Sodic(–calcic) alteration in Fe-oxide–Cu–Au districts: an origin via unmixing of magmatic H2O–CO2–NaCl ± CaCl2–KCl fluids

Pollard, Peter J. (2001) Sodic(–calcic) alteration in Fe-oxide–Cu–Au districts: an origin via unmixing of magmatic H2O–CO2–NaCl ± CaCl2–KCl fluids. Mineralium Deposita, 36 (1). pp. 93-100.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1007/s001260050289

Abstract

Iron-oxide–Cu–Au deposits, particularly those formed in deeper level (plutonic) environments, are commonly characterized by regional scale sodic(–calcic) alteration, which typically formed pre- or syn-Cu–Au mineralization. The sodic(–calcic) assemblages include albite, scapolite, pyroxene, actinolite, apatite, titanite, epidote and calcite. The consistent presence of coexisting hypersaline aqueous and CO2-rich fluids in minerals from sodic(–calcic) alteration and associated Fe-oxide–Cu–Au deposits is the result of unmixing of H2O–CO2–NaCl ± CaCl2–KCl magmatic fluids. Experimental evidence indicates that the Na/(Na + K) ratio of fluids in equilibrium with two alkali feldspars in CO3 2−-bearing parent fluids would be significantly higher than in unmixed chloride-bearing aqueous fluids. Therefore, fluid unmixing caused by decreases in temperature and/or pressure, will result in albitization of wall rocks, as is observed in most deeper level Fe-oxide–Cu–Au deposits. This alteration style may be succeeded by K-feldspathization with decreasing temperature because of the increase in equilibrium Na/(Na + K) in chloride-bearing fluids buffered by alkali feldspars.

Item ID: 13339
Item Type: Article (Refereed Research - C1)
ISSN: 1432-1866
Date Deposited: 01 Dec 2010 07:01
FoR Codes: 04 EARTH SCIENCES > 0403 Geology > 040304 Igneous and Metamorphic Petrology @ 100%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970104 Expanding Knowledge in the Earth Sciences @ 100%
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page