TRACE ELEMENTS IN COAL FROM COLLINSVILLE, BOWEN BASIN, AUSTRALIA – IN-GROUND MODE OF OCCURRENCE AND BEHAVIOUR DURING UTILISATION.

Robert John Boyd B.Sc., M.Sc.(hons) (Geol); Dip Environmental Science.

A Thesis Submitted to The School of Earth Sciences for the Degree of Doctor of Philosophy in Geology.

> James Cook University. Townsville, Queensland Australia.

> > September 2004

STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work.

Or

I wish this work to be embargoed until : Permission from the sponsoro is gained

i

Or

I wish the following restrictions to be placed on this work :

Signature

12/4/05 Date

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

29/4/05.

Signature

Date

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Signature

R/4/05.

Date

xxxiii

i

Abstract.

Analysis of samples gathered during delineation of a coal resource is becoming increasingly sophisticated as various organisations attempt to predict and understand the technological behaviour of the mined product. Analysis to determine the concentration of trace elements in coal is becoming more prevalent, and not just merely for academic curiosity. Increased environmental awareness has impelled the need to consider potential negative impacts on the ecosystem caused by liberation of trace elements from coal during utilisation.

The aims of this thesis are to: 1) Determine the concentration of trace elements in coal seams mined to supply the Collinsville pulverised fuel combustion plant at the Collinsville open cut, Northern Bowen Basin, Australia; 2) Determine the mineralogy and, using graphical relationships, the likely mode of occurrence of trace elements in the sampled pits; 3) Determine the mode of occurrence of trace elements in the pulverised fuel of the Collinsville power plant using the USGS sequential leaching method, and contrast the results with the same analysis for an unrelated fuel from another coal fired power utility (Mitsui Mining's Omutu City plant, Kyushu, Japan); 4) Examine the partitioning behaviour of trace elements in the Collinsville power utility, and contrast the results with the partitioning behaviour of trace elements in the Mitsui combustion utility to assess the influence of trace element mode of occurrence on partitioning behaviour; 5) Examine the mobility of trace elements from solid ash waste from the Collinsville power utility, and compare with the mobility of trace elements from the Mitsui power utility solid waste to assess the influence of mode of occurrence on the leachability of trace elements and; 6) Determine the partitioning behaviour of trace elements in carbonisation of Bowen seam coal at the Bowen coke works and compare with the partitioning behaviour of the same elements in combustion.

Lithotype logging of coal exposed in the highwalls of the Blake Central, Blake West and Bowen No.2 pits was undertaken. Of particular note was the presence of dull heat affected coal toward the roof of the Blake Central pit seam, toward the floor of the Bowen No.2 pit seam, and the presence of bed-parallel intrusions within the seam in the Blake West pit. In the Blake West pit seam, the intrusion caused thermal alteration of the coal to coke over a 60cm zone immediately adjacent to the intrusion with a further 1.10-1.25m zone of dull heat altered coal beyond the coked zone. In the Blake Central, 4.5m of dull heat-affected coal occurred near the roof of the seam. In the Bowen No.2 pit, 1.2m of heat-affected coal occurred near the floor of the seam. Beyond the heat affected zone, lithotype logging of the Blake seams noted a number of rock partings, but no convincing dulling upward cycles due to progressive drying of the mire, noted in other studies of Permian coal, were found. No partings were found in the Bowen seam and only one convincing dulling upward cycles was logged. In part the absence of dulling upward cycles is due to heat alteration of the coal, but the numerous influxes of sediment laden water into the Blake seam mire also acted to terminate any significant dulling upward cycles by raising both nutrient levels and the water table.

Following lithotype logging, channel sampling of the pits resulted in a total of 76 samples, 25 from the Blake Central pit, 36 from the Blake West pit and 15 from the Bowen No.2 pit. The channel sampling intervals were determined approximately by coal lithotype interval, with some amalgamations to restrict sample numbers. The channel samples were analysed for proximate analysis, coal petrography and vitrinite reflectance (selected samples) and for major and trace elements using XRF and INAA.

The lithotype logs, proximate analysis data and coal petrography were integrated to infer the depositional environment of the Blake and Bowen seams. The generally high ash yield, common stone bands, low sulphur content of the coal and rare pyrite in the Blake seam suggests the depositional environment was a Class 3 topotelmitic peat with a variable water table. The moderate ash yield, the absence of common stone bands, sulphur contents of ~2% and the moderate pyrite content of the coal in the Bowen seam suggests the depositional environment was a Class 2 topotelmitic peat with a high water table. The igneous intrusions have caused extensive alteration of vitrinite to semi-coke, a general decrease in the volatile matter content and an increase in the vitrinite reflectance [Ro(max)] toward the intrusion.

Mineralogy was calculated from major and trace elements using normative analysis, calibrated by XRD analysis of low temperature ash from selected samples. The mineralogy of the Blake seam samples is dominated by kaolinite, with subordinate quartz, illite, feldspar, and siderite, and minor concentrations of pyrite, gorceixite, goyazite and anatase. The mineralogy of the Bowen seam samples is dominated by kaolinite, with subordinate quartz, illite, with subordinate quartz, illite and pyrite, and minor concentrations of siderite, gorceixite, gorceixite, goyazite and anatase/ rutile/ iron oxides.

The concentration of trace elements in the channel samples was determined by INAA and XRF. The INAA and XRF concentrations of iron and uranium show a reasonable statistical relationship suggesting the two analysis methods are consistent with each other. The concentration of trace elements in the Blake and Bowen seams is generally low compared to world average ranges for coal and to crustal averages. Only gold, copper, hafnium, thorium and ytterbium were found to be above the world coal average range in the Blake seam. Only gold and copper were found to be above world coal average range in the Bowen seam coal.

Trace element mode of occurrence was inferred using graphical relationships between normative mineral and trace element concentrations. In the Blake seam, arsenic, possibly chromium, copper, mercury, nickel and lead were inferred to be associated with pyrite. Bromine, cobalt, selenium, and zinc appeared to be organically bound. Cerium, caesium, europium, lanthanum, rubidium, and scandium showed a graphical relationship with illite. However, cerium, europium, lanthanum and scandium, along with hafnium, lutetium, neodymium, samarium, terbium, thorium, uranium and vanadium also showed a graphical relationship with gorceixite or gorceixite plus goyazite. It was inferred the latter group of elements are associated with monazite or zircon. In addition to the REE phosphate mode of occurrence, some rare earth elements also showed an affinity for kaolinite. Thorium and uranium were also inferred to be associated with feldspars. Antimony, tantalum and ytterbium were found to be dominantly associated with kaolinite.

