TITLE PAGE

Phosphate stabilisation of partly oxidised, polyminerallic mine wastes.

Thesis submitted by

David Llewellyn HARRIS BSc(Hons) UNE

in August 2003

for the degree of Masters by Research

in the School of Earth Sciences

James Cook University

Cairns

STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Thesis network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any restriction on access to this thesis.

Signature

Date

STATEMENT OF SOURCES

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Chapter two of this thesis is based on the scientific paper Harris, D.L., Lottermoser, B.G and Duchesne, J. 2003 Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland: Australian Journal of Earth Sciences (in press). Significant contributions were made to this chapter by Dr. Bernd Lottermoser (JCU) and Dr. J Duchesne (Laval University).

Signature

Date

ELECTRONIC COPY

I, the undersigned, the author of this thesis, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted within the limits of the technology available.

Signature

Date

ACKNOWLEDGEMENTS

Over the duration of this project valuable contributions have been made by many people in a wide variety of means. The quality of the final product has been greatly enhanced by this input and if I have made any omissions in these acknowledgments it is purely by accident and I extend my humble apologies.

First and foremost, *viel danke* to my supervisor Dr. Bernd Lottermoser whose guidance and support have led to the realisation of a successful, worthwhile project. His rendering of my frequently waffly text into intelligible concise script, particularly the paper we co-authored, has improved the final document greatly. Also *merci beaucoup* to the other co-author of the paper which forms the basis for Chapter 2, Dr. Josee Duchesne (Laval University), particularly for the many hours of work sifting through the complex XRD traces.

Additional academic advice was given by Dr. Dave Craw (University of Otago) and Dr. Paul Ashley (University of New England) regarding the mineralogy of the Montalbion mining area and the behaviour of metalloids in acidic systems. Dr. Michael Liddell is thanked for his advice on the behaviour of the phosphate fertilisers in the column experiments. Darryl K. Nordstrom and David Parkhurst of the United States Geological Survey are thanked for their advice on efflorescent mineral solubilities and water chemistry modelling respectively.

Peter Whitehead is acknowledged for general geological assistance and giving me work during my time at JCU. Rod Coe of the Queensland Department of Natural Resources and Mines is thanked for providing funds for water chemistry analyses of Oakey Creek.

The staff of the Advanced Analytical Centre in Cairns and Townsville are much appreciated for their willingness to bend over backwards to help with analyses, interpretation and the inevitable problems arising with advanced technology. Heather Windsor, AAC Cairns, is especially thanked for her help with almost everything analytical! In Townsville, Kevin Blake (SEM and microprobe), Alan Chappell (XRD), Sharon Ness (XRD and SIROQUANT), Yi Hu (ICP), Gordon Warria (XRF) and Elvy Grigolato (computing) are gratefully acknowledged for all their assistance.

The IT gurus of Cairns, Rod Armstrong and Steve Stanley are thanked immensely for keeping my poor outdated laptop grinding through until the end. Meredith Austin is to be thanked for the work of art that is Figure 2.1, her other formatting assistance and the cool T-shirts from Vietnam.

To my fellow postgraduate students I am very grateful for your support and assistance in innumerable ways and means throughout my most enjoyable time here at JCU. Specifically thanks to Manfred Thienenkamp, Scott Keeling, Chris Pratt and Cheryl Roberts. My shout at Stingers!

For all my friends and family, thanks for your support and the good times had whilst not working on my project. Thanks Jaye, Matt, Horto, Krissy, the Cleghorn family, Simon, Karen, Lisa, Peteymon, Eva, Ulrika, Francie and the Hufflepuff Volleyball Team.

Finally I would like to thank my partner in love and crime, Jodi Cleghorn (soon to be Harris!?). Without your support, enthusiasm, belief, proof-reading, formatting, grammatical advice, data recording and never-ending assistance (not to mention the morning coffees!) I doubt I would have ever finished the project. *Merci beacoup mon petiti chou.*

vi

Abstract

The oxidation of sulphides present in mine waste may produce acidity and release dissolved metals and sulphate into local surface and ground waters. This process is known as acid mine drainage and is considered the most important environmental problem currently facing the mining industry. Phosphate induced stabilisation has been used to create passive iron phosphate coatings on pyrite and pyrrhotite. The formation of solid phosphate coatings on the sulphide grains thereby inhibits sulphide oxidation. The aims of this study were to determine whether the phosphate stabilisation technique would inhibit acid generation and attenuate metals released from partly oxidised, polyminerallic mine waste (obtained from the Montalbion Silver mine, north Queensland) under laboratory conditions.

