REDUCTION OF POST-SURGICAL PERICARDIAL ADHESIONS USING A PIG MODEL

Thesis submitted by

Ali Alizzi, MB.Ch.B, M.D

in

January 2005

in fulfillment of the requirements for the research degree of Master of Medicine in the School of Veterinary and Biomedical Sciences and School of Medicine James Cook University

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

A Alizzi January 2005

STATEMENT OF ACCESS TO THESIS

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the university library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author, and to make proper written acknowledgment for any assistance which I have obtained from it.

Beyond this, I do not wish to place any restriction on access to this thesis.

A Alizzi January 2005

ACKNOWLEDGMENTS

I would like to sincerely thank Professor Phillip Summers for his kind guidance, supervision and provision of facilities and operating funds for this project. I also thank Drs. Ben Bidstrup and Mo Diqer for their contribution and advice throughout the study period. My sincere appreciation goes to Ms.Virginia Boon, School of Pharmacy and Molecular Sciences for her major contribution in establishing the assays and measuring plasma concentrations of indomethacin, rofecoxib, prostaglandin E2 and thromboxane.

I appreciate the kind assistance of Mr. Chris Coleman and Mr. Scott Blyth, Animal Technicians from the School of Veterinary and Biomedical Sciences at James Cook University. Both were responsible for the husbandry of the animals and provided assistance in preparing the animals for surgery and collection of blood. I sincerely thank Dr. Belinda Leslie and Dr. John Potter of the Townsville Veterinary Clinic who provided anaesthesia for the pigs throughout the study.

My appreciation also goes to Dr. David Williams, chief anatomical pathologist at The Townsville Hospital for his histopathological examination of cardiac tissue.

I would also like to thank Ms. Susan Wright and Mr. Paul Jacob, clinical photographers, The Townsville Hospital for their efforts in the preparation and editing of the images throughout the project. My thanks are extended to Dr. Mike Steele of James Cook University-Cairns who gave advice on the statistical analysis of the results.

I also acknowledge the kind assistance of the following companies and institutions for their support during this study:

- The Private Research Trust Fund, The Townsville Hospital for providing me with a two year scholarship and funding for the project.
- The staff at the School of Veterinary and Biomedical Sciences, James Cook University, Townsville.
- The Townsville Vet Clinic.

- Tag Medical Australia, specifically Mrs. Marie Pearce for supplying the Co-Seal throughout the study period.
- Johnson & Johnson, specifically Ms.Cathy Shelly, for their kind donation of all the suture material used.

ABSTRACT

The aim of this study was to reduce pericardial adhesions after open-heart surgery thus enabling re-sternotomies to be much safer and less time consuming for the surgical team. A pig model was developed to test the effects of non-steroidal anti-inflammatory drugs (NSAIDs) and a barrier method in reducing post-surgical pericardial adhesions. Four groups (11 per group) of pigs 8-12 weeks of age were used. Group one was the control group, Group two received indomethacin, Group three received rofecoxib (also a NSAID) and a polyethyleneglycol (Co-Seal) was applied to the pericardium as a barrier in Group four.

After performing a median sternotomy, an adhesion induction model was applied to maximize inflammation in the pericardium. This included abrasion of the heart surface, leaving blood in the pericardium and drying of tissues. The chest was then closed. In Group four, Co-Seal was sprayed on the heart before closure. Post-operatively, Groups two and three received indomethacin and rofecoxib respectively for five days. Plasma markers of inflammation were assessed on days 2, 5 and 10 post-operative. In each group, eight animals were re-opened after 12 weeks and three after 25 weeks to assess adhesions according to adhesion assessment scales. Tissue samples were collected for histopathological examination looking mainly at epicardial and adhesive tissue thickness.

It was observed in this study that adhesions were changed from dense to thin and more easily separable, requiring more blunt rather than sharp dissection. This was seen mainly in Group two, followed by Group four. In Group three, the changes were less in terms of amount of adhesions and tenacity change as compared to the changes in Groups two and four. Comparison was with Group one, which had the densest adhesions.

Adhesive tissue and epicardial thickness was measured. Epicardium was thinnest in Group two. Post-operative inflammatory markers, specifically PGE2 and TXB2 were inhibited mainly in Group two. Less inhibition of these markers was seen in Group three and nearly no inhibition was seen in Groups one and four. The more general

markers used (WCC, ESR and CRP) did not fully show the expected changes in the four groups. The adhesion induction model formulated in this study was successful and may be used in similar future projects.