In the Bowen seam, arsenic, cobalt, possibly chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc showed a graphical relationship with pyrite. The elements cerium, hafnium, neodymium, rubidium, samarium, tantalum, thorium, uranium and tungsten all showed significant graphical relationships with the anatase/ rutile/ FeO grouping of minerals. It is inferred that the relationship is due to the presence of monazite, zircon, xenotime, REE phosphates, tungstates or other trace minerals, the distribution of which mirrors the distribution of the anatase/ rutile/ FeO grouping. Uranium and thorium were inferred to be associated with REE phosphates and zircon respectively, plus illite. The elements bromine, europium, lanthanum, terbium and vanadium were inferred to be associated with illite. A mixed illite/ heavy mineral suite mode of occurrence is inferred for samarium, tantalum, thorium and uranium. The elements caesium, lutetium, scandium, and ytterbium were inferred to be associated with kaolinite.

The effect of igneous intrusions on the concentration of a number of minerals and trace elements was also examined. The presence of semi-coke or an inferred distance of heat alteration was used to distinguish heat affected and unaffected samples. Depletion or enrichment of minerals and elements was inferred using ply thickness weighted average concentration figures for altered and unaltered samples and trends of concentration change toward the intrusion. Some consistent changes in the concentration of trace elements and minerals were found across all three pits sampled. The minerals siderite and pyrite are depleted in the heat affected zone, but goyazite is enriched, particularly toward the margins of the heat affected zone. The elements bromine and strontium (the latter mirroring the goyazite trend) are concentrated in the heat affected zone. The elements cobalt, mercury, manganese (mirroring the pyrite trend), nickel and possibly arsenic and zinc are depleted in heat affected samples from all three pits sampled. The inconsistent behaviour of some other trace elements (molybdenum, chromium and

possibly selenium) in response to the igneous intrusion appears to be the result of different modes of occurrence of trace elements between pits.

Samples of pulverised fuel were collected from the Collinsville and Japanese (Mitsui) pulverised fuel utilities. The concentration of major and trace elements was determined by INAA, XRF and (for the Collinsville sample) ICP-MS & ICP-AES. INAA analysis suggests gold, cerium, cobalt, europium, hafnium, lanthanum, lutetium, molybdenum, neodymium, scandium, selenium, samarium, strontium, tantalum, thorium, tungsten and ytterbium are at the upper end or above the world average concentration range in the Collinsville pulverized fuel. Only gold, hafnium and thorium are at the upper end or above the world coal concentration range in the Japanese pulverized fuel.

Sequential leaching of the pulverised fuels was undertaken according to the USGS protocol. The sequential leach data was interpreted to infer trace element mode of occurrence in the pulverised fuel. A number of significant differences in the mode of occurrence of antimony, arsenic, chromium, cobalt, nickel, selenium, uranium and zinc were found between the two combustion plants studied. The element vanadium had almost identical modes of occurrence in fuel from both plants studied.

A comparison of trace element mode of occurrence determined for the Collinsville power utility pulverised fuel by sequential leaching with mode of occurrence determined for the in-ground feed coals using graphical methods showed a reasonable level of agreement. It is concluded that the use of two methods of determining mode of occurrence provides better definition of mineral type in some cases. For example a siderite mode of occurrence could be determined using graphical relationship whereas the sequential leach data gave only a carbonate mode of occurrence. Further, the sequential leach data solved the problem of parallel graphical relationships. For example, galena was determined to be the mode of occurrence of lead from the sequential leach data, whereas graphical relationships indicated a pyrite mode of occurrence because of the relationship with sulphur. Combustion of coal occurs in three phases, namely devolatilisation, combustion of the volatile matter, and combustion of the residual char. Mineral matter may be excluded from the residual char particles due to desegregation and separation in the milling process, or included within the char particle. During combustion, trace elements partition between the bottom ash, the fly ash, and flue gas (lost up the stack). The concentration of trace elements in ash samples from the Collinsville and Mitsui power utilities was determined by INAA and XRF. The partitioning behaviour of the trace elements is examined by calculating relative enrichment values for the trace elements. Generally the partitioning behaviour and classification of trace elements in this study matched those found in previous published studies for a given element.

The relative enrichment trends of elements exhibiting significant differences in mode of occurrence between the two combustion plants sampled (ie antimony, arsenic, chromium, cobalt, nickel, selenium, uranium and zinc plus vanadium) were examined to determine the control of mode of occurrence on the partitioning behaviour. It is hypothesised that the relative volatility of a particular element in combustion reflects the temperature at which the host mineral or the organic matter thermally decomposes. Thus organically bound elements should be more volatile than pyrite associated elements, which should be more volatile than carbonate associated elements, which should be substantially more volatile than silicate associated elements. Other factors that may influence partitioning behaviour such as the major element chemistry of the ash, plant design and operating conditions, and temperature variations within the combustion chamber were discounted as significantly influencing relative enrichment differences for the two combustion plants studied. It is concluded that element mode of occurrence has a strong influence on the relative volatility of a given element, and that comparison of sequential leach results from two pulverised fuel utilities has the potential allow prediction of the relative volatility of trace elements in combustion. Some complications may arise due to exclusion of some mineral grains and localised variations in the oxidation state within the combustion zone.