Sulphide-rich materials comprising the waste at the abandoned Montalbion silver mine have undergone extensive oxidation prior to and post mining. Weathering has led to the development of an abundant and varied secondary mineral assemblage throughout the waste material. Post-mining minerals are dominantly metal and/or alkali (hydrous) sulphates and generally occur as earthy encrustations or floury dustings on the surface of other mineral grains. The variable solubility of these efflorescences, combined with the irregular rainfall, controls the chemistry of seepage waters emanating from the waste dumps. Irregular rainfall events dissolve the soluble efflorescences which have built up during dry periods, resulting in 'first flush' acid (pH 2.6–3.8) waters with elevated sulphate, Fe, Cu and Zn contents. Less soluble efflorescences, such

vii

as anglesite and plumbojarosite, retain Pb in the waste dump. Metal-rich (Al, Cd, Co, Cu, Fe, Mn, Ni, Zn) acid mine drainage waters enter the local creek system. Oxygenation and hydrolysis of Fe lead to the formation of Fe-rich precipitates (schwertmannite, goethite, amorphous Fe compounds) which, through adsorption and coprecipitation, preferentially incorporate As, Sb and In. Furthermore, during dry periods evaporative precipitation of hydrous alkali and metal sulphate efflorescences occurs on the perimeter of stagnant pools. Flushing of the streambed by neutral pH waters during heavy rainfall events dissolves the efflorescences resulting in remobilisation and transportation of sulphate and metals (particularly Cd, Zn) downstream. Thus, in areas of seasonal or irregular rainfall, secondary efflorescent minerals present in waste materials or drainage channels have an important influence on the chemistry of surface waters.

Waste materials for the phosphate stabilisation experiments were sourced from the Montalbion silver mine. Three kinetic column leaching experiments were conducted using (a) polyminerallic <u>unoxidised</u> sulphidic mine waste and liquid phosphate stabiliser, (b) <u>partly oxidised</u> polyminerallic mine waste and liquid phosphate stabiliser, and (c) <u>partly oxidised</u> polyminerallic mine waste using liquid and solid phosphate fertilisers. SEM observations of the treated waste material showed that phosphate coatings and precipitates formed in all experiments. Metal-alkali phosphate coatings formed on all sulphides when KMnO₄ and phosphate fertilisers were used in the coating solutions. Otherwise tetrahedrite was uncoated. The phosphate coatings were most abundant on chalcopyrite and were interpreted to be chemically connected with the

viii

underlying sulphide. In contrast, the metal, metal-alkali and alkali phosphate precipitates were interpreted to be physically connected to their substrates. The abundance of phosphate development appeared to be dependent on the abundance of cations in solution available for precipitation with the phosphate anions. The release of cations was predominantly dependent on oxidant strength, through sacrificial sulphide oxidation, or the dissolution of soluble sulphate minerals present in the partly oxidised waste.

Leaching of the coated material in a strongly oxidising solution showed that the phosphate coatings and precipitates inhibited acid generation and probably inhibited metal release in all experiments. Thus, the phosphate coatings prevented oxidant access to the sulphide surfaces, inhibiting sulphide oxidation. Lead and Fe phosphates were the most stable in the oxidising solution, whereas Cu and Zn phosphates were partially dissolved. Arsenic and Sb were mobilised by the coating process due to the higher mobility of these metalloids at circum-neutral pH.