In conclusion, this model, applied clinically, will reduce adhesions in the pericardium and retrosternal areas after surgery, rendering re-openings safer and less time consuming. Indomethacin has proven to be the best choice to achieve this following a relatively easy and short protocol of administration. The idea of giving patients indomethacin for five days only to achieve significant reduction in adhesion formation after surgery would be attractive to many surgical groups around the world as the short period of administration would minimize any side effects associated with this drug.

Significant reduction in adhesions was also seen following the application of Co-Seal. The attraction here would be the ease of use and the non-pharmacological effects of this barrier method. Rofecoxib was not as effective as indomethacin and Co-seal in adhesion reduction. Future studies in this pig model should examine the extent of adhesion formation following the combined use of indomethacin and Co-Seal.

TABLE OF CONTENTS

Declaration

Page Statement of Access to Thesis Acknowledgements

Abstract	vi
Table of Contents	viii
List of Tables	xi
List of Figures	xiii
Abbreviations	xiv

Chapter 1	General Introduction	1
1.1	Cardiac surgery and pericardial adhesions	1
1.2	Complications of post-operative adhesion formation	1
1.3	Adhesion formation	2
1.4	Reduction of adhesion formation	3
1.5	The pig model	3
1.6	Hypothesis and aim of the study	4
Chapter2	Literature Review	5
2.1	Surgical aspects of adhesions	5
2.2	Incidence of adhesions	6
2.3	Adhesive problems in cardiac surgery	7
2.4	Economic burden of adhesions	8
2.5	Mesothelial repair	9
2.6	Mechanisms of adhesion formation	10
2.	6.1 Causative factors	10
2.	6.2 Adhesion formation	10
2.7	Assessment of adhesion	12
2.8	Adhesion re-formation	14
2.9	Role of inflammation in adhesion formation	15
2.	9.1 Acute inflammation	15
2.	9.2 Chronic inflammation	17
2.	9.3 Biochemical events	18
	2.9.3.1 Chemical inflammatory mediators	18
	2.9.3.2 Chemotaxis and leukocyte activation	21
	2.9.3.3 Arachidonic acid (AA) metabolites - Prostaglandins	
	and Leukotrienes (Eicosanoids	23
2.	10 Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)	27
	2.10.1 History	27
	2.10.2 Mechanism of action of NSAIDs	28
	2.10.3 Cyclooxygenase-1 and Cyclooxygenase-2	30
	2.10.4 Side effects of NSAIDs	32

ii

iii

iv

2.11 The Pig as a laboratory model for human disease	34
2.11.1 Introduction	34
2.11.2 Comparative anatomy and physiology of the pig	34
2.11.2.1 Cardiovascular System	35 26
2.11.2.2 Digestive System 2.11.2.3 Urogenital system	30
2 11 2 4 Integumentary and Lymphatic Systems	38
2.12 Summary of literature review	39
Chapter 3 Material and Methods	41
3.1 Animals	41
3.2 Establishment of drug dosages	41
3.3 Surgical trial	42
3.3.1 Anaesthesia	42
3.3.2 Surgical Procedure	43
3.3.3 Post-operative care	4/
3.5 Inflammatory markers in peripheral blood	40 48
3.6 Re-openings	40
3.7 Statistical Analysis	51
Chapter 4 Gross and Microscopic Evaluation of Post-Operative	
Pericardial Adhesions	52
4.1 Introduction	52
4.2 Results	52
4.2.1 Effect of the surgical procedures on the animals	52 53
4.2.2 Adverse effects of indomethacin treatment	53 54
4.2.4 Results of re-sternotomy	55
4.2.5 Gross evaluation of adhesions	55
4.2.6 Effects of omeprazole on adhesion formation	57
4.2.7 Microscopic evaluation of adhesions	59
4.3 Discussion	60
4.3.1 Adhesion Induction Model	60
4.3.2 Gross adhesion evaluation	61
4.5.5 Microscopic evaluation 4.3.4 Effect of indomethacin on the gastrointestinal tract	62
4.3.5 Effect of omenrazole on adhesion formation	63
4.3.6 Application of Co-Seal	63
4.4 Summary	64
Chapter 5 Plasma concentrations of anti-inflammatory drugs	
and inflammatory markers	65
5.1 Introduction	65
5.2 Results	66
5.2.1 Non steroidal anti-inflammatory plasma levels and inflammatory inhibition	66