Solid combustion wastes (fly ash and bottom ash) are commonly disposed of in landfill and impoundment facilities. Unless the landfill is impermeable to water, disposal of solid wastes in such fashion allows interaction with the hydrogeological system and could lead to detrimental environmental impacts. Leaching of indicative "total waste" composites made up by blending fly ash and bottom ash samples from each power utility in an 80/20 proportion was undertaken using the TCLP protocol. The concentration of trace elements in the leachates was compared to recreational water and drinkwater guideline values. The concentration of barium, manganese, and selenium in the Collinsville leachate exceeds both the recreational and drinkwater guideline concentrations. The concentration of nickel in the Collinsville leachate was found to exceed the recommended drinkwater concentration, but is below recreational water guideline value. The concentration of boron and selenium in the Mitsui leachate was found to exceed both the recreational and drinkwater guideline values. The concentration of boron and selenium in the Mitsui leachate was found to exceed both the recreational and drinkwater guideline values. The concentration of barium in the Mitsui leachate was found to exceed the drinkwater standard. The concentration of an element in the ash sample was found to be a poor indicator of the mobility of the element.

Elements that showed substantial differences in mode of occurrence in the pulverised fuel (ie antimony, arsenic, chromium, cobalt, nickel, selenium, uranium and zinc plus vanadium) were examined to assess the influence of mode of occurrence on the leachability of the element from solid combustion waste. It is concluded that, where the difference in element mobility between the two composite ash samples is significant, mode of occurrence does exert some control on the proportion of a trace element in the ash that can be mobilised by the TCLP protocol. In particular, trace elements present in coal associated with silicates appear substantially unavailable for mobilisation by the TCLP protocol.

The concentration of trace elements in samples of feed coal, coke and breeze from the Bowen coke works was determined by INAA and XRF. A new index (the CRE index) was developed to characterise the enrichment or depletion of trace elements in the coke and breeze. Coke is classified as enriched (Class 1), neither enriched nor depleted (Class 2), depleted (Class 3) or highly depleted (Class 4). Breeze was classified as enriched (denoted "e"), neither enriched nor depleted (denoted "a") and depleted (denoted "d"). Comparison of the partitioning behaviour of trace elements in combustion and carbonisation was undertaken by comparing the RE and CRE data. It is concluded that all but the most volatile elements (sulphur, selenium, arsenic and tungsten) are substantially retained in the coke. The substantial retention of trace elements in coke is likely due to the lower temperature at which carbonisation occurs compared to pulverised fuel combustion temperatures. The behaviour of trace elements in the breeze is similar to their behaviour in combustion, being controlled by mode of occurrence end element volatility. Trace elements associated with pyrite are generally enriched in the breeze, excepting highly volatile elements such as sulphur, selenium and arsenic, which appear to substantially volatilise. Silicate associated elements and those elements associated with heavy minerals are also generally non-volatile excepting tungsten that is depleted in the coke and breeze.

The concentration of trace elements in the pit channel samples and in the pulverised fuel sample suggest the elements barium, selenium, mercury, thorium, copper, manganese, nickel and vanadium warrant further investigation in Collinsville pit and combustion wastes. The data suggests the elements thorium, boron, selenium and barium warrant further investigation in the Japanese combustion plant. Further work to verify that relative differences in mode of occurrence inferred from USGS sequential leaching are useful as indicators of trace element volatility and leachability is recommended.

The environmentally significant trace elements cobalt, molybdenum, antimony, strontium, zinc and possibly arsenic and chromium are enriched in the breeze samples from the Bowen coke works. Leaching studies to determine the proportion and concentration of trace elements in the leachate upon disposal of the waste is worth consideration. Further studies to characterise trace element partitioning during carbonisation in a slot oven are recommended.

Acknowledgements.

I would like to thank the following people for their assistance with this PhD.

My supervisor Dr Peter Crosdale, who organised research grants and a scholarship at James Cook University, provided accommodation to the entire family for our first two weeks in Townsville, provided training in the petrography of Australian coals, introduced me to all the right people (and a few of the wrong ones at wine club) and then watched bemused as we all moved back to New Zealand ten months later to resume full time employment. Dr Crosdale also undertook a thorough and useful review of manuscript drafts. Thank you for your technical advice, encouragement and forbearance. I did eventually finish the thesis!

Mr Ray Slater (then Resource Management Superintendent at the Collinsville coal mine) for his considerable help and advice, the benefit of his expertise on the Collinsville operations, organising access to the mine to undertake sampling, and organising the saving of splits of the Bowen coke works train samples. Thank you also to Theiss mining contractors, Collinsville for covering the cost of the proximate analysis of the pit channel samples.

Mr Ian Borthwick for providing access to the Collinsville power utility and gathering samples of pulverised fuel, bottom ash and fly ashes.

Mr Oki Nishioka for organising the gathering of coal and ash samples at Mitsui Mining's Omutu City pulverised coal combustion utility in Kyushu, Japan.

Mr John Laidlaw for allowing access to the Bowen coke works and for gathering samples of coke and breeze over several months.

Messrs Hugh McMillan and Trevor Daly of SGS Ngakawau, New Zealand for undertaking low temperature ashing and sulphur analysis of numerous samples.

Dr Jane Newman for agreeing to train me (once again!) in the measurement of vitrinite reflectance and coal petrography point counting. Also for the encouragement that a PhD could be completed part time and some inspirational discussions on coal science over a lot of years. Mr Colin Nunweek is thanked for mounting the petrographic samples under Dr Newman's supervision.

Thanks to the Geology Department, University of Canterbury, New Zealand for providing access to use the petrographic microscope. Particular thanks to Dr Kerry Swanson, who always seemed to have an appropriate sized "bit of wire" to carry out the odd technical fix. Dr Nigel Newman of CRL Energy for undertaking low temperature ashing and organising XRD analysis of selected samples, and for some useful observations on the results.

Thanks to the United States Geological Survey, particularly Dr Bob Finkelman and Dr Curtis Palmer for undertaking sequential leaching analysis of the Collinsville pulverised fuel as part of the world Coal Quality Database programme; also for supplying a number of useful papers and some helpful correspondence. Also particular thanks to Dr Palmer who assisted with the preparation and explanation of the chondrite normalised plots.

Dr Zhongsheng Li, for setting up and running the sequential leaching of the Japanese pulverised fuel sample at Canterbury University, Christchurch, New Zealand.

Particular thanks to Solid Energy New Zealand, especially Mr Barry Bragg, for organising substantial funding to cover the XRF analytical costs over the latter stages of this project and providing an extra week of leave a year for the past three years.

Thanks to Dr Doug Lewis who inspired a enthusiasm for research and technical reading, and Mr Frank Taylor who gave me my first coal job and instilled a sense of the value of practical geology. Thanks also to my "room mate" at Solid Energy Jonny McNee for the laughs.

