# APPENDIX D. LIST OF FIGURES RELATING TO CHAPTER 7

| 314 |
|-----|
|     |
| 315 |
| М.  |
|     |
| 316 |
| М.  |
| 316 |
|     |
|     |
|     |
|     |
| 317 |
|     |
| 321 |
|     |
| 325 |
|     |
| 329 |
| 330 |
|     |