5.2.1.1 Indomethacin 66 5.2.1.2 Rofecoxib 67 5.2.2 Coagulation screen 67 5.2.2.1 Activated Partial Thromboplastin Time 68 5.2.2.2 Prothrombin Time 69 5.2.2.3 International Normalization Ratio 69 5.2.3 Inflammatory markers results before and after surgery 70 in all groups 5.2.3.1 White cell counts 70 5.2.3.2 Erythrocyte sedimentation rate 71 5.2.3.3 C- reactive protein concentrations 73 5.2.3.4 Prostaglandin E2 concentrations 75 5.2.3.5 Thromboxane B2 concentrations 76 77 5.3 Discussion 81 5.4 Summary Chapter 6 General Discussion 82 6.1 The pig model 83 6.2 Selection of drug doses 84 Surgical procedures, induction and assessment of cardiac 6.3 Adhesions 85 87 6.4 Inflammatory markers in peripheral blood

6.4Inflammatory markers in peripheral blood876.5Coagulation screen assessment886.6Future research directions896.7Conclusion90

References

91

LIST OF TABLES

xi

Page

Table 2.1	Grading system for pericardial adhesions (Seegar et al. 1997)	13
Table 2.2	Scoring system for adhesive bands	13
Table 2.3	Inflammatory actions of eicosanoids	26
Table 3.1	Relation between animal weight and endotracheal tube size	43
Table 4.1	Averages for the Adhesion Percentage Scale (APS) and Adhesive Tissue Tenacity Scale (ATTS) for each group re-opened after 12 weeks	56
Table 4.2	Averages for the Adhesion Percentage Scale (APS) and Adhesive Tissue Tenacity Scale (ATTS) for each group re-opened after 25 weeks	56
Table 4.3	Probability values of the comparison of the average value for APS and ATTS of each of the treatment groups with the control group in	

Table 4.2	Averages for the Adhesion Percentage Scale (APS) and Adhesive Tissue Tenacity Scale (ATTS) for each group re-opened after 25 weeks.	56
Table 4.3	Probability values of the comparison of the average value for APS and ATTS of each of the treatment groups with the control group in all animals.	56
Table 4.4	Averages for the Adhesion Percentage Scale (APS) and Adhesive Tissue Tenacity Scale (ATTS) for the additional groups treated with omeprazole	.56
Table 4.5	Average thickness in millimeters of epicardium in all groups according to time of re-opening.	.59
Table 4.6	Average thickness in millimeters of retrosternal adhesions in all groups according to time of re-opening	59
Table 4.7	Probability values of the comparison of the thickness in millimeters of epicardium of each of the treatment groups with the control group in all animals according to time of re-opening	60

- Table 4.8 Probability values of the comparison of the thickness in millimeters of retrosternal adhesions of each of the treatment groups with the control group in all animals according to time of re-opening......60
- Relationship between indomethacin plasma concentration and Table 5.1 plasma concentration of prostaglandin E2 and thromboxane B2 in pig 1......67

Table 5.2	Relationship between rofecoxib plasma concentration and plasma concentration of prostaglandin E2 and thromboxane B2 in pig 2	. 68
Table 5.3	Average values for the activated partial thromboplastin time in all animal groups before surgery (baseline) and after surgery (days 2, 5, and 10)	68
Table 5.4	Average values for the prothrombin time in all animal groups before surgery (baseline) and after surgery (days 2, 5, and 10)	69
Table 5.5	Average values for the international normalization ratio in all animal groups before surgery (baseline) and after surgery (days 2, 5, and 10)	. 69
Table 5.6	Probability values for the activated partial, thromboplastin time change after surgery between all groups	.69
Table 5.7	Probability values for the prothrombin time change after surgery between all groups	.70
Table 5.8	Probability values for the international normalization ratio change after surgery between all groups	. 70
Table 5.9	Mean (\pm SEM) white cell counts x 10 ⁹ /L for the four groups of pigs	71
Table 5.10	Mean (± SEM) erythrocyte sedimentation rate (mm/hr) values for the four groups of pigs	. 73
Table 5.11	Mean (± SEM) C-reactive protein (mg/L) concentrations for the four groups of pigs	.75
Table 5.12	Mean (± SEM) prostaglandin E2 (pg/ml) values for the four groups of pigs	.76
Table 5.13	Mean (± SEM) thromboxane B2 (pg/ml) concentrations for the four groups of pigs	.78