My parents, David and Anne, who taught me the value working to achieve a goal, and have continuing to be there for advice, encouragement and the occasional meal and accommodation for studies in Christchurch.

And finally to my wife Fran, who packed up the household to move to Australia so I could quit work and go back to uni, and then packed it up to move back again so I could go back to work and study as well!!; who watched family finances disappear into the analytical bills black hole and assorted text books; who understood when I disappeared night after night into the study and worked at weekends instead of doing the garden; who listened to my inane ravings, and who remained lovingly supportive. Also to my children Erica and Michelle, who have had to be content with short hours (and temper) from their father for the last five years. I could not have done it without you and I cannot thank you enough. I love you all.

Table of Contents.

	Page
Statement of Access	i
Abstract	ii
Acknowledgements	Х
List of Figures	xix
List of Tables	xxviii
List of Appendices	xxxii
Statement of Sources	xxxiii

Chapter 1 Literature Review.

				Page
1.0.	Chapt	er Resume		1
1.1.	Introd	uction		1
1.2.	Trace	Elements of E	nvironmental Interest	8
1.3.	Geolo	gical Aspects of	of Trace Elements in Coal	10
	1.3.1.	Concentration	n of Trace Elements in Coal	10
		1.3.1.1.	Definitions	10
		1.3.1.2.	Comparison of Trace Element Concentrations	10
	1.3.2.	Mode of Occ	urrence	13
		1.3.2.1.	Introduction	13
		1.3.2.2.	Methods of Determining Modes of Occurrence	14
	1.3.3.	Controls on T	Trace Element Occurrence in Coal	19
		1.3.3.1.	Sediment Provenance	19
		1.3.3.2.	Depositional Environment	21
		1.3.3.3.	Fixation of Elements by Plants and Plant Debris	24
		1.3.3.4.	Coal Rank	26
		1.3.3.5.	Geochemical Nature of Groundwater and	
			Country Rocks	27

		1.3.3.6.	Summary – Geological Aspects of Trace	
			Elements in Coal	28
1.4.	Trace	Elements in Co	bal Combustion	30
	1.4.1.	Introduction		30
	1.4.2.	Definitions		30
	1.4.3.	Partitioning o	f Trace Elements in Combustion	32
	1.4.4.	Controls on T	race Element Partitioning in Combustion	36
		1.4.4.1.	Elemental Volatility	36
		1.4.4.2.	Mode of Occurrence	37
		1.4.4.3.	Collection Point and Characteristics of the Ash.	38
		1.4.4.4.	Combustion Regime	40
	1.4.5.	The Environn	nental Importance of Fly Ash	41
	1.4.6.	Fly Ash Leac	hing	42
	1.4.7.	Case Studies		44
	1.4.8.	Conclusions -	- Coal Combustion Aspects of Trace Elements	47

Chapter 2 Study Aims and Methods.

2.0.	Project Design	48
2.1.	Aims	48
2.2.	Methods	49
2.3.	Analytical Methods	50
	2.3.1. Instrumental Neutron Activation Analysis (INAA)	53
	2.3.2. X-Ray Fluorescense (XRF)	58
	2.3.3. Inductively Coupled Mass Spectrometry (ICP-MS)	63
	2.3.4. Miscellaneous	63
	2.3.5. X-Ray Diffraction (XRD)	64
	2.3.6. Coal Petrography and Vitrinite Reflectance Analysis	63
	2.3.7. Leaching Methods	65
2.4.	Comparison of INAA and XRF Analytical Results	66

Chapter 3 Collinsville Opencut: Coal Characterisation, Trace Element Concentration and Mode of Occurrence.

3.0.	Chapte	er Resume		69
3.1.	Sampl	es		69
3.2.	Coal C	Characteristics	5	77
	3.2.1.	The Blake S	eam	77
	3.2.2.	The Bowen	Seam	92
	3.2.3.	Mineral Mat	tter from Normative Analysis	98
		3.2.3.1.1. E	Blake Central and Blake West Normative Analysis	99
		3.2.3.1.2. E	Bowen No.2 Normative Analysis	118
		3.2.3.1.3. Т	Sabulated Normative Mineral Assemblages	126
3.3.	Trace	Element Con	centration and Mode of Occurrence	131
	3.3.1.	Trace Eleme	ents in the Blake Seam	131
		3.3.1.1.	Concentration of Trace Elements in the	
			Blake Seam	131
		3.3.1.2.	Mode of Occurrence of Trace Elements in the	
			Blake Seam	134
	3.3.2.	Trace Eleme	ents in the Bowen Seam	143
		3.3.2.1.	Concentration of Trace Elements in the	
			Bowen Seam	143
		3.3.2.2.	Mode of Occurrence of Trace Elements in the	
			Bowen Seam	145
	3.3.3.	Concluding	Remarks on Inference of Mode of Occurrence Infer	ences
		Using Graph	nical Relationships.	150
3.4.	The E	ffect of Igneo	us Intrusions on the Concentration of Trace	
	Eleme	nts in the Bla	ke and Bowen Seam Samples.	152

67

	3.4.1.	Trends of Enrichment and Depletion of Trace Elements	
		at Collinsville	152
	3.4.2.	Comparison of the Influence of Intrusions on Trace Elements at	
		Collinsville with Other Examples	162
3.5.	Chapte	er Summary	168

Chapter 4 Trace Element Concentration and Mode of Occurrence in Selected Pulverised Fuel Combustion Plant Samples.

4.0.	Chapter Resume	170
4.1.	Sample Description	170
4.2.	Sample Analysis	174
4.3.	Analysis Results	177
4.4.	Mode of Occurrence from Sequential Leach Data	180
4.5.	Mode of Occurrence for Other Elements Analysed for Individual Coals	197
4.6.	Significant Differences in the Mode of Occurrence Between the	
	Collinsville and Japanese Pulverised Fuel Samples	207
4.7.	Chapter Summary	211

Chapter 5 Trace Element Partitioning Behaviour in Pulverised Fuel Combustion.