The results of this study demonstrate that phosphate stabilisation can suppress sulphide oxidation and metal release in partly oxidised, polyminerallic mine wastes on a laboratory scale.

iх

Table of contents

Title Page	i
Statement of Access	ii
Statement of Sources	iii
Electronic Copy	iv
Acknowledgements	v
ABSTRACT	vii
Table of Contents	x
List of Tables	xiv
List of Figures	xv
List of Appendices	xvii

СНА	PTER C	DNE: Introduction	1
1.1	Fundamentals of AMD		1
1.2	Sulphide oxidation and generation of AMD waters		3
	1.2.1	Acid Generation	3
	1.2.2	Acid neutralisation	8
	1.2.3	Formation of secondary minerals	10
	1.2.4	AMD control methods and phosphate stabilisation	14
1.3	Definitions		17
1.4	.4 Project Aims		20
	1.4.1	Primary objective	20
	1.4.2	Specific Aims	21
1.5	Thesi	is outline	21

CHAPTER TWO: Ephemeral acid mine drainage at the Montalbion

silver mine, north Queensland		23
2.1	2.1 Introduction	
2.2	Montalbion mining area	24
	2.2.1 Physiography and climate	24
	2.2.2 Local geology	25
	2.2.3 Mine history	25

	2.2.4	Site description	26
2.3	Materials and methods		28
	2.3.1	Sampling and sample preparation	28
	2.3.2	Mineralogical and geochemical analyses	28
	2.3.3	Laboratory experiments	30
2.4	Resu	Its	30
	2.4.1	Waste dump material	30
	2.4.2	Stream sediments	37
	2.4.3	Waters	38
	2.4.4	Streambed precipitates	41
2.5	Discu	ission	45
	2.5.1	AMD generation and first flush waters	45
	2.5.2	AMD into receiving stream	48
2.6	Conc	lusions	49
CHAF	PTER T	HREE: Phosphate stabilisation experiments	51
3.1	Introc	luction	51
3.2	Expe	rimental method	52
	3.2.1	Column design	52
	3.2.2	Experimental design	54
	3.2.3	Analytical methods	55
3.3	Phos	phate stabilisation of polyminerallic, sulphide mine	
	waste	e using liquid chemical stabilisers (experiment 1)	56
	3.3.1	Aims	56
	3.3.2	Specific methodology	56
			FO
	3.3.3	Coating stage results	58
		Coating stage results Dissolution stage results	58 62
	3.3.4		
	3.3.4 3.3.5	Dissolution stage results	62
	3.3.4 3.3.5 3.3.6	Dissolution stage results Discussion	62 68
3.4	3.3.4 3.3.5 3.3.6 3.3.7	Dissolution stage results Discussion Limitations specific to experiment 1	62 68 81
3.4	3.3.4 3.3.5 3.3.6 3.3.7 Phos	Dissolution stage results Discussion Limitations specific to experiment 1 Summary	62 68 81
3.4	3.3.4 3.3.5 3.3.6 3.3.7 Phos mine	Dissolution stage results Discussion Limitations specific to experiment 1 Summary phate stabilisation of partly oxidised, polyminerallic	62 68 81 82