LIST OF FIGURES

X111

Раде	
r age	

Figure 2.1	Dilated blood vessel during acute inflammation (taken from www.med.und.nodak.edu/depts/path/pathlab/inflammation)	.15
Figure 2.2	Chemical mediators of inflammation (adapted from Cotran et al. 1994)).19
Figure 2.3	Scanning electron microscopy of a moving leukocyte showing the pseudopod (taken from Cotran <i>et al.</i> 1994)	.22
Figure 2.4	Generation of arachidonic acid metabolites and their roles in inflammation (taken from Cotran <i>et al.</i> 1994)	.25
Figure 3.1	Heart exposed after opening the pericardium	.44
Figure 3.2	The placement of aortic and atrial sutures	46
Figure 4.1	Group 1 (control) showing extensive adhesions on re-opening the sternum.	58
Figure 4.2	Group 2 (indomethacin) with thin adhesions and a coronary artery clear visible	arly 58
Figure 4.3	Group 4 (Co-Seal) with the heart easily dissected off the pericardium	.58
Figure 4.4	Group 3 (rofecoxib) with more adhesions as the heart was dissected	. 58
Figure 5.1	Mean total white cell count in each group before and after surgery (N = 4 per group)	. 72
Figure 5.2	Mean erythrocyte sedimentation rate before and after surgery in each group (N = 4 per group)	73
Figure 5.3	Mean C-reactive protein concentration before and after surgery in each group (N = 4 per group)	י 75
Figure 5.4	Mean prostaglandin E2 concentrations before and after surgery in each group (N = 4 per group)	n . 76
Figure 5.5	Mean thromboxane B2 concentrations before and after surgery in each group ($N = 4$ per group)	. 78

ABBREVIATIONS

AA	Arachidonic acid
AMP	Adenosine monophosphate
ANOVA	Analysis of variance
APS	Adhesion percentage scale
APTT	Activated partial thromboplastin time
ASD	Atrial septal defect
ATP	Adenosine triphosphate
ATTS	Adhesive tissue tenacity scale
CAG	Coronary artery grafting
Camp	3', 5'-adenosine monophosphate
COX	Cyclooxygenase
COX-1	Cyclooxygenase-1
COX-2	Cyclooxygenase-2
CRP	C-reactive protein
DAG	Diacylglycerol
ECG	Electrocardiogram
EDTA	Ethylene diamine tetra acetic acid
ELAM-1	Endothelial-leukocyte adhesion molecule-1
ESR	Erythrocyte sedimentation rate
HETEs	Hydroxyeicosatetranoic acids
HPETEs	Hydroperoxyeicosatetranoic acid compounds
HPLC	High pressure liquid chromatography
IC	Inhibitory concentration
ICAM-1	Intercellular adhesion molecule-1
IL-1	Interleukin 1
IL-8	Interleukin 8
INR	International normalization ratio
IP3	Inositol-1,4,5-triphosphate
LFA	Lymphocyte function-associated antigen

LTA4	Leukotriene A4
LTD4	Leukotriene D4
LTE4	Leukotriene E4
MANOVA	Multivariate analysis of variance
MRNA	Messenger ribonucleic acid
N/D	Not detectable
NSAIDs	Non-steroidal anti-inflammatory drugs
NSW	New South Wales
NZ	New Zealand
PEG	Polyethyleneglycol
PGD2	Prostaglandin D2
PGE1	Prostaglandin E1
PGE2	Prostaglandin E2
PGF1	Prostaglandin F1
PGF2	Prostaglandin F2
PGI2	Prostaglandin I2
PIP2	Phosphatidylinositol-4, 5-biphosphate
PMN	Polymorphonuclear
РТ	Prothrombin time
QLD	Queensland
SEM	Standard error of mean
SRS-As	Slow-reacting substances of anaphylaxis
TNF	Tumor necrosis factor
TPA	Tissue plasminogen activator
TxA2	Thromboxane A2
TxB2	Thromboxane B2
VIC	Victoria
VSD	Ventricular septal defect
WA	Western Australia
WBC	White blood cells
WCC	White Cell Count
5-LO	5-lipoxygenase