5.0.	Chapter Resume	213
5.1.	Sample Description	213
5.2.	Factors Other then Mode of Occurrence Affecting Partitioning Behaviour	217
5.3.	Partitioning Behaviour	218
5.4.	Comparison of Partitioning Behaviour	247
5.5.	Chapter Summary	252

6.0.	Chapter Resume	254
6.1.	Samples	254
6.2.	Analysis Results	255
	6.2.1. Coal Quality	255
	6.2.2. Trace Element Partitioning Behaviour	256
	6.2.3. Grouping of Elements by Partitioning Behaviour in Carbonisation	290
6.3.	Comparison of Coke Breeze and Soil Element Concentrations	293
6.4.	Chapter Summary	295

Chapter 6 Trace Element Partitioning Behaviour in Carbonisation.

Chapter 7 Leachability of Trace elements from Solid Waste from Pulverised Fuel Combustion.

7.0.	Chapt	er Resume	296
7.1.	Sampl	es	296
7.2.	Result	s	297
	7.2.1.	Concentration of Trace Elements in Combustion Wastes	
		and Soils	297
	7.2.2.	Concentration of Trace Elements in TCLP Leachates	
		Compared to Water Quality Guidelines	298
	7.2.3.	Proportion of Trace Elements in Solid Waste Mobilised	
		by the TCLP Protocol	302
7.3.	Discus	ssion	307
7.4.	Chapt	er Summary	309

Chapter 8 Synthesis.

8.0.	Chapter Resume	310
8.1.	Assessment of Trace Element Mode of Occurrence – Comparison	
	of Graphical and Statistical Results	310
8.2.	The Control of Mode of Occurrence on Trace Element Partitioning	
	and Leachability	315
	8.2.1. The Control of Mode of Occurrence on Trace Element	
	Partitioning	315
	8.2.2. The Control of Mode of Occurrence on Trace Element	
	Leachability	327
8.3.	Comparison of the Partitioning Behaviour of Trace Elements in	
	Combustion and Carbonisation	330
8.	3. Chapter Summary	337

Chapter 9 Conclusions and Further Work.

9.0.	Pit Sa	mple Data	340
	9.0.1.	Depositional Environment of the Blake and Bowen Seams.	340
	9.0.2.	Concentration and Mode of Occurrence of Trace Elements	
		in the Blake and Bowen Seams	340
	9.0.3.	The Effect of Igneous Intrusions on the Coal and on the	
		Concentration of Trace Elements.	344
9.1.	Comb	ustion Sample Data	345
	9.1.1.	The Control of Mode of Occurrence on Trace Element	
		Partitioning Behaviour in Combustion and Carbonisation	345
	9.1.2.	The Control of Mode of Occurrence on Trace Element	
		Mobility from Carbonisation Waste Material	348

References Cited		355	
9.4.	F	Further Work	351
		Behaviour in Carbonisation.	349
	9.2.	The Control of Mode of Occurrence on Trace Element Partitioning	

List of Figures.

Chapter 1.

Figure 1.1.	General Representation of the Effects of Increases of		
	Concentration of a Trace Element	6	
Figure 1.2.	Classification of Elements by Their Behaviour During		
	Combustion and Gasification	33	
Figure 1.3.	The Relationship Between Particle Deposition in Lungs		
	and Particle Diameter	43	

Chapter 2.

Figure 2.1.	Sample BC6.37-6.55 vs Repeat 1	57
Figure 2.2.	Sample BO2.60-2.90 vs Repeat 2	57
Figure 2.3.	Sample Train 213 vs Repeat 3	57
Figure 2.4.	Sample U3 Fly Ash vs Repeat 4	58
Figure 2.5.	Comparison of Ash Percent, Proximate and 400°C	
	Ashing Methods	61
Figure 2.6.	Schematic Diagram Showing the Principal Components of	
	an ICP-MS Instrument	62
Figure 2.7.	Iron by INAA vs Iron by XRF	66
Figure 2.8.	Uranium by INAA vs Uranium by XRF	67

Chapter 3.

Figure 3.1.	Location of Collinsville Coalmine	70
Figure 3.2.	Stratagraphic Column for the Collinsville Coal Measures.	71
Figure 3.3.	Relative Location of the Pits Sampled for this Study	74

Figure 3.4.	In-Pit Bench in the Blake Central pit, Blake Seam	75
Figure 3.5.	Coal Degeneration in the Highwall of the Blake Central	
	Pit, Blake Seam, Following Exposure to the Weather	75
Figure 3.6.	Bed-Parallel Igneous Intrusions in the Blake West	
	Pit, Blake Seam	76
Figure 3.7.	Close-up of Igneous Intrusions in the Blake West	
	Pit, Blake Seam	76
Figure 3.8.	Strip Log of Pit Samples from the Blake Central Pit	80
Figure 3.9.	Blake Central Pit Inertinite vs Volatile Matter	82
Figure 3.10.	Blake Central Distance from Roof of Seam (m) vs Volatile	
	Matter (daf)	82
Figure 3.11.	Semi-coke in the Bowen Seam Coal, Bowen No.2 Pit	83
Figure 3.12.	Strip Log of Pit Samples from the Blake West Pit	86
Figure 3.13.	Blake West Pit Inertinite vs Volatile Matter	90
Figure 3.14.	Blake West Distance from Roof of Seam (m) vs Volatile	
	Matter (daf)	90
Figure 3.15.	Strip Log of Pit Samples from the Bowen No.2 Pit	95
Figure 3.16.	Bowen No.2 Pit Inertinite vs Volatile Matter	96
Figure 3.17.	Bowen No.2 Distance from Roof of Seam (m) vs Volatile	
	Matter (daf)	97
Figure 3.18.	Sodium vs Potassium, Blake Central Samples	101
Figure 3.19.	Sodium vs Potassium, Blake Central Samples	
	Excluding One High Potassium Figure	101
Figure 3.20.	Sodium vs Potassium, Blake West Samples	102
Figure 3.21.	Phosphorous vs Barium, Blake Central Samples	105
Figure 3.22.	Phosphorous vs Barium, Blake West Samples	106
Figure 3.23.	Residual Phosphorous vs strontium, Blake Central Samples	106
Figure 3.24.	Residual Phosphorous vs strontium, Blake West Samples	107
Figure 3.25.	Iron vs Manganese, Blake Central Samples	112
Figure 3.26.	Iron vs Manganese, Blake West Samples	113