	3.4.3	Coating stage results	85
	3.4.4	Dissolution stage results	94
	3.4.5	Discussion	98
	3.4.6	Summary	105
3.5	Phos	phate stabilisation of partly oxidised, polyminerallic	
	mine	wastes using solid and liquid phosphate fertilisers	
	(expe	riment 3)	106
	3.5.1	Aims	106
	3.5.2	Specific methodology	106
	3.5.3	Coating stage results	108
	3.5.4	Dissolution stage results	114
	3.5.5	Discussion	123
	3.5.6	Summary	128
3.6	Exper	imental limitations	129
	3.6.1	Phosphate stabilisation experiments	129
	3.6.2	Waste characterisation	131
	3.6.3	Scanning electron microscopy	131
3.7	Sumn	nary of phosphate stabilisation experiments	132
		nary of phosphate stabilisation experiments OUR: Discussion - stabilisation experiments	132 134
	PTER F		132 134 134
CHAF	PTER F Previe	OUR: Discussion - stabilisation experiments	134
CHAF 4.1	PTER F Previd Exper	OUR: Discussion - stabilisation experiments	134 134
CHAF 4.1 4.2	PTER F Previe Exper Possi	OUR: Discussion - stabilisation experiments ous research rimental overview	134 134
CHAF 4.1 4.2	PTER F Previe Exper Possi oxidis	OUR: Discussion - stabilisation experiments ous research rimental overview ble limitations of the phosphate stabilisation of partly	134 134 135
CHAF 4.1 4.2	PTER F Previe Exper Possi oxidis 4.3.1	OUR: Discussion - stabilisation experiments ous research rimental overview ble limitations of the phosphate stabilisation of partly sed, polyminerallic mine wastes	134 134 135 136
CHAF 4.1 4.2	PTER F Previe Exper Possi oxidis 4.3.1 4.3.2	OUR: Discussion - stabilisation experiments ous research rimental overview ble limitations of the phosphate stabilisation of partly sed, polyminerallic mine wastes Mobility and liberation of contaminants	134 134 135 136
CHAF 4.1 4.2	PTER F Previe Exper Possi oxidis 4.3.1 4.3.2 4.3.3	OUR: Discussion - stabilisation experiments ous research rimental overview ble limitations of the phosphate stabilisation of partly sed, polyminerallic mine wastes Mobility and liberation of contaminants Long term stability	134 134 135 136 136 138
CHAF 4.1 4.2 4.3	PTER F Previe Exper Possi oxidis 4.3.1 4.3.2 4.3.3 Futur	OUR: Discussion - stabilisation experiments ous research rimental overview ble limitations of the phosphate stabilisation of partly sed, polyminerallic mine wastes Mobility and liberation of contaminants Long term stability Sulphide oxidation inhibition	 134 135 136 136 138 139
CHAF 4.1 4.2 4.3	PTER F Previe Exper Possi oxidis 4.3.1 4.3.2 4.3.3 Futur 4.4.1	OUR: Discussion - stabilisation experiments ous research rimental overview ble limitations of the phosphate stabilisation of partly sed, polyminerallic mine wastes Mobility and liberation of contaminants Long term stability Sulphide oxidation inhibition e research	 134 135 136 136 138 139 140
CHAF 4.1 4.2 4.3	PTER F Previe Exper Possi oxidis 4.3.1 4.3.2 4.3.3 Futur 4.4.1 4.4.1	OUR: Discussion - stabilisation experiments ous research rimental overview ble limitations of the phosphate stabilisation of partly sed, polyminerallic mine wastes Mobility and liberation of contaminants Long term stability Sulphide oxidation inhibition e research Column leaching experiments	 134 135 136 136 138 139 140
CHAF 4.1 4.2 4.3	PTER F Previe Exper Possi oxidis 4.3.1 4.3.2 4.3.3 Futur 4.4.1 4.4.2 Contr	OUR: Discussion - stabilisation experiments ous research rimental overview ble limitations of the phosphate stabilisation of partly sed, polyminerallic mine wastes Mobility and liberation of contaminants Long term stability Sulphide oxidation inhibition e research Column leaching experiments Field trials	 134 135 136 136 138 139 140
CHAF 4.1 4.2 4.3 4.4	PTER F Previe Exper Possi oxidis 4.3.1 4.3.2 4.3.3 Futur 4.4.1 4.4.2 Contr	OUR: Discussion - stabilisation experiments ous research rimental overview ble limitations of the phosphate stabilisation of partly sed, polyminerallic mine wastes Mobility and liberation of contaminants Long term stability Sulphide oxidation inhibition e research Column leaching experiments Field trials ibution to previous research made by the phosphate isation experiments	 134 135 136 136 138 139 140 141

Appendices

List of Tables

	Pag	je No.
Table 1.1	Common sulphides known or inferred to generate acid	
	when oxidised.	4
Table 1.2	Groupings of minerals according to their weathering	
	reaction rate.	9
Table 2.1	Geochemistry of Montalbion mine waste.	31
Table 2.2	Mineral identified in the Montalbion mine wastes.	32
Table 2.3	Water quality analyses of Oakey Creek.	39
Table 2.4	Stream bed precipitates identified in the AMD affected	
	Oakey Creek.	47
Table 3.1	Coating solutions used in the coating stage of experiment 1.	57
Table 3.2	Summary of SEM observations of precipitates and coatings,	
	post-coating stage, experiment 1.	63
Table 3.3	Summary of SEM observations of precipitates and coatings,	
	post-dissolution stage, experiment 1.	69
Table 3.4	Oxidation reactions by H_2O_2 of the major sulphide minerals	
	present in the waste material.	72
Table 3.5	Coating solutions used in the coating stage of experiment 2.	84
Table 3.6	Summary of SEM observations of precipitates and coatings,	
	post-coating stage, experiment 2, prior to the addition	
	of Ca(OH) ₂ .	91
Table 3.7	Summary of SEM observations of precipitates and coatings,	
	post-dissolution stage, experiment 2.	97
Table 3.8	Coating solutions used in the coating stage of experiment 3.	107
Table 3.9	Summary of SEM observations of precipitates and coatings,	
	post-coating stage, experiment 3.	115
Table 3.10	Summary of SEM observations of precipitates and coatings,	
	post-dissolution stage, experiment 3.	120

