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ABSTRACT 

 
This thesis reports the first observation of stereochemical effects on intervalence charge transfer 

(IVCT) in di- and trinuclear mixed-valence complexes.  The differential IVCT characteristics of the 

diastereoisomers of polypyridyl complexes of ruthenium and osmium offer a new and intimate probe of 

the fundamental factors that govern the extent of electronic delocalisation and the barrier to electron 

transfer.  These findings challenge prior assertions that the inherent stereochemical identity of such 

complexes would have no influence on the intramolecular electron transfer properties of polymetallic 

assemblies.  Chapter 1 addresses these issues within the context of the existing theoretical and 

experimental framework for IVCT. 

Solvatochromism studies on the meso and rac diastereoisomers of [{Ru(bpy)2}2(µ-bpm)]5+          

{bpy = 2,2'-bipyridine; bpm = 2,2'-bipyrimidine} reported in Chapter 2, reveal striking differences 

between their IVCT characteristics due to stereochemically-directed specific solvent interactions.  Such 

effects are inconsistent with dielectric continuum theories of solvation which are typically used to assess 

the contribution of the Franck-Condon outer-sphere reorganisational energy to the electron transfer 

barrier.  Solvent proportion experiments demonstrate that the magnitude of the specific interaction is 

enhanced for the rac relative to the meso form, as the dimensionality of the “clefts” between the planes of 

the terminal polypyridyl ligands are ideally disposed to accommodate discrete solvent molecules.  Subtle 

and systematic variations in the size and shape of the clefts through bridging ligand modification and the 

judicious positioning of alkyl substituents on the terminal ligands reveal that the magnitudes of the effects 

are dependent on the different cavity dimensions, and the number, size, orientation and location of solvent 

dipoles within the clefts. 

Chapter 3 discusses stereochemically-directed solvent and anion interactions in systems of the 

type [{M(bpy)2}2(µ-BL)]5+ {M = Ru, Os} where BL denotes an extensive series of N-heterocyclic di- and 

tri-bidentate polypyridyl bridging ligands.  NIR region electroabsorption (Stark effect) measurements of 

the mixed-valence complexes reveal small dipole moment changes for the IVCT transitions.  In all cases, 

the effective charge transfer distances are negligible compared with the geometrical metal-metal 

separations, in support of a moderately- to strongly-delocalised assignment for the systems.  This 

contrasts previous assertions in the literature which favoured a localised (“Class II”) classification for 

complexes of the genre.   

IVCT solvatochromism and thermochromism studies on the mixed-valence species reveal that a 

subtle increase in the extent of inter-metal coupling with bridging ligand modification reduces the 

reorganisational barrier to electron transfer and leads to a transition between the localised (“Class II”) and 

localised-to-delocalised (“Class II-III”) regimes.  The importance of the bridging ligand in mediating the 

IVCT process necessitates a three-state theoretical analysis for the IVCT line-shape which explicitly 

includes the symmetric vibration mode.   
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The comproportionation constants (Kc) which are typically used to assess the degree of metal-

metal coupling are markedly dependent on the electrolyte anion and the stereochemical identity of the 

complex.  This emphasises the need for standard conditions for data from which analyses based on the 

magnitude of Kc are made, and the danger of over-interpretation of the values.  The differential anion 

interactions between the diastereoisomers are also manifested in their IVCT characteristics and represent 

a redox asymmetry contribution to the electron transfer barrier.   

 The magnitude of the differences between the IVCT characteristics of the diastereoisomeric 

forms of the same complex are more pronounced in the presence of inherent structural distortions in the 

bridging ligands, which are evident in their solid-state X-ray crystal structures.  Such distortions decrease 

the extent of delocalisation through their redox asymmetry contribution to the electron transfer barrier.  

The interconfigurational (IC) transitions in the fully-oxidised forms of the dinuclear osmium complexes 

indicate that stereochemical effects modulate the energy levels of the metal-based dπ orbitals themselves, 

which are split by spin-orbit coupling and ligand field asymmetry.    

 Chapter 4 extends the IVCT probe to stereochemically-pure trinuclear assemblies through a 

systematic investigation of the influence of the oxidation state, nuclearity and overall geometry of the 

systems on their intramolecular electron transfer processes.  The IVCT properties of the dinuclear 

complexes [{Ru(bpy)2}(µ-HAT){M(bpy)2}]5+ {M = Ru, Os} and [{Ru(bpy)2}2(µ-ppz)]5+ are contrasted 

with their trinuclear analogues, which are “cluster-type” [{Ru(bpy)2}2{M(bpy2)}(µ-HAT)]n+ or “chain-

like” [{Ru(bpy)2}2{Ru(bpy)(µ-ppz)2}]n+ {n = 7, 8; M = Ru, Os; BL = HAT (1,4,5,8,9,12-

hexaazatriphenylene) and ppz (4,7-phenanthrolino-5,6:5',6'-pyrazine)}.  While the diastereoisomers of the 

dinuclear complexes possess similar electrochemical and IVCT characteristics, the trinuclear “cluster-

type” system bridged by HAT exhibits significantly greater electronic coupling than the “chain-like” 

assembly based on ppz.  The IVCT transitions in the singly-oxidised (+7) and doubly-oxidised (+8) 

trinuclear mixed-valence species are markedly different to those in their dinuclear analogues due to 

appreciable second-order interactions which depend on the overall geometry and oxidation state of the 

assemblies.   

 The observation of stereochemical effects on IVCT illustrates the subtle interplay of factors that 

govern the localised-to-delocalised transition, and addresses the limited experimental data which exist to 

probe the microscopic factors that facilitate this transition.  The recognition of such effects on intra-

molecular electron transfer processes has significant implications for the elucidation of spatial influences 

on electron migration in biological systems such as metalloenzymes in nature.  Ultimately, stereochemical 

modifications may be exploited in materials science applications to “fine-tune” the physical properties of 

novel molecular devices such as artificial photosynthetic systems for solar energy harvesting. 
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