Figure 3.27.	Residual Iron Left After Siderite Calculation vs	
	Sulphur, Blake Central Samples	114
Figure 3.28.	Residual Iron Left After Siderite Calculation vs	
	Sulphur, Blake West Samples	115
Figure 3.29.	Ash vs Residual Sulphur Left After Pyrite	
	Calculation, Blake Central Samples	115
Figure 3.30.	Ash vs Residual Sulphur Left After Pyrite	
	Calculation, Blake West Samples	116
Figure 3.31.	Iron vs Magnesium, Blake Central Samples	117
Figure 3.32.	Iron vs Magnesium, Blake West Samples	117
Figure 3.33.	Iron vs Total Sulphur, Bowen No.2 Samples	122
Figure 3.34.	Ash vs Total Sulphur, Bowen No.2 Samples	122
Figure 3.35.	Residual Iron vs Manganese, Bowen No.2 Samples	124
Figure 3.36.	Residual Iron vs Magnesium, Bowen No.2 Samples	124
Figure 3.37.	Residual Iron vs Titanium, Bowen No.2 Samples	125
Figure 3.38.	Hafnium vs Uranium, Blake Central	138
Figure 3.39.	Hafnium vs Uranium, Blake West	139
Figure 3.40.	Thorium vs Uranium, Blake Central	139
Figure 3.41.	Thorium vs Uranium, Blake West	139
Figure 3.42.	Ash vs Tungsten, Blake Central	141
Figure 3.43.	Ash vs Tungsten, Blake West	141
Figure 3.44.	Chondrite and Ash normalised REE concentration, Blake Central.	142
Figure 3.45.	Chondrite and Ash normalised REE concentration, Blake West.	143
Figure 3.44.	Hafnium vs Uranium, Bowen No.2	149
Figure 3.47.	Thorium vs Uranium, Bowen No.2	149
Figure 3.48.	Chondrite and Ash normalised REE concentration, Bowen No.2.	150
Figure 3.49.	Strip Log Showing Vertical Changes in Minerals and	
	Trace Elements in the Blake Central Pit Seam	157
Figure 3.50.	Strip Log Showing Vertical Changes in Minerals and	
	Trace Elements in the Blake West Pit Seam	158

Figure 3.51.	re 3.51. Strip Log Showing Vertical Changes in Minerals and	
	Trace Elements in the Bowen No.2 Pit Seam	159

Chapter 4.

Figure 4.1.	Schematic of the Collinsville Coal Fired Power Plant	172
Figure 4.2.	Schematic of the Mitsui Mining Coal Fired Power Plant	173
Figure 4.3.	Positions for Isokinetic Sampling	174
Figure 4.4.	INAA/ XRF Results vs the USGS Results for Collinsville	
	Pulverised Fuel	176
Figure 4.5.	INAA/ XRF Results vs MW-ICP-MS Results for Japanese	
	Pulverised Fuel	177
Figure 4.6.	Proportions of Antimony Leached	183
Figure 4.7.	Proportions of Arsenic Leached	185
Figure 4.8.	Proportions of Barium Leached	186
Figure 4.9.	Proportions of Beryllium Leached	187
Figure 4.10.	Proportions of Boron Leached	188
Figure 4.11.	Proportions of Chromium Leached	189
Figure 4.12.	Proportions of Cobalt Leached	190
Figure 4.13.	Proportions of Copper Leached	191
Figure 4.14.	Proportions of Lead Leached	191
Figure 4.15.	Proportions of Manganese Leached	192
Figure 4.16.	Proportions of Nickel Leached	193
Figure 4.17.	Proportions of Selenium Leached	194
Figure 4.18.	Proportions of Tin Leached	195
Figure 4.19.	Proportions of Uranium Leached	195
Figure 4.20.	Proportions of Vanadium Leached	196
Figure 4.21.	Proportions of Zinc Leached	197
Figure 4.22.	Proportions of Cadmium and Molybdenum Leached	198
Figure 4.23.	Proportions of Rare Earth Elements Leached	199

Figure 4.24.	Proportions of Aluminium, Bromine & Phosphorous Leached	200
Figure 4.25.	Proportions of Row 4 Transition Metals Leached	201
Figure 4.26.	Proportions of Heavy Metals Leached	203
Figure 4.27.	Proportions of Group I and II Elements Leached	205

Chapter 5.

Figure 5.1.	The Collinsville Coal Fired Power Station	214
Figure 5.2.	Relative Enrichment of Silicon	221
Figure 5.3.	Relative Enrichment of Aluminium	221
Figure 5.4.	Relative Enrichment of Iron	222
Figure 5.5.	Relative Enrichment of Magnesium	223
Figure 5.6.	Relative Enrichment of Sodium	223
Figure 5.7.	Relative Enrichment of Titanium	225
Figure 5.8.	Relative Enrichment of Manganese	225
Figure 5.9.	Relative Enrichment of Phosphorous	225
Figure 5.10.	Relative Enrichment of Sulphur	226
Figure 5.11.	Relative Enrichment of Gold	227
Figure 5.12.	Relative Enrichment of Arsenic	227
Figure 5.13.	Relative Enrichment of Boron	228
Figure 5.14.	Relative Enrichment of Barium	229
Figure 5.15.	Relative Enrichment of Cobalt	229
Figure 5.16.	Relative Enrichment of Chromium	230
Figure 5.17.	Relative Enrichment of Copper	231
Figure 5.18.	Relative Enrichment of Caesium	231
Figure 5.19.	Relative Enrichment of Mercury	232
Figure 5.20.	Relative Enrichment of Molybdenum	233
Figure 5.21.	Relative Enrichment of Nickel	233
Figure 5.22.	Relative Enrichment of Lead	234
Figure 5.23.	Relative Enrichment of Rubidium	235