List of Figures

		Page No.
Figure 1.1	Schematic diagram of phosphate stabilisation of pyrite.	16
Figure 2.1	Montalbion mining area location map and sample location	วท
	map showing waste dumps and Oakey Creek.	27
Figure 2.2	Montalbion waste dump materials.	34
Figure 2.3	Geochemistry of Oakey Creek sediments.	38
Figure 2.4	Mineral efflorescences and ochreous precipitates of	
	Oakey Creek.	43
Figure 2.5	Concentration factors of mineral efflorescences and	
	ochreous precipitates from Oakey Creek.	46
Figure 3.1	Diagram of the column design used in the phosphate	
	stabilisation experiments.	53
Figure 3.2	Experiment 1 pH and conductivity of coating stage	
	leachates.	59
Figure 3.3	Concentrations of elements in leachates of experiment 1	1. 61
Figure 3.4	SEM micrographs of material removed from the coated	
	columns after the coating stage of experiment 1.	64
Figure 3.5	Experiment 2 pH and conductivity of dissolution stage	
	leachates.	66
Figure 3.6	SEM micrographs of material removed from the coated	
	columns after the dissolution stage of experiment 1.	70
Figure 3.7	SEM micrograph of anglesite crystals and unidentified	
	granular precipitates on chalcopyrite.	75
Figure 3.8	Experiment 2 pH and conductivity of coating stage	
	leachates.	86
Figure 3.9	Concentrations of elements in leachates of experiment 2	2. 87
Figure 3.10	SEM micrographs of material removed from the coated	
	columns after the coating stage of experiment 2.	89
Figure 3.11	SEM micrographs of material removed from the coated	
	columns after the coating stage and post $ca(OH)_2$ addition	on. 93
Figure 3.12	Experiment 2 pH and conductivity of dissolution stage	
	leachates.	95

Figure 3.13	SEM micrographs of material removed from the coated	
	columns after the dissolution stage of experiment 2.	99
Figure 3.14	Experiment 3 pH and conductivity of coating stage	
	leachates.	109
Figure 3.15	Concentrations of SO_4^{2-} and P in coating stage leachates	
	of experiment 3.	110
Figure 3.16	SEM micrographs of material removed from the coated	
	columns after the coating stage of experiment 3.	111
Figure 3.17	Experiment 3 pH and conductivity of dissolution stage	
	leachates.	117
Figure 3.18	Concentrations of elements in dissolution stage leachates	
	of experiment 3.	117
Figure 3.19	SEM micrographs of material removed from the coated	
	columns after the dissolution stage of experiment 3.	122
Figure 3.20	Granular Mn-Ca-K phosphate precipitates on quartz.	125

List of Appendices

Appendix A1	Sample locations.	162
Appendix A2	Geochemistry.	164
Appendix A3	Oakey Creek water chemistry.	166
Appendix A4	Mine waste mineralogy.	168
Appendix A5	Dissolution experiment results.	170
Appendix A6	Oakey Creek streambed precipitates.	171
Appendix B1	Characterisation of mine waste used in experiments.	175
Appendix B2	Phosphate stabilisation experiment 1, leachate	
	chemistry results.	179
Appendix B3	Phosphate stabilisation experiment 2, leachate	
	chemistry results.	183
Appendix B4	Phosphate stabilisation experiment 3, leachate	
	chemistry results.	188
Appendix B5	SEM observations and additional SEM micrographs,	
	experiment 1.	193
Appendix B6	SEM observations and additional SEM micrographs,	
	experiment 2.	200
Appendix B7	SEM observations and additional SEM micrographs,	
	experiment 3.	213
Appendix B8	Characterisation of phosphate phases.	226
Appendix B9	Phosphate fertiliser dissolution experiment and	
	characterisation.	230
Appendix C	Sample catalogue.	232