Figure 5.24.	Relative Enrichment of Antimony	235
Figure 5.25.	Relative Enrichment of Selenium	236
Figure 5.26.	Relative Enrichment of Tin	237
Figure 5.27.	Relative Enrichment of Thorium	238
Figure 5.28.	Relative Enrichment of Uranium	238
Figure 5.29.	Relative Enrichment of Vanadium	239
Figure 5.30.	Relative Enrichment of Tungsten	240
Figure 5.31.	Relative Enrichment of Zinc	240
Figure 5.32.	Relative Enrichment of Cerium	241
Figure 5.33.	Relative Enrichment of Europium	242
Figure 5.34.	Relative Enrichment of Hafnium	242
Figure 5.35.	Relative Enrichment of Iridium	243
Figure 5.36.	Relative Enrichment of Lanthanum	243
Figure 5.37.	Relative Enrichment of Lutetium	244
Figure 5.38.	Relative Enrichment of Neodymium	244
Figure 5.39.	Relative Enrichment of Scandium	245
Figure 5.40.	Relative Enrichment of Samarium	245
Figure 5.41.	Relative Enrichment of Strontium	246
Figure 5.42.	Relative Enrichment of Tantalum	246
Figure 5.43.	Relative Enrichment of Terbium	247
Figure 5.44.	Relative Enrichment of Ytterbium	247

Chapter 5.

Figure 6.1.	Bowen Coke Works	255
Figure 6.2.	Quality Parameters of Coal Delivered to the Bowen	
	Coke Works During Time of Sampling	256
Figure 6.3.	Concentration of Silicon in Feed Coal and Coke with Time	258
Figure 6.4.	Silicon CRE for Coke and Breeze with Time	258
Figure 6.5.	Concentration of Aluminium in Feed Coal and Coke with Time	259

Figure 6.6.	Aluminium CRE for Coke and Breeze with Time	259
Figure 6.7.	Concentration of Iron in Feed Coal and Coke with Time	260
Figure 6.8.	Iron CRE for Coke and Breeze with Time	260
Figure 6.9.	Concentration of Sodium in Feed Coal and Coke with Time	261
Figure 6.10.	Sodium CRE for Coke and Breeze with Time	261
Figure 6.11.	Concentration of Titanium in Feed Coal and Coke with Time	262
Figure 6.12.	Titanium CRE for Coke and Breeze with Time	262
Figure 6.13.	Concentration of Manganese in Feed Coal and Coke with Time	263
Figure 6.14.	Manganese CRE for Coke and Breeze with Time	263
Figure 6.15.	Concentration of Phosphorous in Feed Coal and Coke with Time	264
Figure 6.16.	Phosphorous CRE for Coke and Breeze with Time	264
Figure 6.17.	Concentration of Sulphur in Feed Coal and Coke with Time	265
Figure 6.18.	Sulphur CRE for Coke and Breeze with Time	265
Figure 6.19.	Concentration of Gold in Feed Coal and Coke with Time	266
Figure 6.20.	Gold CRE for Coke and Breeze with Time	266
Figure 6.21.	Concentration of Arsenic in Feed Coal and Coke with Time	267
Figure 6.22.	Arsenic CRE for Coke and Breeze with Time	267
Figure 6.23.	Concentration of Barium in Feed Coal and Coke with Time	268
Figure 6.24.	Barium CRE for Coke and Breeze with Time	268
Figure 6.25.	Concentration of Bromine in Feed Coal and Coke with Time	269
Figure 6.26.	Bromine CRE for Coke and Breeze with Time	269
Figure 6.27.	Concentration of Cobalt in Feed Coal and Coke with Time	270
Figure 6.28.	Cobalt CRE for Coke and Breeze with Time	270
Figure 6.29.	Concentration of Chromium in Feed Coal and Coke with Time	271
Figure 6.30.	Chromium CRE for Coke and Breeze with Time	271
Figure 6.31.	Concentration of Caesium in Feed Coal and Coke with Time	272
Figure 6.32.	Caesium CRE for Coke and Breeze with Time	272
Figure 6.33.	Concentration of Hafnium in Feed Coal and Coke with Time	273
Figure 6.34.	Hafnium CRE for Coke and Breeze with Time	273
Figure 6.35.	Concentration of Molybdenum in Feed Coal and Coke with Time	274
Figure 6.36.	Concentration of Nickel in Feed Coal and Coke with Time	275

Figure 6.37.	Concentration of Rubidium in Feed Coal and Coke with Time	276
Figure 6.38.	Concentration of Antimony in Feed Coal and Coke with Time	276
Figure 6.39.	Antimony CRE for Coke and Breeze with Time	277
Figure 6.40.	Concentration of Selenium in Feed Coal and Coke with Time	277
Figure 6.41.	Selenium CRE for Coke and Breeze with Time	278
Figure 6.42.	Concentration of Strontium in Feed Coal and Coke with Time	278
Figure 6.43.	Strontium CRE for Coke and Breeze with Time	279
Figure 6.44.	Concentration of Thorium in Feed Coal and Coke with Time	279
Figure 6.45.	Thorium CRE for Coke and Breeze with Time	280
Figure 6.46.	Concentration of Uranium in Feed Coal and Coke with Time	280
Figure 6.47.	Uranium CRE for Coke and Breeze with Time	281
Figure 6.48.	Concentration of Tungsten in Feed Coal and Coke with Time	281
Figure 6.49.	Tungsten CRE for Coke and Breeze with Time	282
Figure 6.50.	Concentration of Zinc in Feed Coal and Coke with Time	282
Figure 6.51.	Zinc CRE for Coke and Breeze with Time	283
Figure 6.52.	Concentration of Cerium in Feed Coal and Coke with Time	283
Figure 6.53.	Concentration of Europium in Feed Coal and Coke with Time	284
Figure 6.54.	Concentration of Lanthanum in Feed Coal and Coke with Time	284
Figure 6.55.	Concentration of Lutetium in Feed Coal and Coke with Time	284
Figure 6.56.	Concentration of Neodymium in Feed Coal and Coke with Time	285
Figure 6.57.	Concentration of Scandium in Feed Coal and Coke with Time	285
Figure 6.58.	Concentration of Samarium in Feed Coal and Coke with Time	285
Figure 6.59.	Concentration of Tantalum in Feed Coal and Coke with Time	286
Figure 6.60.	Concentration of Terbium in Feed Coal and Coke with Time	286
Figure 6.61.	Concentration of Ytterbium in Feed Coal and Coke with Time	286
Figure 6.62.	Cerium CRE for Coke and Breeze with Time	287
Figure 6.63.	Europium CRE for Coke and Breeze with Time	287
Figure 6.64.	Lanthanum CRE for Coke and Breeze with Time	288
Figure 6.65.	Lutecium CRE for Coke and Breeze with Time	288
Figure 6.66.	Neodymium CRE for Coke and Breeze with Time	288
Figure 6.67.	Scandium CRE for Coke and Breeze with Time	289

Figure 6.68.	Samarium CRE for Coke and Breeze with Time	289
Figure 6.69.	Tantalum CRE for Coke and Breeze with Time	289
Figure 6.70.	Terbium CRE for Coke and Breeze with Time	290
Figure 6.71.	Ytterbium CRE for Coke and Breeze with Time	290

Chapter 9.

Figure 9.1.	Collinsville Coalmine Pit Sample Summary.	342
Figure 9.2.	Coal Utilisation Summary Diagram - Combustion.	347
Figure 9.3.	Coal Utilisation Summary Diagram – Combustion	
	& Carbonisation.	350

List of Tables.

Chapter 1.

Table 1.1.	Coal Ash Chemistry and Slagging/ Fouling Characteristics	5
Table 1.2.	Trace Elements of Environmental Interest	9
Table 1.3.	Content of Environmentally Significant Trace Elements	
	in World Coals	12
Table 1.4.	Likely Trace Element Mode of Occurrence from	
	Literature Scores	14
Table 1.5.	Percentage of Coal Ash from Various Combustion	
	Configurations	32
Table 1.6.	Element Partitioning Class Comparison	34
Table 1.7.	Distribution of Elements Among Bottom Ash, Fly Ash	
	and Flue Gas	35

Chapter 2.

Table 2.1.	Analytical Methods used in this Study	52
Table 2.2.	INAA Element Detection Limits	54
Table 2.3.	Repeat Analysis by INAA	56
Table 2.4.	Comparison of Ash Percent, Proximate and 400°C	
	Ashing Methods	61

Chapter 3.

Table 3.1.	Interpretation of Depositional Environment from	
	Coal Characteristics	91

Table 3.2.	Residual Phosphorous in Blake Central Samples following	
	Normative Calculations.	108
Table 3.3.	Residual Phosphorous in Blake West Samples following	
	Normative Calculations.	109
Table 3.4.	Residual Phosphorous in Bowen No.2 Samples following	
	Normative Calculations.	120
Table 3.5.	Normative Mineral Assemblage (ppm) – Blake Central Samples	127
Table 3.6.	Normative Mineral Assemblage (ppm) – Blake West Samples	128
Table 3.7.	Normative Mineral Assemblage (ppm) – Bowen No.2 Samples	129
Table 3.8.	Comparison of XRD and Normative Mineral Assemblages	130
Table 3.9.	Concentration of Trace Elements in the Blake Seam	
	Compared to World Coal and Crustal Averages	133
Table 3.10.	Mode of Occurrence of Trace Elements in the Blake Seam	136
Table 3.11.	Concentration of Trace Elements in the Bowen Seam	
	Compared to World Coal and Crustal Averages	144
Table 3.12.	Mode of Occurrence of Trace Elements in the Bowen Seam	146
Table 3.13.	Weighted Average Trace Element Concentration in Heat	
	Affected and Unaffected Samples	154

Chapter 4.

Table 4.1.	Analysis Results for Collinsville and Japanese Pulverised	
	Fuel Samples by Analysis Method	178
Table 4.2.	Raw Sequential Leaching Results	180
Table 4.3.	Tabulated Mode of Occurrence from Interpretation of	
	Sequential Leach Data.	206
Table 4.4.	The Proportion of Each Trace Element Leached by Each	
	Reagent and the Absolute Differences between Results for	
	the Two Fuel Samples	208

Chapter 5.

Table 5.1.	Elemental Concentrations of Major and Trace Elements	
	in Combustion Plant Solid Waste Streams.	216
Table 5.2.	Major Element Oxides in Ash	218
Table 5.3.	Trace Element Classification into 3 Classes Based on	
	their Behaviour During Combustion in the Boiler and	
	Ducts with their Relative Enrichment Factors (RE)	219
Table 5.4.	Partitioning Class of Elements in Collinsville, Mitsui and	
	Literature Example Combustion Plants	252

Chapter 6.

Table 6.1.	Classification of Elements by Partitioning Behaviour	
	in Carbonisation.	290
Table 6.2.	Classification of Element Partitioning Behaviour	
	in Carbonisation	293
Table 6.3.	Trace Element Concentration in Bowen Plant Coke Breeze	
	and World Average Soils	294

Chapter 7.

Table 7.1.	Trace Element Concentration in Ash and Bottom Ash	301
Table 7.2.	Water Quality Guideline Values and TCLP Concentrations	302
Table 7.3.	Analysis of Water from Observation Bores and Duck Pond	
	Adjacent to Collinsville Power Plant Ash Dams	302
Table 7.4.	Calculated Proportions of Element Mobilised by the	
	TCLP Protocol	307

Chapter 8.

Table 8.1.	Comparison of Mode of Occurrence from Graphical and	
	Sequential Leaching Methods	311
Table 8.2.	Significant Differences in Mode of Occurrence Related to	
	Volatility and Leachability	323
Table 8.3.	Trace Element Mode of Occurrence and Partitioning	
	Behaviour in Combustion and Carbonisation	332
Table 8.4.	Absolute Difference Between Breeze CRE Figures	337

List of Appendices.

Appendix 1.	Health Effects of Trace Elements	381
Appendix 2.	Mode of Occurrence of Trace Elements in Coal	397
Appendix 3.	Maceral and Ro _(max) Analysis Results	429
Appendix 4.	Proximate and Elemental Analysis Results for Collinsville	
	Channel Samples	435
Appendix 5.	XRD Analysis of Low Temperature Ash	445
Appendix 6.	Graphs to Determine Mode of Occurrence of Trace Elements	
	in Blake Central, Blake West and Bowen No.2 Pits	448
Appendix 7.	Proximate and Elemental Analysis Results for Bowen	
	Coke Works Samples	494

xxxiii